
Batch Scheduling and Resource Management

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

October 18, 2007

Luke Tierney (U. of Iowa) Batch Scheduling and Resource Management October 18, 2007 1 / 13



Background

The earliest computers could run only one program at a time.

Programs and data were written on punched cards.

Decks of cards were submitted in batches.

These batches were placed in a queue and run one at a time.

Later, time-sharing allowed multiple simultaneous interactive users.

Batch processing, or batch queueing, is still useful:

Two programs running simultaneously can slow each other down.
On a single core the slowdown will be at least a factor of two.
It can be much more with heavy memory or I/O use.
Programs may fail due to insufficient memory.

Luke Tierney (U. of Iowa) Batch Scheduling and Resource Management October 18, 2007 2 / 13

http://en.wikipedia.org/wiki/Image:FortranCardPROJ039.agr.jpg


Batch System Features

Basic batch systems provide:

A means of placing jobs on a queue.
Some means of examining the queue.
A way to remove jobs.
Jobs are run when resources are available.

Additional features provided by some systems:

Load balancing across multiple processors
Management of resource usage (memory in particular).
Protection against runaway jobs.
A priority system.
Ways of managing parallel jobs.

More sophisticated features:

Checkpointing, suspending, resuming, moving running programs.
Integration with grid computing frameworks.

Luke Tierney (U. of Iowa) Batch Scheduling and Resource Management October 18, 2007 3 / 13



Issues in Managing Parallel Jobs

Need to be able to request a certain number of processors.

Job can only run once the required number of processors is available.

The system has to enforce processor limit.

System, program/framework need to agree on machines to use.

For Lam, could have system write a host file, run lamboot.
For PVM, could do something similar.
System could also provide its own LAM/PVM daemon.

Open MPI (successor to LAM?) has support built in for

SLURM
Xgrid
SGE (N1)

Support for others, such as OpenPBS is available but optional.

Luke Tierney (U. of Iowa) Batch Scheduling and Resource Management October 18, 2007 4 / 13



Some Open Source Batch Systems

PBS and OpenPBS. Originally developed for NASA.

SLURM. Developed at Lawrence Livermore National Laboratory.

Sun Grid Engine. Originally from Sun; commercial version is N1.

Xgrid. From Apple.

Maui Cluster Scheduler. Commercial version is Moab.

Condor. From Computer Science at Wisconsin.

Luke Tierney (U. of Iowa) Batch Scheduling and Resource Management October 18, 2007 5 / 13



Condor

Currently Condor is the batch system available on beowulf.

Some features:

Originally developed for scavenging free cycles from workstations.
Can support checkpointing and job migration.
Requires compilation against Condor libraries.
Can be used as scheduler for vanilla jobs.
PVM jobs are also supported but seem to require some adjusting.
LAM jobs are now supported (as of yesterday).
Integrates with the Globus grid computing toolkit.

Previous current version was from the 6.6 series.

Has just ben upgraded to 6.8.

Luke Tierney (U. of Iowa) Batch Scheduling and Resource Management October 18, 2007 6 / 13



Basic Condor Usage

Basic use:

prepare a submission script
submit the script
check the queue periodically
or check your email to see if the job is done

Some commands:

condor submit for submitting a job
condor q for examining the queue
condor rm for removing a job
condor status for examining available pool

Condor universes:

standard — supports checkpointing, requires special compilation
vanilla — no restrictions
PVM
MPI — only MPICH 1.2; no longer available in 6.8
parallel — available in 6.8; use this for LAM

Luke Tierney (U. of Iowa) Batch Scheduling and Resource Management October 18, 2007 7 / 13



Submitting a Condor Job

It is a good idea to create a new directory for your job.

Place in that directory any files for the job along with a submit file.

Run the condor submit command from that directory.

Some submit file commands:

executable: name of the script or binary file to run. One per file.
Path name can be absolute or relative to the current directory.
arguments: command line arguments for the executable
environment: name=value pairs separated by semicolons.
universe: most likely vanilla, PVM, or parallel
input: file(s) for standard input
output: file(s) for standard output
error: file(s) for standard error
log: file for log messages from Condor
queue: place one or more jobs on the queue
notification = Never to turn off email notification

There are many others but these are the most important ones.

Luke Tierney (U. of Iowa) Batch Scheduling and Resource Management October 18, 2007 8 / 13



Some Simple Examples

Submit file sub-sleep for a single job that sleeps for 5 seconds:

executable = /bin/sleep

arguments = 5

universe = vanilla

output = out

error = err

log = log

notification = Never

queue

Submit the job with

condor_submit sub-sleep

and check it with

condor_q

Examples are available on line.

Luke Tierney (U. of Iowa) Batch Scheduling and Resource Management October 18, 2007 9 / 13

http://www.stat.uiowa.edu/~luke/classes/295-hpc/notes/condor/sleep/sub-sleep
http://www.stat.uiowa.edu/~luke/classes/295-hpc/notes/condor/


Some Simple Examples

Submit file sub-hostname for two jobs computing the hostname of the
executing machine:

executable = /bin/hostname

universe = vanilla

output = out.$(Process)

error = err.$(Process)

log = log

notification = Never

queue 2

This produces two separate output files and two error files.

Luke Tierney (U. of Iowa) Batch Scheduling and Resource Management October 18, 2007 10 / 13

http://www.stat.uiowa.edu/~luke/classes/295-hpc/notes/condor/hostname/sub-hostname


Some Simple Examples

Submit file sub-R for running two R jobs:
environment= R_LIBS=/cluster/statsoft/Rlibs

executable = /usr/bin/R

arguments = --slave

universe = vanilla

input = in.$(Process)

output = out.$(Process)

error = err.$(Process)

log = log

notification = Never

queue 2

This uses two separate input files, in.0 and in.1. File in.0 looks like
Sys.info()["nodename"]

.libPaths()

print(0)

and in.1 looking like
Sys.info()["nodename"]

.libPaths()

print(1)

Luke Tierney (U. of Iowa) Batch Scheduling and Resource Management October 18, 2007 11 / 13

http://www.stat.uiowa.edu/~luke/classes/295-hpc/notes/condor/R/sub-R
http://www.stat.uiowa.edu/~luke/classes/295-hpc/notes/condor/R/in.0
http://www.stat.uiowa.edu/~luke/classes/295-hpc/notes/condor/R/in.1


Some Simple Examples

Another approach is to use the submit file sub-R2 given by

environment= R_LIBS=/cluster/statsoft/Rlibs

executable = /usr/bin/R

arguments = --slave --args $(Process)

universe = vanilla

input = in

output = out.$(Process)

error = err.$(Process)

log = log

notification = Never

queue 2

and the common input file in given by

Sys.info()["nodename"]

.libPaths()

print(commandArgs(TRUE))

Luke Tierney (U. of Iowa) Batch Scheduling and Resource Management October 18, 2007 12 / 13

http://www.stat.uiowa.edu/~luke/classes/295-hpc/notes/condor/R2/sub-R2
http://www.stat.uiowa.edu/~luke/classes/295-hpc/notes/condor/R2/in


Some Simple Examples

A snow/LAM job using submit file sub-snow-lam
environment= R_LIBS=/cluster/statsoft/Rlibs

executable = /cluster/condor/condor/etc/examples/lamscript

arguments = RMPISNOW

machine_count = 3

universe = parallel

input = in-snow-lam

output = out

error = err

log = log

notification = Never

queue

and the input file in-snow-lam given by

cl <- makeCluster()

clusterCall(cl, function() Sys.info()["nodename"])

stopCluster(cl)

Luke Tierney (U. of Iowa) Batch Scheduling and Resource Management October 18, 2007 13 / 13

http://www.stat.uiowa.edu/~luke/classes/295-hpc/notes/condor/R-snow-lam/sub-snow-lam
http://www.stat.uiowa.edu/~luke/classes/295-hpc/notes/condor/R-snow-lam/in-snow-lam

	Batch Scheduling and Resource Management
	Background
	Batch Systems Features
	Some Open Source Batch Systems
	Condor
	Some Simple Examples


