
Netflix

Russ Lenth

Background

Data

Analysis

Managing/analyzing the Netflix data

Russ Lenth

Department of Statistics & Actuarial Science
The University of Iowa

22S:295 HPC Seminar
October 25, 2007

Netflix

Russ Lenth

Background

Data

Analysis

The Netflix prize

For details: www.netflixprize.com

$1 million prize for beating Cinematch program for
predicting movie ratings by 10%

Annual progress prize of $50K.

Cinematch RMSE is 0.9525; $1M goal 0.8572

Contest begins October 2, 2006 and continues through at
least October 2, 2011

Current leaders (as of Oct. 19): “BellKor” team (Bob
Bell, Yehudi Koren, AT&T Research), RMSE = 0.8709

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

The data

Training data variables: Movie ID, Customer ID, Date,
Rating (1–5)

About 18, 000 movies, 480, 000 customers, and over 100
million observations

Packaged as 17, 770 separate text files, one for each movie

These files are saved (gzip format) and available to all in
/space/yoyo/data/Netflix/training-data

mv-0012345.txt

0012345:
0365262 5 2005-05-04
1076294 3 2005-03-07
. . .
2209921 4 2006-12-23

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

To read a movie file in R

read.movie = function (movieno) {

fname = sprintf("/space/yoyo/data/Netflix/training_set/mv_%07d.txt.gz",

movieno)

con = gzfile(fname, "rb")

lst = scan(con, skip=1, sep=",",

what = list(cust=0, rating=0, date=""))

close(con)

lst$date = as.Date(lst$date)

lst

}

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

Movie summaries

> mv.summ = function(movieno) {

+ dat = read.movie(movieno)

+ c(length(dat$rating), mean(dat$rating), sd(dat$rating))

+ }

> # Using cluster with 8 processors ...

> system.time(msumm <<- parLapply(cl, 1:17770, mv.summ))

user system elapsed

0.026 0.003 130.134

> mstats = matrix(unlist(msumm), nrow=3)

> sum(mstats[1,])

[1] 100480507

> sum(mstats[1,]*mstats[2,]) / .Last.value

[1] 3.60429

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

More movie summaries

> summary(mstats[1,])

Min. 1st Qu. Median Mean 3rd Qu. Max.

3 192 561 5655 2668 232900

> summary(mstats[2,])

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.288 2.897 3.255 3.228 3.616 4.723

> summary(mstats[3,])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5865 1.0100 1.0910 1.1010 1.1820 1.6480

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

More movie summaries

> hist(mstats[2,], xlab="Mean movie rating")

Histogram of mstats[2,]

Mean movie rating

F
re

qu
en

cy

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0
50

0
10

00
20

00

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

Is it worth it to make native R files?

> makeR = function(movieno) {

+ attach(read.movie(movieno))

+ fname = sprintf("/space/yoyo/data/Netflix/training_set/mv_%07d.RData", movieno)

+ save(list=c("cust","rating","date"), file=fname)

+ detach()

}

> system.time(parLapply(cl, 1:17770, makeR))

user system elapsed

0.012 0.003 231.125

> newmv.summ = function(movieno) {

+ fname = sprintf("/space/yoyo/data/Netflix/training_set/mv_%07d.RData", movieno)

+ load(fname)

+ c(length(rating), mean(rating), sd(rating))

+ }

> system.time(nmsumm <<- parLapply(cl, 1:17770, newmv.summ))

user system elapsed

0.039 0.002 15.072

Yes!!—It takes less than 1/9 the time to do the same thing

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

Rearranging the data

Provided data is fine for computing mean ratings per
movie and other movie-specific quantities

Far less convenient for computing customer effects

To do this, we need to create a new set of files, each with
all the data for just a handful of customers.

(One file per customer would be too many files)

How to accomplish this without reading/sorting all 17,770
movie files together?

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

Slice and dice algorithm

First pass
1 Combine the data for 10 movies

1 Extract all the data for customer IDs that start with 0 and
save to a new file

2 Extract all the data for customer IDs that start with 1 and
save to a new file

3 . . .

2 Repeat this operation for 1, 769 other sets of 10 movies

Second pass
Do the same using sets of 10 (or so) result files, extracting new
files based on the second digits of the customer IDs
. . .
Eventually
If we manage it right, we consolidate all data for each customer
into one file (a few customers per file)

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

Bookkeeping for slicing/dicing

Use filenames cu-CC...-MM... to keep track of
information, stripping off last digit each iteration

1 mv-0012340, mv-0012341, ..., mv-0012349
→ cu-0-001234, cu-1-001234, ..., cu-9-001234

2 cu-2-001230, cu-2-001231, ..., cu-2-001239
→ cu-20-00123, cu-21-00123, ..., cu-29-00123

3 cu-25-00120, cu-25-00121, ..., cu-25-00129
→ cu-250-0012, cu-251-0012, ..., cu-259-0012

4 ...

5 ...
→ cu-25430-00, cu-25431-00, ..., cu-25439-00

At this stage, all suffixes are -00, and no customer’s data
exists in more than one file.

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

0th step (using 4 processors)

> system.time(parNFSetup(cl))

Farming out the job for 178 patterns...

user system elapsed

0.234 0.033 444.328

> peek()

We have 17770 files in all...

[1] "cu_-0000001.RData" "cu_-0000002.RData" "cu_-0000003.RData"

[4] "cu_-0000004.RData" "cu_-0000005.RData" "cu_-0000006.RData"

[7] "cu_-0000007.RData" "cu_-0000008.RData" "cu_-0000009.RData"

[10] "cu_-0000010.RData" "..." "cu_-0017761.RData"

[13] "cu_-0017762.RData" "cu_-0017763.RData" "cu_-0017764.RData"

[16] "cu_-0017765.RData" "cu_-0017766.RData" "cu_-0017767.RData"

[19] "cu_-0017768.RData" "cu_-0017769.RData" "cu_-0017770.RData"

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

1st step

> system.time(parSD(cl))

We processed 17770 files in 1778 patterns.

user system elapsed

0.369 0.100 279.603

> peek()

We have 5334 files in all...

[1] "cu_0-000000.RData" "cu_0-000001.RData" "cu_0-000002.RData"

[4] "cu_0-000003.RData" "cu_0-000004.RData" "cu_0-000005.RData"

[7] "cu_0-000006.RData" "cu_0-000007.RData" "cu_0-000008.RData"

[10] "cu_0-000009.RData" "..." "cu_2-001768.RData"

[13] "cu_2-001769.RData" "cu_2-001770.RData" "cu_2-001771.RData"

[16] "cu_2-001772.RData" "cu_2-001773.RData" "cu_2-001774.RData"

[19] "cu_2-001775.RData" "cu_2-001776.RData" "cu_2-001777.RData"

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

2nd step

> system.time(parSD(cl))

We processed 5334 files in 534 patterns.

user system elapsed

0.104 0.045 235.899

> peek()

We have 4806 files in all...

[1] "cu_00-00000.RData" "cu_00-00001.RData" "cu_00-00002.RData"

[4] "cu_00-00003.RData" "cu_00-00004.RData" "cu_00-00005.RData"

[7] "cu_00-00006.RData" "cu_00-00007.RData" "cu_00-00008.RData"

[10] "cu_00-00009.RData" "..." "cu_26-00168.RData"

[13] "cu_26-00169.RData" "cu_26-00170.RData" "cu_26-00171.RData"

[16] "cu_26-00172.RData" "cu_26-00173.RData" "cu_26-00174.RData"

[19] "cu_26-00175.RData" "cu_26-00176.RData" "cu_26-00177.RData"

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

3rd step

> system.time(parSD(cl))

We processed 4806 files in 486 patterns.

user system elapsed

0.091 0.043 196.213

> peek()

We have 4770 files in all...

[1] "cu_000-0000.RData" "cu_000-0001.RData" "cu_000-0002.RData"

[4] "cu_000-0003.RData" "cu_000-0004.RData" "cu_000-0005.RData"

[7] "cu_000-0006.RData" "cu_000-0007.RData" "cu_000-0008.RData"

[10] "cu_000-0009.RData" "..." "cu_264-0008.RData"

[13] "cu_264-0009.RData" "cu_264-0010.RData" "cu_264-0011.RData"

[16] "cu_264-0012.RData" "cu_264-0013.RData" "cu_264-0014.RData"

[19] "cu_264-0015.RData" "cu_264-0016.RData" "cu_264-0017.RData"

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

4th step

> system.time(parSD(cl))

We processed 4770 files in 530 patterns.

user system elapsed

0.078 0.048 196.922

> peek()

We have 5300 files in all...

[1] "cu_0000-000.RData" "cu_0000-001.RData" "cu_0001-000.RData"

[4] "cu_0001-001.RData" "cu_0002-000.RData" "cu_0002-001.RData"

[7] "cu_0003-000.RData" "cu_0003-001.RData" "cu_0004-000.RData"

[10] "cu_0004-001.RData" "..." "cu_2645-000.RData"

[13] "cu_2645-001.RData" "cu_2646-000.RData" "cu_2646-001.RData"

[16] "cu_2647-000.RData" "cu_2647-001.RData" "cu_2648-000.RData"

[19] "cu_2648-001.RData" "cu_2649-000.RData" "cu_2649-001.RData"

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

5th step

> system.time(parSD(cl))

We processed 5300 files in 2650 patterns.

user system elapsed

0.092 0.044 388.795

> peek()

We have 26495 files in all...

[1] "cu_00000-00.RData" "cu_00001-00.RData" "cu_00002-00.RData"

[4] "cu_00003-00.RData" "cu_00004-00.RData" "cu_00005-00.RData"

[7] "cu_00006-00.RData" "cu_00007-00.RData" "cu_00008-00.RData"

[10] "cu_00009-00.RData" "..." "cu_26485-00.RData"

[13] "cu_26486-00.RData" "cu_26487-00.RData" "cu_26488-00.RData"

[16] "cu_26489-00.RData" "cu_26490-00.RData" "cu_26491-00.RData"

[19] "cu_26492-00.RData" "cu_26493-00.RData" "cu_26494-00.RData"

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

6th step—NOT

> system.time(parSD(cl))

No more slicing/dicing is necessary. Files have been renamed

user system elapsed

2.632 1.778 220.862

> peek()

We have 26495 files in all...

[1] "cu_00000.RData" "cu_00001.RData" "cu_00002.RData"

[4] "cu_00003.RData" "cu_00004.RData" "cu_00005.RData"

[7] "cu_00006.RData" "cu_00007.RData" "cu_00008.RData"

[10] "cu_00009.RData" "..." "cu_26485.RData"

[13] "cu_26486.RData" "cu_26487.RData" "cu_26488.RData"

[16] "cu_26489.RData" "cu_26490.RData" "cu_26491.RData"

[19] "cu_26492.RData" "cu_26493.RData" "cu_26494.RData"

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

Customer summaries

> cu.summ = function(file) {

+ load(paste(NFpath,file,sep="/"))

+ tapply(rating, cust, function(r) c(length(r),mean(r),sd(r)))

+ }

> system.time(csumm <<- parLapply(cl, dir(path=NFpath,pat="cu_"),

cu.summ))

user system elapsed

6.065 0.468 49.854

> cstats = matrix(unlist(csumm), nrow=3)

> cust=as.integer(unlist(lapply(csumm, names)))

> sum(cstats[1,])

[1] 100480507

> sum(cstats[1,]*cstats[2,]) / sum(cstats[1,])

[1] 3.60429

These results confirm that we have the same data as from the
movie files

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

More customer stats

> length(cust)

[1] 480189

> summary(cust)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6 659100 1323000 1323000 1986000 2649000

> summary(cstats[1,])

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.0 39.0 96.0 209.3 259.0 17650.0

> summary(cstats[2,])

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 3.380 3.676 3.674 3.980 5.000

> summary(cstats[3,])

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

0.0000 0.8406 0.9819 0.9982 1.1410 2.8280 1269.0000

Netflix

Russ Lenth

Background

Data

Movie stats

Rearranging

Customer stats

Analysis

More customer stats

> hist(cstats[2,], xlab="Mean customer rating")

Histogram of cstats[2,]

Mean customer rating

F
re

qu
en

cy

1 2 3 4 5

0
20

00
0

60
00

0

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

Time trends

Do ratings change systematically over time? A simple analysis
we can do is find the slopes of the regression lines for each
movie.
> date.trend

function(movieno) {

read.movie(movieno)

d.dev = as.integer(date) - mean(as.integer(date))

365.25 * sum(d.dev*rating) / sum(d.dev*d.dev)

}

> system.time(date.trends <<- parSapply(cl, 1:17770, date.trend))

user system elapsed

0.065 0.001 14.002

> summary(date.trends)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-11.85000 0.01564 0.09913 0.09450 0.20230 15.19000

> hist(date.trends[abs(date.trends)<.5], main="")

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

Histogram of inlying slopes

date.trends[abs(date.trends) < 0.5]

F
re

qu
en

cy

−0.4 −0.2 0.0 0.2 0.4

0
50

0
15

00
25

00

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

An analysis-of-covariance model

If we take a traditional linear-models approach, we might want
to fit a model of the form

E (rij) = β0 + µi + βi (xij − x̄i) + κj

where rij is the rating of the ith movie by the jth customer and
xij is the (i , j)th date, i = 1, 2, . . . , 17770, j = 1, 2, . . . , 480189,
subject to the constraints

17770∑
i=1

µi =
480189∑

j=1

κj = 0

With appropriate indicator variables, etc., the X matrix for
this model has 100, 480, 507 rows and 515, 728 columns.
and X′X has 2.66× 1011 elements.

Maybe we should find a different approach. . .

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

An analysis-of-covariance model

If we take a traditional linear-models approach, we might want
to fit a model of the form

E (rij) = β0 + µi + βi (xij − x̄i) + κj

where rij is the rating of the ith movie by the jth customer and
xij is the (i , j)th date, i = 1, 2, . . . , 17770, j = 1, 2, . . . , 480189,
subject to the constraints

17770∑
i=1

µi =
480189∑

j=1

κj = 0

With appropriate indicator variables, etc., the X matrix for
this model has 100, 480, 507 rows and 515, 728 columns.
and X′X has 2.66× 1011 elements.

Maybe we should find a different approach. . .

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

Iterative method

Here is an approach dating back to the “old days” (but not
unlike the ideas behind Gibbs sampling)

1 Start with initial guesses for parameter estimates

2 Loop:
1 Estimate the µi after adjusting for the βi and κj

2 Estimate the βi after adjusting for the new µi and κj

3 Estimate the κj after adjusting for the new µi and new βi

3 Repeat (2) until estimates stabilize

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

R functions for iterative analysis

We’ll need each movie’s mean date

> get.mean.date = function(movieno) {

+ read.movie(movieno)

+ mean(as.integer(date))

+ }

> mean.date = parSapply(cl, 1:17700, get.mean.date)

And we need some initial values

> cu.eff = cstats[2,] - 3.6

> mv.eff = matrix(rep(0,2*17770), nrow=2)

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

Code for movie effects

est.mv.effs = function (movieno, lambda0=0, lambda1=0) {

read.movie(movieno)

xdev = as.integer(date) - mean.date[movieno]

ydev = rating - 3.6

- sapply(cust, function(c) cu.eff[cu.pos[c]])

avg = sum(ydev) / (lambda0 + length(ydev))

slope = sum(xdev*ydev) / (lambda1 + sum(xdev*xdev))

c(avg, slop> mv.eff = matrix(rep(0,2*17770), nrow=2)

}

update.mv = function(cl) {

clusterExport(cl, "cu.eff")

me = parSapply(cl, 1:17770, est.mv.effs)

chg = c(max.eff = max(abs(me[1,]-mv.eff[1,])),

RMS.eff = sqrt(mean((me[1,]-mv.eff[1,])^2)),

max.slope = max(abs(me[2,]-mv.eff[2,])),

RMS.slope = sqrt(mean((me[2,]-mv.eff[2,])^2)))

mv.eff <<- me

chg

}

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

Code for customer effects

est.cu.effs = function (filename, lambda=0) {

load(paste(NFpath,filename,sep="/"))

deff = as.integer(date)

- sapply(movie, function(m) mean.date[m])

deff = deff * sapply(movie, function(m) mv.eff[2,m])

ydev = rating - 3.6 - deff

- sapply(movie, function(m) mv.eff[1,m])

tapply(ydev, cust, function(e) sum(e) / (lambda + length(e)))

}

update.cu = function(cl) {

clusterExport(cl, "mv.eff")

ce = unlist(parLapply(cl, custfiles, est.cu.effs))

chg = c(max=max(ce - cu.eff), RMS=sqrt(mean((ce-cu.eff)^2)))

cu.eff <<- ce

chg

}

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

Iterations

> update.mv(cl)

max.eff RMS.eff max.slope RMS.slope

2.146194510 0.522287975 0.037305960 0.001179864

> update.cu(cl)

max RMS

1.4802255 0.1243077

> update.mv(cl)

max.eff RMS.eff max.slope RMS.slope

0.2349055528 0.0645016692 0.0054959693 0.0001473149

> update.cu(cl)

max RMS

0.17133869 0.01897151

> update.mv(cl)

max.eff RMS.eff max.slope RMS.slope

4.246874e-02 1.183684e-02 1.386837e-03 4.324022e-05

> update.cu(cl)

max RMS

0.039378870 0.007066787

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

Iterations (cont’d)

> update.mv(cl)

max.eff RMS.eff max.slope RMS.slope

1.521279e-02 3.458161e-03 4.119544e-04 1.898038e-05

> update.cu(cl)

max RMS

0.020633110 0.004243885

> update.mv(cl)

max.eff RMS.eff max.slope RMS.slope

9.900898e-03 1.802297e-03 1.697929e-04 1.072775e-05

> update.cu(cl)

max RMS

0.013813076 0.002765469

Pretty close after 5 times around.

Computation time (10 nodes): Around 75 seconds for each
update.mv and 175 seconds for each update.cu run.

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

Summaries

> summary(cu.eff)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.48000 -0.22470 0.05861 0.06890 0.35810 2.44500

> apply(mv.eff, 1, summary)

[,1] [,2]

Min. -2.30200 -3.486e-02

1st Qu. -0.60850 -1.235e-04

Median -0.24960 8.504e-05

Mean -0.28920 -8.195e-06

3rd Qu. 0.08523 2.896e-04

Max. 1.07700 4.046e-02

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

Ridge regression

Substantial risk of over-fitting

Especially considering spareseness of data

Ridge-regression idea: essentially pretend that we have λ
additional zero values for each movie (or customer)

Shrinks estimates towards zero — especially those with
small denominators

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

Modified code

Save old estimates for comparison

> CU.eff = cu.eff

> MV.eff = mv.eff

> fix(update.cu)

> update.cu

function(cl, lambda=50) {

clusterExport(cl, "mv.eff")

ce = unlist(parLapply(cl, custfiles, est.cu.effs, lambda))

chg = c(max=max(ce - cu.eff), RMS=sqrt(mean((ce-cu.eff)^2)))

cu.eff <<- ce

chg

}

etc.

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

Iterations

First round

> update.mv(cl)

max.eff RMS.eff max.slope RMS.slope

1.606790689 0.321115611 0.040424673 0.001000710

> update.cu(cl)

max RMS

3.4119180 0.2481984

Fourth round

> update.mv(cl)

max.eff RMS.eff max.slope RMS.slope

1.105136e-02 5.980754e-03 1.548363e-05 4.951843e-06

> update.cu(cl)

max RMS

0.0004277699 0.0060686696

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

Comparisons of two estimates

●
●

●●

●

●

● ●

●
●
●

●●

●

●
●

●

●

●

●

●
●●

●

●
●

●●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●●

●
●

●
●

●

●●
●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

● ●

●
●●

●

●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

● ●●

●

●

●

●
●

●
●

●

●

●
● ●

●

●

●●

●●●

●

●

●
●

●
●

●

●
●●●

●

●

●

● ●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●●●

●

●
●

●

●

●

●

●
●
●
●

●●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●●●
●

●
● ●

●
● ●

●

●

●

●●●

●

●
●

●
●

●

●
●●

●

●
●

●

●
●

●

●

●

●●

●
●

●
●●

●

●
●

●

●●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●

●

●●

●●
●

●

●

●

●●●
●

●

●

●

●
● ●

●
●

●

●

●

●●
●

●

●

●●●●●
●

●

●

●
●
●

●

●

●

●

●
●●

●●

●

●
●●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●
●

●●●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●
●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●●
●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●●●●●

●

●

●
●

●
●

●●

● ●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●●

●●

●●
●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●●●

●
●

●
●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●●

● ●

● ●

●
●

●

●●

●
●●●

●

●

●●

●
●
●

●●
●

●

●

●

●

●

●

●●●●

●
●

●

●
●●

●

●
● ●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●●●●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●●●

● ●

●

●

●

●

●
●

●
● ●

●
●

●
●

●

●
●

●●●●
●

●
●

●

●

●● ●●

●●●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●
●

●

●●
●

●●

●

●
●●

●
●

●●
●●

●

●

●

●●●

●

●●

●

●

●

●

−2 −1 0 1

−
1.

5
−

0.
5

0.
5

CU.eff[some]

cu
.e

ff[
so

m
e]

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●
●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●●●

●
●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●●
●●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●●
●●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

● ●
●

●

●
●

●
●●● ●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●●

●
●

●

●

●

●

●
●

● ●
●

●

●●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●
●

●
●

●

●●●
●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●
●●●

●

●

●
●

●

● ●

● ●

●
●

●

●
●

●●

●
●

●

●
●

●
●
●●

●

●●

●●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●
●

● ●●

●

● ●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●
●

●●

●

●●

●●

●●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●
●

●●

●
●●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●
●

●

●● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●
●

● ●

●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

−2.0 −1.0 0.0 1.0

−
1.

0
0.

0
0.

5
1.

0

MV.eff[1, somem]

m
v.

ef
f[1

, s
om

em
]

●●
●

●

●
●

●

●

●

●

●
●●

●
●

●●

●

●

●
●●

●
●

●
●

●

●
●●●●

●
●

●●

●
●
●

●
●
●●

●●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●
●

●

●

●●

●

●

●●●
●
●●●

●●

●

●

●
●●●●●
●●
●
●

●

●●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●
●
●

●●

●

●

●●●
●
●●

●

●

●
●

●
●
●

●●●●
●
●

●

●●●
●●
●

●

●●
●

●
●
●●●

●

●●●
●

●
●
●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●● ●
●
●

●
●

●●
●
●

●
●
●

●

●

●
●
●

●

●
●
●
●●●●●●●
●●

●
●

●

●
●

●

●

●

●
●

●

●
●
●●

●
●
●
●
●

●

●
●

●●

●
●

●●

●
●

●
●●
●●
●

●

●

●●
●●

●

●●
●

●

●●

●

●

●

●
●
●●
●●

●

●●●

●
●

●
●

●
●

●

●

●
●
●●

●●

●●

●

●
●●
●●●

●
●

●●

●

●

●

●

●
●
●
●
●●

●

●

●

●●●

●

●

●

●

●
●●
●
●●
●

●

●

●

●
●

●

●
●●

●

●
●

●●

●
●●
●

●●

●
●●
●

●
● ●

●●

●●●●

●

●●
●
●
●
●●

●●

●

●

●

●●

●

●
●

●

●
●
●

●

●
●
●●

●●

●

●

●

●

●●

●
●●

●

●

●●
●

●●
●

●●●

●

●

●

●

●
●
●

●

●●●●●
●

●
●●●
●●

●

●●

●

●
●
●
●
●●●●●
●●
●●●●

●

●

●

●
●
●●

●●
●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●
●
●

●
●
●

●

●●
●

●

●

●

●

●

●●●
●
●

●

●
●

●

●

●

●
●
●
●●
●

●●

●

●●
●

●●●

●

●●
●
●

●

●

●

●●●

●

●

●
●●
●

●

●

●

●
●
●
●
●
●

●

●●
●

●

●●

●

●
●●●
●

●

●

●

●●●
●

●

●

●

●
●

●
●●
●●●

●

●●
●●
●●

●
●
●●

●

●

●

●

●

●
●

●●

●

●
●

●●●●

●

●●●
●

●●

●

●

●

●
●
●

●

●

●

●
●●
●

●

●●
●

●

●
●

●

●
●●●

●

●
●

●
●
●
●

●

●
●
●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●
●

●
●
●

●●

●

●●

●

●

●
●●●
●

●

●
●●

●
●
●

●●

●
●
●●●●●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●●
●●●

●

●

●
●

●

●
●●
●●

●
●
●
●
●

●

●

●
●
●

●

●

●
●●
●

●

●

●●

●

● ●

●●●
●
●

●

●
●●
●

●●●
●●●

●●●

●
●

●
●

●

●

●
●
●
●

●
●

●

●
● ●

●

●

●

●●

●

●
●

●●●

●

●
●
●
●
●
●●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●●
●

●

●●

●

●
●

●

●
●
●

●

●

●●
●

●
●

●●●
●

●
●

●●
●
●

●

●
●

●
●
●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●●

●

●
●
●

●●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●
●
●
●●

●

●
●

●

●●
●
●●

●

●

●
●
●
●

●

●
●

●●
●

●

●

●●

●●●

●

●

●
●

●●

●
●

●

●●

●

●

−0.010 0.000

−
0.

00
3

−
0.

00
1

0.
00

1

MV.eff[2, somem]

m
v.

ef
f[2

, s
om

em
]

A plot of 480, 000 customer effects is a bit messy. I took a
random sample of 1, 000; same for the movie effects.

The reference line is the identity line.

Netflix

Russ Lenth

Background

Data

Analysis

Time trends

ANCOVA model

Iterative method

R functions

Results

Ridge regression

Conclusions

Conclusions

Learning experience

Parallel computing really helps!

snow really helps!

It is actually possible to fit a multiple regression model
with n = 108 and p = 5× 105—and get it done in an hour

	Background
	Data
	Movie summary statistics
	Rearranging the data
	Customer summary statistics

	Analysis
	Time trends
	ANCOVA model
	Iterative method
	R functions
	Results
	Ridge regression
	Conclusions

