
22S:295 Seminar in Applied Statistics
High Performance Computing in Statistics

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

August 30, 2007

Luke Tierney (U. of Iowa) HPC in Statistics August 30, 2007 1 / 9

Administrative Details

Please sign up for the course so we can get you computer accounts.

You will need an account on the cluster as well as an account on the
math sciences network.

The accounts should be available by the second class meeting.

The class web page is

www.stat.uiowa.edu/~luke/classes/295-hpc

There are some pointers on computing and resources available on
that page.

Class notes will also be posted there.

If you are not yet familiar with Linux or R you should become familiar
with them soon.

Luke Tierney (U. of Iowa) HPC in Statistics August 30, 2007 2 / 9

www.stat.uiowa.edu/~luke/classes/295-hpc

Outline

A rough outline of what we might cover:

Some background on HPC.

Overview of the Statistics cluster.

The snow package.

Some tools for monitoring parallel applications.

Other R parallel computing frameworks.

Overview of PVM and MPI.

Overview of OpenMP.

Parallel linear algebra libraries.

Batch scheduling on the cluster.

Overview of Grid computing.

...

Luke Tierney (U. of Iowa) HPC in Statistics August 30, 2007 3 / 9

Why High Performance/Parallel Computing?

Many computations are almost instantaneous on desktop computers.

Some computations are beyond a single desktop computer: they

take too long
need too much memory
need too much disk storage

Using multiple computers in an organized way is one solution.

Using multiple processors on a single computer can also help.

Doing this can be hard and/or expensive.

Good tools can help.

Before getting in too deep be sure to ask:

is the computation really needed?

Luke Tierney (U. of Iowa) HPC in Statistics August 30, 2007 4 / 9

An Important Number: 232 = 4, 294, 967, 296

For many years computers used a 32-bit architecture:

Standard computer integer types are usually restricted to 32 bits,
usually to the ranges [−231, 231 − 1] or [0, 232].
The maximal amount of memory a process can address (the address
space) is 232 bytes, or 4 GB.
Using files more than 4G in size can be tricky.

Larger amounts of memory can essentially only be used by working
with multiple computers.

More recently 64-bit architectures have become available:

C int and FORTRAN integer are usually still 32 bit for backward
compatibility.
C long is usually 64 bit (except Win64) and supported in hardware.
Maximal address space is 264 ≈ 1019 = 107TB = 104PB = 10EB.

Luke Tierney (U. of Iowa) HPC in Statistics August 30, 2007 5 / 9

Some Supercomputer and Compute Cluster History

Early supercomputers were very fast single processors (1960s).

Single (1970s) and multiple (4–16, 1980s) vector processors.

Multiple standard processors with shared or distributed memory
(1990s).

Beowulf clusters (mid 1990s):

multiple (more or less) commodity computers
reasonably fast dedicated communications network
distributed memory (unavoidable for 32-bit)

Distributed shared memory systems

can use 64-bit Beowulf-style hardware
software, hardware, or combination
Can provide illusion of single multi-processor system
Sometimes called NUMA (Non-Uniform Memory Architecture)
Still mostly proprietary and expensive

Luke Tierney (U. of Iowa) HPC in Statistics August 30, 2007 6 / 9

Some Recent Developments

Moore’s law: number of transistors on a chip doubles every 18
months.
Until recently this has meant speed increase at about the same rate.
Recently speeds have remained flat — limiting factors:

heat
power consumption

Additional transistors have been used for
integrating graphics, networking chipsets
multiple cores — 2 or 4 logical processors on a single chip

Realistic 3D graphics have driven multiple processors on a chip:
Some nVIDIA cards have 128 (specialized) cores for ∼ $500.
Sony/Toshiba/IBM Cell processor for PS 3 has one standard PowerPC
Element (PPE) and 8 Synergistic Processing Elements (SPE).
Special libraries and methods are needed to program these.
Experimental interfaces from high level languages are available for
some (Python, R for nVIDIA).

Parallel programming is likely to become essential even for desktop
computers.

Luke Tierney (U. of Iowa) HPC in Statistics August 30, 2007 7 / 9

Parallel Programming Tools

Writing correct, efficient sequential programs is hard.

Writing correct, efficient parallel programs is harder.

Good tools can help:
Low level tools:

sockets for distributed memory programming
threads for shared memory computing

Intermediate level tools:
PVM, MPI message-passing libraries for distributed memory
OpenMP for shared memory

Higher level tools:
simple systems like snow for R distributed memory
parallelized libraries (distributed or shared memory)
parallelizing compilers (mostly shared memory)

Some problems are easy to parallelize.

Some problems at least seem inherently sequential:
pseudo-random number generation
Markov chain Monte Carlo

Luke Tierney (U. of Iowa) HPC in Statistics August 30, 2007 8 / 9

Parallelizable Computations

A simple model says a computation runs N times faster when split
over N processors.

More realistically, a problem has a fraction S of its computation that
is inherently sequential and 1− S that can be parallelized.

Amdahl’s law:

Maximum Speedup =
1

S + (1− S)/N

Problems with S ≈ 0 are called embarrassingly parallel.

Some statistical problems are (or seem to be) embarrassingly parallel:

computing column means
bootsrapping

Others seem inherently sequential:

pseudo-random number generation
Markov chain Monte Carlo

Luke Tierney (U. of Iowa) HPC in Statistics August 30, 2007 9 / 9

	Introduction
	Administrative Details
	Outline
	Introduction

