Managing/analyzing the Netflix data

Russ Lenth

Department of Statistics \& Actuarial Science
The University of lowa

22S:295 HPC Seminar
October 25, 2007

The Netflix prize

Netflix

- For details: www.netflixprize.com
- $\$ 1$ million prize for beating Cinematch program for predicting movie ratings by 10%
- Annual progress prize of $\$ 50 \mathrm{~K}$.
- Cinematch RMSE is 0.9525 ; $\$ 1 \mathrm{M}$ goal 0.8572
- Contest begins October 2, 2006 and continues through at least October 2, 2011
- Current leaders (as of Oct. 19): "BellKor" team (Bob Bell, Yehudi Koren, AT\&T Research), RMSE $=0.8709$

The data

- Training data variables: Movie ID, Customer ID, Date, Rating (1-5)
- About 18, 000 movies, 480,000 customers, and over 100 million observations
- Packaged as 17,770 separate text files, one for each movie
- These files are saved (gzip format) and available to all in /space/yoyo/data/Netflix/training_data

```
mv_0012345.txt
0012345:
0365262 5 2005-05-04
1076294 3 2005-03-07
2209921 4 2006-12-23
```


To read a movie file in R

Netflix
Russ Lenth

Background

```
read.movie = function (movieno) {
    fname = sprintf("/space/yoyo/data/Netflix/training_set/mv_%07d
        movieno)
    con = gzfile(fname, "rb")
    lst = scan( con, skip=1, sep=",",
        what = list(cust=0, rating=0, date="") )
    close(con)
    lst$date = as.Date(lst$date)
    lst
}
```


Movie summaries

```
> mv.summ = function(movieno) {
+ dat = read.movie(movieno)
+ c(length(dat$rating), mean(dat$rating), sd(dat$rating))
+ }
> # Using cluster with 8 processors ...
> system.time(msumm <<- parLapply(cl, 1:17770, mv.summ))
    user system elapsed
    0.026 0.003 130.134
> mstats = matrix(unlist(msumm), nrow=3)
> sum(mstats[1,])
[1] 100480507
> sum(mstats[1,]*mstats[2,]) / .Last.value
[1] 3.60429
```

 Russ Lenth

More movie summaries

> summary (mstats $[1$,$])$

Min. 1st Qu. Median	Mean 3rd Qu.	Max.			
3	192	561	5655	2668	232900

Background

Data

Movie stats
Rearranging
Customer stats
> summary (mstats [2,])
Min. 1st Qu. Median Mean 3rd Qu. Max.
$\begin{array}{llllll}1.288 & 2.897 & 3.255 & 3.228 & 3.616 & 4.723\end{array}$
> summary (mstats $[3$,$])$
Min. 1st Qu. Median Mean 3rd Qu. Max.
$\begin{array}{llllll}0.5865 & 1.0100 & 1.0910 & 1.1010 & 1.1820 & 1.6480\end{array}$

More movie summaries

> hist(mstats[2,], xlab="Mean movie rating")

Netflix
Russ Lenth

Background

Data

Movie stats
Rearranging
Customer stats
Analysis

Is it worth it to make native R files?

```
> makeR = function(movieno) {
+ attach(read.movie(movieno))
+ fname = sprintf("/space/yoyo/data/Netflix/training_set/mv_%07dakDgata",
+ save(list=c("cust","rating","date"), file=fname)
+ detach()
}
> system.time(parLapply(cl, 1:17770, makeR))
        user system elapsed
    0.012 0.003 231.125
> newmv.summ = function(movieno) {
+ fname = sprintf("/space/yoyo/data/Netflix/training_set/mv_%07d.RData",
+ load(fname)
+ c(length(rating), mean(rating), sd(rating))
+ }
> system.time(nmsumm <<- parLapply(cl, 1:17770, newmv.summ))
        user system elapsed
        0.039 0.002 15.072
Yes!!-It takes less than 1/9 the time to do the same thing
```


Rearranging the data

- Provided data is fine for computing mean ratings per movie and other movie-specific quantities
- Far less convenient for computing customer effects
- To do this, we need to create a new set of files, each with all the data for just a handful of customers.
- (One file per customer would be too many files)
- How to accomplish this without reading/sorting all 17,770 movie files together?

Slice and dice algorithm

Netflix

First pass

(1) Combine the data for 10 movies
(1) Extract all the data for customer IDs that start with 0 and save to a new file
(2) Extract all the data for customer IDs that start with 1 and save to a new file
(3)...
(2) Repeat this operation for 1,769 other sets of 10 movies

Second pass

Do the same using sets of 10 (or so) result files, extracting new files based on the second digits of the customer IDs

Eventually

If we manage it right, we consolidate all data for each customer into one file (a few customers per file)

Bookkeeping for slicing/dicing

- Use filenames cu_CC. . .-MM. . . to keep track of information, stripping off last digit each iteration
(1) mv-0012340, mv_0012341, ..., mv_0012349
\rightarrow cu_0-001234, cu_1-001234, ..., cu_9-001234
(2) cu_2-001230, cu_2-001231, ..., cu_2-001239 \rightarrow cu-20-00123, cu-21-00123, ..., cu_29-00123
(3) cu_25-00120, cu_25-00121, ..., cu_25-00129 \rightarrow cu_250-0012, cu_251-0012,, cu_259-0012
(4)...
(5) . .
\rightarrow cu_25430-00, cu_25431-00, ..., cu_25439-00
At this stage, all suffixes are -00 , and no customer's data exists in more than one file.

Oth step (using 4 processors)

> system.time(parNFSetup (cl))
Farming out the job for 178 patterns...
user system elapsed
$0.234 \quad 0.033444 .328$
> peek()
Background
Data
Movie stats
Rearranging
Customer stats
Analysis
We have 17770 files in all...
[1] "cu_-0000001.RData" "cu_-0000002.RData" "cu_-0000003.RData"
[4] "cu_-0000004.RData" "cu_-0000005.RData" "cu_-0000006.RData"
[7] "cu_-0000007.RData" "cu_-0000008.RData" "cu_-0000009.RData"
[10] "cu_-0000010.RData" "..." "cu_-0017761.RData"
[13] "cu_-0017762.RData" "cu_-0017763.RData" "cu_-0017764.RData"
[16] "cu_-0017765.RData" "cu_-0017766.RData" "cu_-0017767.RData"
[19] "cu_-0017768.RData" "cu_-0017769.RData" "cu_-0017770.RData"

1st step

> system.time(parSD(cl))
We processed 17770 files in 1778 patterns.
user system elapsed
$0.369 \quad 0.100279 .603$
> peek()
Background
Data
Movie stats
Rearranging
Customer stats
Analysis
We have 5334 files in all...
[1] "cu_0-000000.RData" "cu_0-000001.RData" "cu_0-000002.RData"
[4] "cu_0-000003.RData" "cu_0-000004.RData" "cu_0-000005.RData"
[7] "cu_0-000006.RData" "cu_0-000007.RData" "cu_0-000008.RData"
[10] "cu_0-000009.RData" "..." "cu_2-001768.RData"
[13] "cu_2-001769.RData" "cu_2-001770.RData" "cu_2-001771.RData"
[16] "cu_2-001772.RData" "cu_2-001773.RData" "cu_2-001774.RData"
[19] "cu_2-001775.RData" "cu_2-001776.RData" "cu_2-001777.RData"

2nd step

> system.time(parSD(cl))
We processed 5334 files in 534 patterns.
user system elapsed
0.1040 .045235 .899
> peek()
We have 4806 files in all...
[1] "cu_00-00000.RData" "cu_00-00001.RData" "cu_00-00002.RData"
[4] "cu_00-00003.RData" "cu_00-00004.RData" "cu_00-00005.RData"
[7] "cu_00-00006.RData" "cu_00-00007.RData" "cu_00-00008.RData"
[10] "cu_00-00009.RData" "..." "cu_26-00168.RData"
[13] "cu_26-00169.RData" "cu_26-00170.RData" "cu_26-00171.RData"
[16] "cu_26-00172.RData" "cu_26-00173.RData" "cu_26-00174.RData"
[19] "cu_26-00175.RData" "cu_26-00176.RData" "cu_26-00177.RData"

3rd step

> system.time(parSD(cl))
We processed 4806 files in 486 patterns.
user system elapsed
0.0910 .043196 .213

> peek()

We have 4770 files in all...
[1] "cu_000-0000.RData" "cu_000-0001.RData" "cu_000-0002.RData" [4] "cu_000-0003.RData" "cu_000-0004.RData" "cu_000-0005.RData"
[7] "cu_000-0006.RData" "cu_000-0007.RData" "cu_000-0008.RData"
[10] "cu_000-0009.RData" "..." "cu_264-0008.RData"
[13] "cu_264-0009.RData" "cu_264-0010.RData" "cu_264-0011.RData"
[16] "cu_264-0012.RData" "cu_264-0013.RData" "cu_264-0014.RData"
[19] "cu_264-0015.RData" "cu_264-0016.RData" "cu_264-0017.RData"

Analysis
Background
Data
Movie stats
Rearranging
Customer stats

4th step

> system.time(parSD(cl))
We processed 4770 files in 530 patterns.
user system elapsed
$0.078 \quad 0.048 \quad 196.922$
> peek()

Background
Data
Movie stats
Rearranging
Customer stats
Analysis

We have 5300 files in all...
[1] "cu_0000-000.RData" "cu_0000-001.RData" "cu_0001-000.RData"
[4] "cu_0001-001.RData" "cu_0002-000.RData" "cu_0002-001.RData"
[7] "cu_0003-000.RData" "cu_0003-001.RData" "cu_0004-000.RData"
[10] "cu_0004-001.RData" "..." "cu_2645-000.RData"
[13] "cu_2645-001.RData" "cu_2646-000.RData" "cu_2646-001.RData"
[16] "cu_2647-000.RData" "cu_2647-001.RData" "cu_2648-000.RData"
[19] "cu_2648-001.RData" "cu_2649-000.RData" "cu_2649-001.RData"

5th step

> system.time(parSD(cl))
We processed 5300 files in 2650 patterns.
user system elapsed
0.0920 .044388 .795
> peek()
We have 26495 files in all...
[1] "cu_00000-00.RData" "cu_00001-00.RData" "cu_00002-00.RData"
[4] "cu_00003-00.RData" "cu_00004-00.RData" "cu_00005-00.RData"
[7] "cu_00006-00.RData" "cu_00007-00.RData" "cu_00008-00.RData"
[10] "cu_00009-00.RData" "..." "cu_26485-00.RData"
[13] "cu_26486-00.RData" "cu_26487-00.RData" "cu_26488-00.RData"
[16] "cu_26489-00.RData" "cu_26490-00.RData" "cu_26491-00.RData"
[19] "cu_26492-00.RData" "cu_26493-00.RData" "cu_26494-00.RData"

6th step-NOT

```
> system.time(parSD(cl))
No more slicing/dicing is necessary. Files have been renamed
        user system elapsed
        2.632 1.778 220.862
> peek()
```

Analysis

Customer summaries

```
> cu.summ = function(file) {
+ load(paste(NFpath,file,sep="/"))
+ tapply(rating, cust, function(r) c(length(r),mean(r),sd(r)))
+ }
> system.time(csumm <<- parLapply(cl, dir(path=NFpath,pat="cu_"),
    cu.summ))
        user system elapsed
    6.065 0.468 49.854
> cstats = matrix(unlist(csumm), nrow=3)
> cust=as.integer(unlist(lapply(csumm, names)))
> sum(cstats[1,])
[1] 100480507
> sum(cstats[1,]*cstats[2,]) / sum(cstats[1,])
[1] 3.60429
These results confirm that we have the same data as from the movie files
```


More customer stats

length(cust)
[1] 480189
> summary (cust)

> Min. 1st Qu. Median Mean 3rd Qu. Max.

66591001323000132300019860002649000
> summary (cstats[1,])
Min. 1st Qu. Median Mean 3rd Qu. Max. $\begin{array}{lllll}1.0 & 39.0 & 96.0 & 209.3 & 259.0 \\ 17650.0\end{array}$
共
> summary (cstats[2,])
Min. 1st Qu. Median Mean 3rd Qu. Max.
$\begin{array}{llllll}1.000 & 3.380 & 3.676 & 3.674 & 3.980 & 5.000\end{array}$
> summary (cstats [3,])
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
$0.0000 \quad 0.8406 \quad 0.9819 \quad 0.9982 \quad 1.1410 \quad 2.82801269 .0000$

Netflix
Russ Lenth

Data
Movie stats
> summary(cstats [1,])

More customer stats

> hist(cstats[2,], xlab="Mean customer rating")

Netflix
Russ Lenth

Background

Data

Movie stats

Time trends

Do ratings change systematically over time? A simple analysis we can do is find the slopes of the regression lines for each movie.

```
> date.trend
```

function(movieno) \{
read.movie(movieno)
d.dev = as.integer(date) - mean(as.integer(date))
365.25 * sum(d.dev*rating) / sum(d.dev*d.dev)
\}
> system.time(date.trends <<- parSapply(cl, 1:17770, date.trend))
user system elapsed
$0.065 \quad 0.001 \quad 14.002$
> summary(date.trends)

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-11.85000	0.01564	0.09913	0.09450	0.20230	15.19000

> hist(date.trends[abs(date.trends)<.5], main="")

Histogram of inlying slopes

Netflix
Russ Lenth

Background
Data
Analysis
Time trends

An analysis-of-covariance model

If we take a traditional linear-models approach, we might want to fit a model of the form

$$
E\left(r_{i j}\right)=\beta_{0}+\mu_{i}+\beta_{i}\left(x_{i j}-\bar{x}_{i}\right)+\kappa_{j}
$$

where $r_{i j}$ is the rating of the i th movie by the j th customer and $x_{i j}$ is the (i, j) th date, $i=1,2, \ldots, 17770, j=1,2, \ldots, 480189$, subject to the constraints

$$
\sum_{i=1}^{17770} \mu_{i}=\sum_{j=1}^{480189} \kappa_{j}=0
$$

- With appropriate indicator variables, etc., the \mathbf{X} matrix for this model has $100,480,507$ rows and 515, 728 columns. and $\mathbf{X}^{\prime} \mathbf{X}$ has 2.66×10^{11} elements.

An analysis-of-covariance model

If we take a traditional linear-models approach, we might want to fit a model of the form

$$
E\left(r_{i j}\right)=\beta_{0}+\mu_{i}+\beta_{i}\left(x_{i j}-\bar{x}_{i}\right)+\kappa_{j}
$$

where $r_{i j}$ is the rating of the i th movie by the j th customer and $x_{i j}$ is the (i, j) th date, $i=1,2, \ldots, 17770, j=1,2, \ldots, 480189$, subject to the constraints

$$
\sum_{i=1}^{17770} \mu_{i}=\sum_{j=1}^{480189} \kappa_{j}=0
$$

- With appropriate indicator variables, etc., the \mathbf{X} matrix for this model has $100,480,507$ rows and 515, 728 columns. and $\mathbf{X}^{\prime} \mathbf{X}$ has 2.66×10^{11} elements.
- Maybe we should find a different approach...

Iterative method

Here is an approach dating back to the "old days" (but not unlike the ideas behind Gibbs sampling)
(1) Start with initial guesses for parameter estimates
(2) Loop:
(1) Estimate the μ_{i} after adjusting for the β_{i} and κ_{j}
(2) Estimate the β_{i} after adjusting for the new μ_{i} and κ_{j}
(3) Estimate the κ_{j} after adjusting for the new μ_{i} and new β_{i}
(3) Repeat (2) until estimates stabilize

R functions for iterative analysis

Netflix
Russ Lenth

We'll need each movie's mean date
> get.mean.date $=$ function(movieno) \{
$+\quad$ read.movie(movieno)

+ mean(as.integer(date))
$+\}$
$>$ mean.date $=$ parSapply(cl, 1:17700, get.mean.date)

Background
Data
Analysis
Time trends
ANCOVA model Iterative method R functions
Results
Ridge regression Conclusions

And we need some initial values
$>$ cu.eff $=$ cstats $[2]-$,
$>\operatorname{mv} . e f f=\operatorname{matrix}(\operatorname{rep}(0,2 * 17770)$, nrow=2)

Code for movie effects

```
est.mv.effs = function (movieno, lambda0=0, lambda1=0) {
    read.movie(movieno)
    xdev = as.integer(date) - mean.date[movieno]
    ydev = rating - 3.6
        - sapply(cust, function(c) cu.eff[cu.pos[c]])
    avg = sum(ydev) / (lambda0 + length(ydev))
    slope = sum(xdev*ydev) / (lambda1 + sum(xdev*xdev))
    c(avg, slop> mv.eff = matrix(rep(0,2*17770), nrow=2)
}
update.mv = function(cl) {
    clusterExport(cl, "cu.eff")
    me = parSapply(cl, 1:17770, est.mv.effs)
    chg = c(max.eff = max(abs(me[1,]-mv.eff[1,])),
        RMS.eff = sqrt(mean((me[1,]-mv.eff[1,])^2)),
        max.slope = max(abs(me[2,]-mv.eff[2,])),
        RMS.slope = sqrt(mean((me[2,]-mv.eff[2,])^2)) )
    mv.eff <<- me
    chg
}
```


Code for customer effects

```
est.cu.effs = function (filename, lambda=0) {
    load(paste(NFpath,filename,sep="/"))
    deff = as.integer(date)
        - sapply(movie, function(m) mean.date[m])
    deff = deff * sapply(movie, function(m) mv.eff[2,m])
    ydev = rating - 3.6 - deff
        - sapply(movie, function(m) mv.eff[1,m])
    tapply(ydev, cust, function(e) sum(e) / (lambda + length(e)))
}
update.cu = function(cl) {
    clusterExport(cl, "mv.eff")
    ce = unlist(parLapply(cl, custfiles, est.cu.effs))
    chg = c(max=max(ce - cu.eff), RMS=sqrt(mean((ce-cu.eff)^2)))
    cu.eff <<- ce
    chg
}
```


Iterations

```
> update.mv(cl)
    max.eff RMS.eff max.slope RMS.slope
2.146194510 0.522287975 0.037305960 0.001179864
> update.cu(cl)
    max RMS
1.4802255 0.1243077
> update.mv(cl)
    max.eff RMS.eff max.slope RMS.slope
0.2349055528 0.0645016692 0.0054959693 0.0001473149
> update.cu(cl)
        max RMS
0.17133869 0.01897151
> update.mv(cl)
    max.eff RMS.eff max.slope RMS.slope
4.246874e-02 1.183684e-02 1.386837e-03 4.324022e-05
> update.cu(cl)
max
RMS
0.039378870 0.007066787
```


Iterations (cont'd)

Netflix

```
> update.mv(cl)
max.eff 
> update.cu(cl)
    max RMS
0.020633110 0.004243885
> update.mv(cl)
    max.eff RMS.eff max.slope RMS.slope
9.900898e-03 1.802297e-03 1.697929e-04 1.072775e-05
> update.cu(cl)
    max RMS
0.013813076 0.002765469
```

- Pretty close after 5 times around.
- Computation time (10 nodes): Around 75 seconds for each update.mv and 175 seconds for each update.cu run.

Summaries

> summary(cu.eff)
Min. 1st Qu. Median Mean 3rd Qu. Max.
$-3.48000-0.22470 \quad 0.05861 \quad 0.06890 \quad 0.35810 \quad 2.44500$
> apply(mv.eff, 1, summary)
[,1] [,2]
Min. -2.30200 -3.486e-02
1st Qu. -0.60850 -1.235e-04
Median -0.24960 8.504e-05
Mean -0.28920 -8.195e-06
3rd Qu. 0.08523 2.896e-04
Max. $1.07700 \quad 4.046 \mathrm{e}-02$

Background
Data

Analysis

Time trends

Ridge regression

Netflix

- Substantial risk of over-fitting
- Especially considering spareseness of data
- Ridge-regression idea: essentially pretend that we have λ additional zero values for each movie (or customer)
- Shrinks estimates towards zero - especially those with small denominators

Modified code

Netflix

Russ Lenth

Background

Data

Analysis
Time trends
ANCOVA model Iterative method R functions
Results
Ridge regression
Conclusions

Iterations

Netflix
Russ Lenth
First round
> update.mv(cl)
max.eff RMS.eff max.slope RMS.slope
1.6067906890 .3211156110 .0404246730 .001000710
> update.cu(cl)
$\max \quad$ RMS
3.41191800 .2481984

Fourth round
> update.mv(cl)

max.eff	RMS.eff
$1.105136 e-02$	$5.980754 \mathrm{e}-03$
$>$ update. cu(cl)	
\max	

$1.105136 \mathrm{e}-025.980754 \mathrm{e}-031.548363 \mathrm{e}-054.951843 \mathrm{e}-06$
> update.cu(cl)
max RMS
0.00042776990 .0060686696

Comparisons of two estimates

Netflix
Russ Lenth

Background

Data

Analysis
Time trends

- A plot of 480,000 customer effects is a bit messy. I took a random sample of 1,000 ; same for the movie effects.
- The reference line is the identity line.

Conclusions

- Learning experience
- Parallel computing really helps!
- snow really helps!
- It is actually possible to fit a multiple regression model

