
The Statistics Beowulf Cluster

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

September 6, 2007

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 1 / 14



The Statistics Beowulf Cluster

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 2 / 14



Basic Configuration

Master/head node beowulf.stat.uiowa.edu, also node00
4 dual core Opteron 8216 (2.4GHz)
16 GB RAM
1 TB disk, NFS-mounted on client nodes

21 Client nodes (node01 – node21)
2 dual core Opteron 2216 (2.4GHz)
8 GB RAM
150 GB local disk

node00 has two network connections

one to the campus network
one to the internal Gbit network

The individual nodes are connected to the internal network

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 3 / 14



Some Performance Results

The High-Performance Linpack (HPL) benchmark is commonly used
for measuring performance of parallel computers.

The benchmark solves a random dense linear system in parallel.

Benchmark code is available from

http://www.netlib.org/benchmark/hpl/

Some results (Gflops) running the benchmark on beowulf:

N
Procs. 30000 20000 16384 8192 4096 1024

1 2.7
4 10.0 8.9 3.4

16 28.0 18.0 3.2
32 33.0 18.0 2.1
64 76.0 54.0 45.0 25.0 13.0 1.7

Theoretical maximal performance: 2.7× 92 = 248.4 Gflops.

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 4 / 14

http://www.netlib.org/benchmark/hpl/


Accessing The Nodes

Using the nodes involves, at some level, using ssh.

Probably the easiest way is to do this once:
Make sure the machine you will be logging in from

has your private ssh key installed
is running an ssh agent (standard Linux consoles and nomachine do
this)

Add your public key to the .ssh/authorized keys2 file on beowulf.

Then each time you want to use beowulf:
On the machine running the ssh agent add your ssh identity with
ssh-add.
Log into beowulf with

slogin -AX beowulf.stat.uiowa.edu

You can avoid the -AX by setting up a .ssh/config file.
From beowulf/node00 you can log into node01 with

slogin -X node01

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 5 / 14



Poking Around

The current cluster load is available (from within uiowa.edu) at

http://beowulf.stat.uiowa.edu/ganglia/

A list of current active nodes is in file /cluster/scripts/active

The script /cluster/scripts/dcmd may be useful:

/cluster/scripts/dcmd uptime

gives status information on node01–node21.

The ps, kill, and killall may become familiar.

Finding all my R processes:

/cluster/scripts/admin/dcmd ’ps -u luke | grep R’

The top command can also be useful

hitting 1 toggles display of individual CPU loads.
hitting q exits.

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 6 / 14

http://beowulf.stat.uiowa.edu/ganglia/


Some Available Software

Compilers:
gcc and friends

Default is currently the 3.x series with gcc, g77.
The 4.x series is also available as gcc4 and gfortran.
The 4.x series supports OpenMP.
Mixing the two may not work (especially for FORTRAN code).

Intel compilers icc, ifc

Linear algebra libraries:
BLAS, LAPACK
ACML accellerated BLAS (and some LAPACK)
PaLAPACK, ScaLAPACK
IMSL (VNI)

Message-passing libraries:
PVM
LAM MPI
MPICH

R, with some parallel computing packages.

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 7 / 14



Outline of Parallel Computing

Parallel computing involves splitting work among several processors.

Processor memory can be shared or distributed.

Shared memory parallel computing typically has

single process
single address space
multiple threads or light-weight processes
all data is shared
access to key data needs to be synchronized

Distributed memory computing usually has

multiple processes, possibly on different computers
each process has its own address space
data needs to be exchanged explicitly
data exchange points are usually points of synchronization

Intermediate models are possible.

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 8 / 14



Issues and Pitfalls

Some issues are common to all variants:

Deadlock
Uneven sub-problem size and load balancing
Overhead of synchronization

Other issues that vary or affect one more than the other:

unintended sharing or insufficient synchronization with share memory
node or communication failure with distributed memory
communication overhead for distributed memory
synchronizing access to standard input/output and files

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 9 / 14



Some Common Patterns

Scatter-compute-gather, master-worker:

master program/thread divides up the work
several worker programs/threads do the work
master continues once all workers are done

Pipeline, producer-consumer:

Sequence of process stages P1, . . . ,PN

Output of Pi is input to Pi+1

Once the pipeline is warmed up all stages can run in parallel

A generalization is a systolic array.

More complex forms:

sequences of scatter-compute-gather steps
array bases communication topologies
...

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 10 / 14



Outline of Distributed Memory Parallel Computing

Some basic requirements:

Need to start a collection of programs on multiple computers.
Programs need a way to exchange data.
Need so shut things down cleanly

Supporting frameworks
Message-passing library

PVM
MPI (some flavor)

Batch scheduler

Condor

Utilities

xpvm or xmpi
load monitoring web site
dcmd script, ps, and friends

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 11 / 14



A Simple MPI Example

First example program from Pacheco’s MPI book

http://www.stat.uiowa.edu/~luke/classes/295-hpc/
examples/mpigreetings.c

Minimal MPI program using

MPI Init
MPI Comm rank, MPI Comm size
MPI Send, MPI Recv
MPI Finalize

To run using LAM-MPI

compile program with mpicc
start LAM with lamboot
run program with mpirun
shut lam down with lamhalt

It’s not a bad idea to check for stray lamd processes.

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 12 / 14

http://www.stat.uiowa.edu/~luke/classes/295-hpc/examples/mpigreetings.c
http://www.stat.uiowa.edu/~luke/classes/295-hpc/examples/mpigreetings.c


A Simple PVM Example

A variant of the forkjoin.c example in the PVM book:

http://www.stat.uiowa.edu/~luke/classes/295-hpc/
examples/pvmgreetings.c

Program does its own process spawning with pvm spawn

Send/receive involves a few more calls

To run

compile program with appropriate flags
start pvm with pvm (the PVM console)
run program as ./pvmgreetings 5
shut pvm down with halt in the PVM console

It’s not a bad idea to check for stray pvmd processes.

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 13 / 14

http://www.stat.uiowa.edu/~luke/classes/295-hpc/examples/pvmgreetings.c
http://www.stat.uiowa.edu/~luke/classes/295-hpc/examples/pvmgreetings.c


Some Comparisons and Comments

PVM is a single implementation, MPI is a standard.

MPI implementations can be tuned to particular kinds of hardware.

There are several versions of the MPI standard.

MPI 2.0 (and LAM) allow process spawning; older MPI versions do
not.

Some system administrators disable process spawning for MPI 2.0.

MPI provides simpler basic communication.

MPI has more built-in support for complex communication patterns.

PVM has some support for fault-tolerance; so far MPI does not.

PVM supports multiple architectures.

xpvm is superior to MPI analogs I have found (e.g. xmpi).

Both provide a rich set of tools.

Both need to be used with care to avoid deadlock.

Luke Tierney (U. of Iowa) The Statistics Beowulf Cluster September 6, 2007 14 / 14


	The Statistics Beowulf Cluster
	Outline of Parallel Computing
	Outline of Distributed Memory Parallel Computing

