

Netflix

Russ Lenth

Background

Data

Analysis

Managing/analyzing the Netflix data

Russ Lenth

Department of Statistics & Actuarial Science The University of Iowa

> 22S:295 HPC Seminar October 25, 2007

- For details: www.netflixprize.com
- \$1 million prize for beating *Cinematch* program for predicting movie ratings by 10%
- Annual progress prize of \$50K.
- Cinematch RMSE is 0.9525; \$1M goal 0.8572
- Contest begins October 2, 2006 and continues through at least October 2, 2011
- Current leaders (as of Oct. 19): "BellKor" team (Bob Bell, Yehudi Koren, AT&T Research), RMSE = 0.8709

Netflix

Russ Lenth

Background

Data

The data

- About 18,000 movies, 480,000 customers, and over 100 million observations
- Packaged as 17,770 separate text files, one for each movie
- These files are saved (gzip format) and available to all in /space/yoyo/data/Netflix/training_data

mv_0012345.txt

0012345: 0365262 5 2005-05-04 1076294 3 2005-03-07

2209921 4 2006-12-23

Netflix

Russ Lenth

Background

Data

Movie stats Rearranging Customer stats

To read a movie file in R

7

Movie summaries

THE UNIVERSITY OF IOWA

Netflix

Russ Lenth

Background

Data

Movie stats Rearranging Customer stats

More movie summaries

Netflix

Russ Lenth

Background

Data

Movie stats Rearranging Customer stats

>	<pre>summary(mstats[1,])</pre>					
	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
	3	192	561	5655	2668	232900

- > summary(mstats[2,])
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.288 2.897 3.255 3.228 3.616 4.723
- > summary(mstats[3,])
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.5865 1.0100 1.0910 1.1010 1.1820 1.6480

Is it worth it to make native R files?

```
Netflix
> makeR = function(movieno) {
                                                                       Russ Lenth
    attach(read.movie(movieno))
+
    fname = sprintf("/space/yoyo/data/Netflix/training_set/mv_%07d_RData",
+
    save(list=c("cust", "rating", "date"), file=fname)
+
    detach()
+
                                                                      Movie stats
}
                                                                      Rearranging
                                                                      Customer stats
> system.time(parLapply(cl, 1:17770, makeR))
                                                                      Analysis
   user system elapsed
  0.012 0.003 231.125
> newmy.summ = function(movieno) {
    fname = sprintf("/space/yoyo/data/Netflix/training_set/mv_%07d.RData",
+
    load(fname)
+
    c(length(rating), mean(rating), sd(rating))
+
+ }
> system.time(nmsumm <<- parLapply(cl, 1:17770, newmv.summ))</pre>
   user
         system elapsed
  0.039 0.002 15.072
Yes!!—It takes less than 1/9 the time to do the same thing
```


Netflix

Russ Lenth

Background

Data

Movie stats Rearranging Customer stats

- Provided data is fine for computing mean ratings per movie and other movie-specific quantities
- Far less convenient for computing customer effects
- To do this, we need to create a new set of files, each with all the data for just a handful of customers.
- (One file per customer would be too many files)
- How to accomplish this without reading/sorting all 17,770 movie files together?

Slice and dice algorithm

First pass

- Combine the data for 10 movies
 - Extract all the data for customer IDs that start with 0 and save to a new file
 - Extract all the data for customer IDs that start with 1 and save to a new file
 - 3 . . .
- ${f 0}$ Repeat this operation for 1,769 other sets of 10 movies

Second pass

Do the same using sets of 10 (or so) result files, extracting new files based on the second digits of the customer IDs

Eventually

- - -

If we manage it right, we consolidate all data for each customer into one file (a few customers per file) Netflix

Russ Lenth

Background

Data

Movie stats Rearranging Customer stats

Bookkeeping for slicing/dicing

Netflix

Russ Lenth

Background

Data

Movie stats Rearranging Customer stats

Analysis

- Use filenames cu_CC...-MM... to keep track of information, stripping off last digit each iteration
 - mv_0012340, mv_0012341, ..., mv_0012349
 → cu_0-001234, cu_1-001234, ..., cu_9-001234
 - ② cu_2-001230, cu_2-001231, ..., cu_2-001239 → cu_20-00123, cu_21-00123, ..., cu_29-00123
 - S cu_25-00120, cu_25-00121, ..., cu_25-00129 → cu_250-0012, cu_251-0012, ..., cu_259-0012

4 ...

5 ...

 \rightarrow cu_25430-00, cu_25431-00, ..., cu_25439-00 At this stage, all suffixes are -00, and no customer's data exists in more than one file.

```
> system.time(parNFSetup(cl))
Farming out the job for 178 patterns...
   user system elapsed
 0.234 0.033 444.328
> peek()
We have 17770 files in all...
 [1] "cu_-0000001.RData" "cu_-0000002.RData" "cu_-0000003.RData"
 [4] "cu_-0000004.RData" "cu_-0000005.RData" "cu_-0000006.RData"
 [7] "cu_-0000007.RData" "cu_-0000008.RData" "cu_-0000009.RData"
[10] "cu -0000010.RData" "..."
                                            "cu -0017761.RData"
[13] "cu_-0017762.RData" "cu_-0017763.RData" "cu_-0017764.RData"
[16] "cu_-0017765.RData" "cu_-0017766.RData" "cu_-0017767.RData"
[19] "cu -0017768.RData" "cu -0017769.RData" "cu -0017770.RData"
```


Netflix Russ Lenth

Background

Movie stats

Rearranging Customer stats Analysis 1st step


```
> system.time(parSD(cl))
We processed 17770 files in 1778 patterns.
   user system elapsed
 0.369 0.100 279.603
> peek()
We have 5334 files in all...
 [1] "cu_0-000000.RData" "cu_0-000001.RData" "cu_0-000002.RData"
 [4] "cu_0-000003.RData" "cu_0-000004.RData" "cu_0-000005.RData"
 [7] "cu_0-000006.RData" "cu_0-000007.RData" "cu_0-000008.RData"
[10] "cu 0-000009.RData" "..."
                                            "cu 2-001768.RData"
[13] "cu 2-001769.RData" "cu 2-001770.RData" "cu 2-001771.RData"
[16] "cu_2-001772.RData" "cu_2-001773.RData" "cu_2-001774.RData"
[19] "cu 2-001775.RData" "cu 2-001776.RData" "cu 2-001777.RData"
```

Netflix

Russ Lenth

Background

Data

Movie stats Rearranging Customer stats

2nd step

Netflix

Russ Lenth > system.time(parSD(cl)) Background We processed 5334 files in 534 patterns. user system elapsed Movie stats 0.104 0.045 235.899 Rearranging Customer stats Analysis > peek() We have 4806 files in all... [1] "cu_00-00000.RData" "cu_00-00001.RData" "cu_00-00002.RData" [4] "cu_00-00003.RData" "cu_00-00004.RData" "cu_00-00005.RData" [7] "cu_00-00006.RData" "cu_00-00007.RData" "cu_00-00008.RData" [10] "cu 00-00009.RData" "..." "cu 26-00168.RData" [13] "cu_26-00169.RData" "cu_26-00170.RData" "cu_26-00171.RData" [16] "cu_26-00172.RData" "cu_26-00173.RData" "cu_26-00174.RData" [19] "cu 26-00175.RData" "cu 26-00176.RData" "cu 26-00177.RData"

3rd step


```
> system.time(parSD(cl))
We processed 4806 files in 486 patterns.
   user system elapsed
 0.091 0.043 196.213
> peek()
We have 4770 files in all...
 [1] "cu_000-0000.RData" "cu_000-0001.RData" "cu_000-0002.RData"
 [4] "cu_000-0003.RData" "cu_000-0004.RData" "cu_000-0005.RData"
 [7] "cu_000-0006.RData" "cu_000-0007.RData" "cu_000-0008.RData"
                                             "cu 264-0008.RData"
[10] "cu 000-0009.RData" "..."
[13] "cu 264-0009.RData" "cu 264-0010.RData" "cu 264-0011.RData"
[16] "cu_264-0012.RData" "cu_264-0013.RData" "cu_264-0014.RData"
[19] "cu 264-0015.RData" "cu 264-0016.RData" "cu 264-0017.RData"
```

Netflix

Russ Lenth

Background

Data

Movie stats Rearranging Customer stats

4th step

Netflix

Russ Lenth > system.time(parSD(cl)) Background We processed 4770 files in 530 patterns. user system elapsed Movie stats 0.078 0.048 196.922 Rearranging Customer stats Analysis > peek() We have 5300 files in all... [1] "cu_0000-000.RData" "cu_0000-001.RData" "cu_0001-000.RData" [4] "cu_0001-001.RData" "cu_0002-000.RData" "cu_0002-001.RData" [7] "cu_0003-000.RData" "cu_0003-001.RData" "cu_0004-000.RData" [10] "cu 0004-001.RData" "..." "cu 2645-000.RData" [13] "cu 2645-001.RData" "cu 2646-000.RData" "cu 2646-001.RData" [16] "cu_2647-000.RData" "cu_2647-001.RData" "cu_2648-000.RData"

[19] "cu_2648-001.RData" "cu_2649-000.RData" "cu_2649-001.RData"

5th step

Netflix Russ Lenth

```
> system.time(parSD(cl))
                                                                     Background
We processed 5300 files in 2650 patterns.
   user system elapsed
                                                                     Movie stats
  0.092 0.044 388.795
                                                                     Rearranging
                                                                     Customer stats
                                                                     Analysis
> peek()
We have 26495 files in all...
 [1] "cu_00000-00.RData" "cu_00001-00.RData" "cu_00002-00.RData"
 [4] "cu_00003-00.RData" "cu_00004-00.RData" "cu_00005-00.RData"
 [7] "cu_00006-00.RData" "cu_00007-00.RData" "cu_00008-00.RData"
[10] "cu 00009-00.RData" "..."
                                               "cu 26485-00.RData"
[13] "cu 26486-00.RData" "cu 26487-00.RData" "cu 26488-00.RData"
[16] "cu_26489-00.RData" "cu_26490-00.RData" "cu_26491-00.RData"
[19] "cu 26492-00.RData" "cu 26493-00.RData" "cu 26494-00.RData"
```



```
> system.time(parSD(cl))
No more slicing/dicing is necessary. Files have been renamed
   user system elapsed
  2.632 1.778 220.862
> peek()
We have 26495 files in all...
 [1] "cu_00000.RData" "cu_00001.RData" "cu_00002.RData"
 [4] "cu 00003.RData" "cu 00004.RData" "cu 00005.RData"
 [7] "cu_00006.RData" "cu_00007.RData" "cu_00008.RData"
[10] "cu_00009.RData" "..." "cu_26485.RData"
[13] "cu 26486.RData" "cu 26487.RData" "cu 26488.RData"
[16] "cu_26489.RData" "cu_26490.RData" "cu_26491.RData"
[19] "cu_26492.RData" "cu_26493.RData" "cu_26494.RData"
```

Netflix

Russ Lenth

Background

Data

Movie stats Rearranging

Customer stats

Customer summaries

movie files


```
Netflix
> cu.summ = function(file) {
                                                                         Russ Lenth
    load(paste(NFpath,file,sep="/"))
+
    tapply(rating, cust, function(r) c(length(r),mean(r),sd(r)))
+
                                                                        Background
+ }
                                                                        Data
> system.time(csumm <<- parLapply(cl, dir(path=NFpath,pat="cu_"),</pre>
                                                                        Movie stats
  cu.summ))
                                                                        Rearranging
                                                                        Customer stats
         system elapsed
   user
                                                                        Analysis
  6.065 0.468 49.854
> cstats = matrix(unlist(csumm), nrow=3)
> cust=as.integer(unlist(lapply(csumm, names)))
> sum(cstats[1,])
[1] 100480507
> sum(cstats[1,]*cstats[2,]) / sum(cstats[1,])
[1] 3.60429
These results confirm that we have the same data as from the
```

More customer stats

> length(cust)

[1] 480189

```
Max.
649000
```

```
Analysis
```

> summary(cust) Min. 1st Qu. Median Mean 3rd Qu. 659100 1323000 1323000 1986000 2649000 6 > summary(cstats[1,]) Mean 3rd Qu. Min. 1st Qu. Median Max. 1.0 39.0 96.0 209.3 259.0 17650.0 > summary(cstats[2,]) Min. 1st Qu. Median Mean 3rd Qu. Max. 1.000 3.380 3.676 3.674 3,980 5,000 > summary(cstats[3,])

 Min.
 1st Qu.
 Median
 Mean
 3rd Qu.
 Max.
 NA's

 0.0000
 0.8406
 0.9819
 0.9982
 1.1410
 2.8280
 1269.0000

Mean customer rating

Time trends

Do ratings change systematically over time? A simple analysis we can do is find the slopes of the regression lines for each movie.

```
> date.trend
function(movieno) {
  read.movie(movieno)
  d.dev = as.integer(date) - mean(as.integer(date))
  365.25 * sum(d.dev*rating) / sum(d.dev*d.dev)
}
```

> system.time(date.trends <<- parSapply(cl, 1:17770, date.trend))
user system elapsed
0.065 0.001 14.002</pre>

```
> summary(date.trends)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
-11.85000 0.01564 0.09913 0.09450 0.20230 15.19000
```

> hist(date.trends[abs(date.trends)<.5], main="")</pre>

 $\mathsf{Netflix}$

Russ Lenth

Background

Data

```
Analysis
Time trends
ANCOVA model
Iterative method
R functions
Results
Ridge regression
```

Conclusions

Histogram of inlying slopes

THE UNIVERSITY OF IOWA If we take a traditional linear-models approach, we might want to fit a model of the form

$$E(r_{ij}) = \beta_0 + \mu_i + \beta_i(x_{ij} - \bar{x}_i) + \kappa_j$$

where r_{ij} is the rating of the *i*th movie by the *j*th customer and x_{ij} is the (i, j)th date, i = 1, 2, ..., 17770, j = 1, 2, ..., 480189, subject to the constraints

$$\sum_{i=1}^{17770} \mu_i = \sum_{j=1}^{480189} \kappa_j = 0$$

 With appropriate indicator variables, etc., the X matrix for this model has 100, 480, 507 rows and 515, 728 columns. and X'X has 2.66 × 10¹¹ elements.

Netflix

Russ Lenth

Background

Data

Analysis Time trends ANCOVA model Iterative method R functions Results Ridge regression Conclusions If we take a traditional linear-models approach, we might want to fit a model of the form

$$E(r_{ij}) = \beta_0 + \mu_i + \beta_i(x_{ij} - \bar{x}_i) + \kappa_j$$

where r_{ij} is the rating of the *i*th movie by the *j*th customer and x_{ij} is the (i, j)th date, i = 1, 2, ..., 17770, j = 1, 2, ..., 480189, subject to the constraints

$$\sum_{i=1}^{17770} \mu_i = \sum_{j=1}^{480189} \kappa_j = 0$$

- With appropriate indicator variables, etc., the X matrix for this model has 100, 480, 507 rows and 515, 728 columns. and X'X has 2.66 × 10¹¹ elements.
- Maybe we should find a different approach...

Netflix

Russ Lenth

Background

Data

Analysis Time trends ANCOVA model Iterative method R functions Results Ridge regression Conclusions

Netflix

Russ Lenth

Background

Data

Analysis Time trends ANCOVA model Iterative method R functions Results Ridge regression Conclusions

Here is an approach dating back to the "old days" (but not unlike the ideas behind Gibbs sampling)

- Start with initial guesses for parameter estimates
- 2 Loop:
 - $\textbf{O} \ \ \, \textbf{Estimate the } \mu_i \ \, \textbf{after adjusting for the } \beta_i \ \, \textbf{and } \kappa_j \\$
 - **②** Estimate the β_i after adjusting for the new μ_i and κ_j
 - **③** Estimate the κ_j after adjusting for the new μ_i and new β_i
- Sepeat (2) until estimates stabilize

R functions for iterative analysis

We'll need each movie's mean date

```
> get.mean.date = function(movieno) {
    read.movie(movieno)
+
   mean(as.integer(date))
+
+ }
> mean.date = parSapply(cl, 1:17700, get.mean.date)
And we need some initial values
```

```
> cu.eff = cstats[2,] - 3.6
> mv.eff = matrix(rep(0,2*17770), nrow=2)
```


Netflix

Russ Lenth

Background

Analysis Time trends ANCOVA model Iterative method R functions Results Ridge regression Conclusions

Code for movie effects


```
est.mv.effs = function (movieno, lambda0=0, lambda1=0) {
  read.movie(movieno)
  xdev = as.integer(date) - mean.date[movieno]
  ydev = rating - 3.6
    - sapply(cust, function(c) cu.eff[cu.pos[c]])
  avg = sum(ydev) / (lambda0 + length(ydev))
  slope = sum(xdev*ydev) / (lambda1 + sum(xdev*xdev))
  c(avg, slop> mv.eff = matrix(rep(0,2*17770), nrow=2)
}
```

```
update.mv = function(cl) {
  clusterExport(cl, "cu.eff")
  me = parSapply(cl, 1:17770, est.mv.effs)
  chg = c(max.eff = max(abs(me[1,]-mv.eff[1,])),
    RMS.eff = sqrt(mean((me[1,]-mv.eff[1,])^2)),
    max.slope = max(abs(me[2,]-mv.eff[2,])),
    RMS.slope = sqrt(mean((me[2,]-mv.eff[2,])^2)) )
  mv.eff <<- me
  chg
}</pre>
```

Netflix

Russ Lenth

Background

Data

```
Analysis
Time trends
ANCOVA model
Iterative method
R functions
Results
Ridge regression
Conclusions
```

Code for customer effects

```
Netflix
est.cu.effs = function (filename, lambda=0) {
                                                                          Russ Lenth
  load(paste(NFpath,filename,sep="/"))
                                                                         Background
  deff = as.integer(date)
    - sapply(movie, function(m) mean.date[m])
  deff = deff * sapply(movie, function(m) mv.eff[2,m])
                                                                         Analysis
                                                                         Time trends
  ydev = rating - 3.6 - deff
                                                                          ANCOVA model
    - sapply(movie, function(m) mv.eff[1,m])
                                                                          Iterative method
                                                                          R functions
  tapply(ydev, cust, function(e) sum(e) / (lambda + length(e)))
                                                                          Results
                                                                          Ridge regression
                                                                         Conclusions
update.cu = function(cl) {
  clusterExport(cl, "mv.eff")
  ce = unlist(parLapply(cl, custfiles, est.cu.effs))
  chg = c(max=max(ce - cu.eff), RMS=sqrt(mean((ce-cu.eff)^2)))
```

OF LOWA

chg

cu.eff <<- ce

3

Iterations

Netflix

Russ Lenth

Background

Iterative method R functions

Ridge regression Conclusions

Data

Analysis Time trends ANCOVA model

Results

```
> update.mv(cl)
    max.eff
                RMS.eff
                          max.slope RMS.slope
2.146194510 0.522287975 0.037305960 0.001179864
> update.cu(cl)
                RMS
     max
1,4802255 0,1243077
> update.mv(cl)
                  RMS.eff
                             max.slope
                                          RMS.slope
     max.eff
0.2349055528 0.0645016692 0.0054959693 0.0001473149
> update.cu(cl)
                  RMS
       max
0.17133869 0.01897151
> update.mv(cl)
     max.eff
                  RMS.eff
                             max.slope
                                          RMS.slope
4.246874e-02 1.183684e-02 1.386837e-03 4.324022e-05
> update.cu(cl)
                    RMS
        max
0.039378870 0.007066787
```

Iterations (cont'd)

- Pretty close after 5 times around.
- Computation time (10 nodes): Around 75 seconds for each update.mv and 175 seconds for each update.cu run.

Netflix

Russ Lenth

Background

Data

Analysis Time trends ANCOVA model Iterative method R functions Results Ridge regression Conclusions

Summaries

Ridge regression

Netflix

Russ Lenth

Background

Data

Analysis Time trends ANCOVA model Iterative method R functions Results Ridge regression Conclusions

- Substantial risk of over-fitting
- Especially considering spareseness of data
- Ridge-regression idea: essentially pretend that we have λ additional zero values for each movie (or customer)
- Shrinks estimates towards zero especially those with small denominators

Modified code

Netflix Russ Lenth

Background

ANCOVA model Iterative method

Ridge regression

R functions Results

Conclusions

Data Analysis Time trends

```
# Save old estimates for comparison
> CU.eff = cu.eff
> MV.eff = mv.eff
> fix(update.cu)
> update.cu
function(cl, lambda=50) {
  clusterExport(cl, "mv.eff")
  ce = unlist(parLapply(cl, custfiles, est.cu.effs, lambda))
  chg = c(max=max(ce - cu.eff), RMS=sqrt(mean((ce-cu.eff)^2)))
  cu.eff <<- ce
  chg
}
```

etc.

Iterations

First round

> update.mv(cl) max.eff RMS.eff max.slope RMS.slope 1.606790689 0.321115611 0.040424673 0.001000710 > update.cu(cl) RMS max 3,4119180 0,2481984 Fourth round > update.mv(cl) max.eff RMS.eff max.slope RMS.slope 1.105136e-02 5.980754e-03 1.548363e-05 4.951843e-06 > update.cu(cl) RMS max 0.0004277699 0.0060686696

Netflix

Russ Lenth

Background

Data

Analysis Time trends ANCOVA model Iterative method R functions Results Ridge regression Conclusions

Comparisons of two estimates

Netflix Russ Lenth

- A plot of 480,000 customer effects is a bit messy. I took a random sample of 1,000; same for the movie effects.
- The reference line is the identity line.

Conclusions

Netflix

Russ Lenth

Background

Data

Analysis Time trends ANCOVA model Iterative method R functions Results Ridge regression Conclusions

- Learning experience
- Parallel computing really helps!
- snow really helps!
- It is actually possible to fit a multiple regression model with $n = 10^8$ and $p = 5 \times 10^5$ —and get it done in an hour