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1 Introduction

Participatingin this paneldiscussionon sample-sizeis-
sueswasa real pleasure,and I wish to thankeveryone
involved.

This article summarizesthe points I emphasizedin
that discussion. The commentsare motivatedin great
part by the typesof questionsI occasionallyreceive by
e-mailaskingfor helpin usingsomesoftwarethatI have
developed(Lenth,2000a).Suchinteractionscanbequite
interesting,andmany inquirieshavemotivatedmeto ex-
tendand/ormodify thesoftware.However, certainques-
tions I receive are all too common; they are onesthat
relateto

1. Sample-sizegoalsbasedon a standardizedeffect
size

2. Retrospectivepoweranalysis

Questions like these are easy to ask, and easy to
answer—all too easy. They reflect practicesthat seem
to be fairly firmly established;but in my opinion, they
arenot consistentwith goodscience. It is my purpose
hereto try to explainwhy.

2 Standardized effect-size goals

Onecommonquestiongoeslike this:

What samplesize is required to detect a
“medium” differencewith 90% power and
α ��� 05?

This questionrefersto a conventionestablishedby Ja-
cob Cohen(Cohen,1988) that setsnormsfor “small,”
“medium,” or “large” effects. In the context of a two-
samplet test,thesenormscorrespondto d ��� 20,d ��� 50,
andd ��� 80 respectively, where

d � � µ1 � µ2 �	� σ

is the standardizeddifferencebetweenthe two means
beingcompared.Here,µ1 � µ2 is the actualdifference
betweenthe meansfor a particularalternative hypothe-
sis underconsideration,andσ is the standarddeviation

of the experimentalerror, assumedcommonto the two
treatments.Note that a “medium” differenceis half a
standarddeviation.

Thequestionabove,then,setsavalueof d asthecri-
terion for the sample-sizeproblem. Proponentsof this
approachclaim two advantages:

1. You don’t needto collect pilot dataor historical
datato estimateσ.

2. The standardsfor “large,” medium,” and“small”
arebasedon anextensive survey of thepublished
literaturein the socialsciences,andhencereflect
realistic conventions (at least in the social sci-
ences).

A standardizedeffectsizesuchasd is veryusefulin that
it is directly relevant to creatingreasonablycompactta-
blesfor determiningsamplesize.But ad valueitself has
no relevanceasa criterion for determiningsamplesize.
As fellow panelistJanetElashoff putsit, youneedto look
at thenumeratoranddenominatorof d separately.

I offer thefollowing exampleto helpsolidify Janet’s
point. Supposethat a manufacturerwantsto compare
themeanshrinkagesof injection-moldedpartsmadewith
raw materialsfrom two suppliers. Following Cohen’s
convention,theirgoalis to beableto detecta“medium”-
sizeddifferencewith apowerof .9,usingatwo-sidedtest
at a significancelevel of α �
� 05. Four proposals,with
estimatedcostsandtotalsamplesizesN aresummarized
below:

Proposal Cost N

1 $3,500 170

2 $5,250 170

3 $2,800 170

4 $3,750 172

It appearsthatProposal3 will beselected.

Now let’s take a closerlook at eachproposal.In the
tablebelow, we show what type of designis proposed,
the instrumentationto be used,the value of σ for that
instrumentation,andthe detectabledifferenceof means



(half of σ for a “medium” effect)at a powerof .90.

Proposal

Design
Instrument
ErrorSD

Detectable�
µ1 � µ2

�
1
$3,500
N � 170

Indep.samples(CRD)
Verniercaliper
σ � 0� 70mm

0.35mm

2
$5,250
N � 170

Indep.samples(CRD)
Coordinatemeas.mach.
σ � 0� 66mm

0.33mm

3
$2,800
N � 170

Indep.samples(CRD)
6-inchschoolruler
σ � 1� 9 mm

0.85mm

4
$3,750
N � 172

Paired(block)design
Verniercaliper
σ � 0� 7 �
� � 642 � � 282

0.14mm

The first threeproposalsall usea simple completely-
randomizeddesign. The secondone has the low-
est σ of the three, due to the use of high-technology
instrumentation—a coordinate-measuringmachine—
which greatly increasesthe cost, but for only a mod-
estadvantage(muchof the variationcomesfrom other
sources).The lowest-costproposalhasby far theworst
detectabledifference,dueto its extremely low technol-
ogy. Proposal4 usesthe same(sensible)technologyas
Proposal1,but gainsby farthebestdetectabledifference
usinga tacticthatwe statisticiansshouldalwayskeepin
the forefront of our thinking: a goodexperimentalde-
sign. By blocking on subjects,an importantsourceof
variation is eliminatedfrom the treatmentcomparison,
effectively reducingtheerrorstandarddeviationfrom .70
to .28. Proposal4 costsjust a bit morethanProposal1
dueto theslightly increasedsamplesizeassociatedwith
having fewerdegreesof freedomfor error. But if theen-
gineers’goal is to be ableto detecta differenceof, say,
0.25mm, we canget by with a lot lessdata(andlower
cost).

Thelessonhereis thatwhenwe focuson astandard-
ized effect size,we areignoring many of the important
issuesthatdeservecarefulconsiderationin designingany
statisticalstudy. Wegetnocredits(or demerits)for using
good(or bad)measurementprocedures,andwe actually
get slight negative credit for using a good design. (A
notehere:A colleaguepointsout thata morecarefulre-
searcherwould not be misledby the designissue. For
example,a programsuchasnQueryAdvisor (Elashoff,
2000) would make an adjustmentto the error variance
basedon theanticipatedintraclasscorrelation.However,
that still doesnot cure the faults associatedwith stan-
dardizedeffect specifications.) It is always important
to think in termsof actual,absoluteeffect sizes,in the
sameunits of measurementaswherethe inferenceis to

bemade.Thereis really no honestway aroundaddress-
ing boththenumeratoranddenominatorof d separately.

Standardizedeffect sizes have been defined for a
numberof contexts—analysisof variance,pairedt tests,
etc. In a regressioncontext, it is popularto usethecor-
relationρ or thecoefficientof multiple determinationρ2

asa target.Doing sois evena worsemistake thanin the
exampleabove,becauseρ andρ2 involvenotonly oneor
moreabsoluteeffect sizes(coefficientsβ j ) andtheerror
varianceσ2, but alsothe variance(s)of the predictor(s).
All threeof theseelementsshouldbe consideredsepa-
ratelyin designingastudyanddeterminingsamplesize.

3 Retrospective power

Retrospectivepoweranalysiscomprisesanumberof dif-
ferent practicesthat involve computingthe power of a
testbasedon observeddata.Personally, I think I cando
without all suchpractices;but someof themare more
understandablethanothers. The onethat I really don’t
like is theideaof computingpowerusingobserveddata,
with theobservederrorvarianceandtheobservedeffect
size.

Again,I offer anexample.Figure1 showsthedefault
outputgeneratedby theregressionprocedurein SASAn-
alyst(SASInstitute,Inc.,1999)with the“Performpower
analysis” option checked in the “Tests” menu. (Sev-
eralotherstatisticalpackagescanproducesimilarresults,
presumablyin responseto customerdemands.)Thedata
aremeasurementsof 202Australianathletes(Cook and
Weisberg, 1999,p. 438). The top part of the output is
conventionalstatisticaloutputfor aregressionprocedure;
the bottomshows retrospective power for the observed
effect sizesat significancelevel α ��� 05. Also shown
are“leastsignificantnumbers”(LSNs),whichreflectthe
samplesize requiredto achieve significanceat the ob-
servedeffect size;they aretruncatedat 1002.

To show thefolly of theseretrospectivepowercalcu-
lations,selectedportionsof Figure1 arere-organizedin
thefollowing table,andsortedby P value.

Source t ratio P value Power LSN
LBM � 18� 02 � � 0001 0� 999 14
Wt 10� 48 � � 0001 0� 999 16
SqrtSSF 9� 25 � � 0001 0� 999 17
Sex 4� 78 � � 0001 0� 997 38
Hg 2� 25 0� 0258 0� 609 157
BMI 1� 61 0� 1098 0� 359 304
Hc 0� 71 0� 4816 0� 108 1002
Height � 0� 74 0� 4627 0� 113 1002
WCC � 0� 48 0� 6306 0� 077 1002
Ferr 0� 44 0� 6574 0� 073 1002
RCC � 0� 36 0� 7172 0� 065 1002



It is immediatelyobvious that asthe P valueincreases,
retrospectivepowerdecreases,andleastsignificantnum-
ber increases.In fact, both aresimply transformations
of theP values.It canfurtherbeshown thatwhentheP
value is equalto α, the retrospective power is approx-
imately 0� 5. That is true becausethe empirical effect
sizeis right at theboundaryof thecritical region,sothat
abouthalf of theprobabilityfalls in thecritical region.

Thereis simpleintuition behindresultslike these:If
my carmadeit to the top of the hill, thenit is powerful
enoughto climb that hill; if it didn’t, then it obviously
isn’t powerful enough.Retrospective power is an obvi-
ousanswerto a ratheruninterestingquestion. A more
meaningfulquestionis to askwhetherthe car is power-
ful enoughto climb a particularhill never climbedbe-
fore; or whethera differentcar canclimb thatnew hill.
Suchquestionsareprospective,not retrospective.

Thefactthat retrospectivepower addsno new infor-
mationis harmlessin its own right. However, in typical
practice,it is usedto exaggeratethevalidity of a signifi-
cantresult(“not only is it significant,but thetestis really
powerful!”), or to make excusesfor a nonsignificantone
(“well, P is .38,but that’sonly becausethetestisn’t very
powerful”). The latter caseis like blamingthe messen-
ger.

Similarly, LSNsdon’t addnew information.True,if
we collectmoredatato bring N up to theLSN, andthe
effect size staysthe same,then we’ll obtain statistical
significance.Sucha strategy is strictly asterisk-hunting:
let’s do whatever it takesto make P � � 05. Instead,as
in the precedingsection,I recommendconsultingwith
subject-matterexpertsbeforethedataarecollectedto de-
termineabsoluteeffect-sizegoalsthatareconsistentwith
thescientificgoalsof thestudy.

For furtherdiscussionof retrospective power from a
scientist’sperspective,I recommendThomas(1997).

4 Discussion

Sample-sizedeterminationis seriousandimportantbusi-
ness.It is theoneplacein theprocessof collectingand

analyzingdatawherescientificgoalscanbe addressed.
Thattakeshardwork andcarefulthinking. Thepractices
I criticize in this article are popularprimarily because
they areeasy, andthey areeasybecausethey bypassthe
detailedstudythatis reallynecessaryto do it right.

This articlecontainsselectedtopics(plusa few em-
bellishments)from a longerreporton sample-sizeprac-
tices (Lenth, 2000b). That report also discussessome
of the consultingaspectsof sample-sizedetermination,
what to do when the samplesize is fixed, how to esti-
mateσ, and the fact that not all sample-sizeproblems
arethesame.
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Figure1: Retrospectivepower-analysisexample.

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -8.62641 6.15867 -1.40 0.1629
BMI 1 0.22249 0.13850 1.61 0.1098
Ferr 1 0.00052053 0.00117 0.44 0.6574
Hc 1 0.03713 0.05266 0.71 0.4816
Hg 1 -0.09203 0.12505 -0.74 0.4627
Height 1 0.07641 0.03400 2.25 0.0258
LBM 1 -0.82153 0.04559 -18.02 <.0001
RCC 1 -0.10165 0.28024 -0.36 0.7172
Sex 1 1.08958 0.22775 4.78 <.0001
SqrtSSF 1 1.04342 0.11279 9.25 <.0001
WCC 1 -0.01348 0.02798 -0.48 0.6306
Wt 1 0.63786 0.06084 10.48 <.0001

Power Analysis
Sum of Least

Dependent Squares Significant
Variable Source Type Alpha Power Number

PctBodyFat BMI Type II 0.05 0.359 304
PctBodyFat Ferr Type II 0.05 0.073 1002
PctBodyFat Hc Type II 0.05 0.108 1002
PctBodyFat Height Type II 0.05 0.609 157
PctBodyFat Hg Type II 0.05 0.113 1002
PctBodyFat LBM Type II 0.05 0.999 14
PctBodyFat RCC Type II 0.05 0.065 1002
PctBodyFat Sex Type II 0.05 0.997 38
PctBodyFat SqrtSSF Type II 0.05 0.999 17
PctBodyFat WCC Type II 0.05 0.077 1002
PctBodyFat Wt Type II 0.05 0.999 16


