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Why do we want to study probabil-
ity

• So far we have studied descriptive statis-
tics: methods of describing or summariz-
ing a sample

• We want to move ahead to inferential
statistics: methods for using the data
in a sample to draw conclusions about
the population from which the sample is
drawn.

• Methods of inferential statistics are based
on the question “How often would this
method give a correct answer if I used it
very, very many times?”

• The laws of probability relate to this ques-
tion.
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Parameters and statistics

• A parameter is a numeric quantity that
describes a characteristic of a population.

– We almost never can know the exact
value of a parameter, because we would
have to measure every member of the
population.

– Example: We would like to know the
average percent body fat of all Chinese
males aged 21 - 65 years.

– We generally use Greek letters to refer
to population parameters.

– µ is the standard symbol for a popu-
lation mean.
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• A statistic is a numeric value that can
be computed directly from sample data.

– Example: we draw a sample of 10 Chi-
nese males aged 21-65 years and mea-
sure the percent body fat of each one.

∗ The sample mean x̄ of the 10 data
values is a statistic.

– We do not need to use unknown pa-
rameters to compute a statistic.

– We often use a statistic to estimate
and unknown parameter.

– But the exact value of a particular statis-
tic will be different in different samples
drawn from the same population.

∗ sampling variability
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Randomness

• Chance behavior is unpredictable in the
short run but has a predictable pattern
in the long run.

• Example: tossing a coin

– The proportion of heads in a small num-
ber of coin tosses is very variable.

– As more and more tosses are done, the
proportion settles down. It gets close
to 0.5 and stays there.
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• French naturalist Count Buffon (1707-1788) tossed
a coin 4040 times and got 2048 heads.

– proportion heads: 2048
4040 = 0.5069

• While imprisoned by the Germans during World
War II, South African mathematician John Ker-
rich tossed a coin 10,000 times and got 5067 heads.

– proportion heads: 5067
10,000 = 0.5067

• In 1900 English statistician Karl Pearson tossed
a coin 24,000 times and got 12,012 heads.

– proportion heads: 12012
24000 = 0.5005

• American statistician Kate Cowles (19?? - 20??)
tossed a coin 5 times and got 4 heads

– proportion heads: 4
5 = 0.8

• She repeated the experiment and got 2 heads

– proportion heads: 2
5 = 0.4
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Randomness

An experiment or observation is called ran-
dom if individual outcomes are uncertain
but there is a regular distribution of out-
comes in a large number of independent rep-
etitions.

Examples:

• We flip a coin and record the outcome as
a head or tail

• We draw an 18-year-old American male
“at random” and follow up to find out
whether he lives to be 65

• We draw an American child at random
and record his/her position in birth order
of children in the family

• A researcher feeds a baby rat a particu-
lar diet and records the rat’s weight gain
from birth to age 30 days
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The sample space S is the set of all pos-
sible outcomes of a random experiment.

Examples:

• We flip a coin and record the outcome as
a head or tail

• We draw an 18-year-old American male
“at random” and follow up to find out
whether he lives to be 65

• We draw an American child at random
and record birth order

• A researcher feeds a baby rat a particu-
lar diet and records the rat’s weight gain
from birth to age 30 days
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An event is any outcome or set of outcomes
of a random experiment.

Example: At random, we draw a child born
in the US and record his/her live birth or-
der. We would observe one of the following
events:

She is

• 1st child

• 2nd child

• 3rd child

• 4th child

• 5th child

• 6th or later

Or, we might lump certain outcomes together
into a single event of interest.

• Child is “1st child” or “not 1st child”
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Capital letters near the beginning of the al-
phabet often are used to denote events.

Example:

• A might represent the event that the child
is a 1st child.

• B might represent the event that the child
is not a first child.
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The probability of an event is the propor-
tion of times the outcome would occur in
a very long series of repetitions under the
same conditions.

• (This is the “long-run frequency” defini-
tion of probability.)

• coin tosses: the probability of getting a
head is 0.5

• birth order of randomly drawn American
child

Birth 1st 2nd 3rd 4th 5th 6+
order

Probability 0.416 0.330 0.158 0.058 0.021 0.017

The probability that an event occurs is often
denoted with the letter P.

• P (A) is the probability of event A
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More probability terminology

• The event (A does not occur) is called the
complement of A and represented by Ac

– If A is the event that the randomly
drawn child is a first-born child, then
what is Ac?

• Two events A and B that cannot occur
simultaneously are disjoint or mutually
exclusive

• The union of two events is the event that
one or the other or both occur.

– The union of events A and B is the
event (A or B or both)

• The intersection of two events is the event
that both occur.
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– The intersection of events A and B is
the event (A and B)

• Two events A and B are independent if
the probability that one occurs does not
change the probability that the other one
occurs.

– Example: Suppose one person tosses
a penny and another person tosses a
dime. The outcomes of the two tosses
are independent. Each has a proba-
bility of 1

2 of being a head. The out-
come for one of the coins has no effect
on the probabilities of the two possible
outcomes for the other coin.

– Example 2: What if the same person
tossed the same coin twice?
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– Example 3: I have a deck of cards.
I draw a card at random. Without
putting it back, I draw a second card
at random.

The event A is that the first card is a
heart. The event B is that the second
card is a heart. Are events A and B
independent?
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Probability models

• mathematical models for randomness!

• consist of two parts

– a sample space S

– a way of assigning probabilities to events
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Probability rules

1. Any probability is a number between 0
and 1.

If P(A) is the probability of any event A,
then

0 ≤ P (A) ≤ 1

2. All possible outcomes taken together must
have probability 1.

P (S) = 1

• One of the possible outcomes has to
happen!
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3. The probability that an event does not
occur is 1 minus the probability that the
event does occur.

• P (Ac) = 1 − P (A)

• Example: If the probability that a ran-
domly selected black American has type
O blood is 0.49, what is the probabil-
ity that he or she has some other blood
type?
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4. (Addition rule): If two events are mutu-
ally exclusive, then the probability that
one or the other occurs is the sum of their
individual probabilities.

• If A and B are disjoint events, then

P (A or B) = P (A) + P (B)

• Example: For our child, we might wish
to define an event as

– “1st or 2nd child” = either “1st child”
or “2nd child”

– Since being a 1st child and being
a 2nd child are mutually exclusive
events then

P (1st or 2nd) = P (1st) + P (2nd)

= 0.416 + 0.330

= 0.746
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5. This rule can be extended to three or
more mutually exclusive events.

• If A, B, and C are all mutually exclu-
sive then

P (A orB or C) = P (A)+P (B)+P (C)

• Example:

P (1st, 2nd, or 34d) = P (1st) + P (2nd) + P (3rd)

= 0.416 + 0.330 + 0.158

= 0.904

How else might we have computed P(1st,
2nd, or 3rd)?
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6. (Multiplication rule for independent events):
If two events A and B are independent,

P (A and B) = P (A) P (B)

• Example: Suppose I have two sepa-
rate, complete decks of cards (52 cards
in each).

– I draw one card at random from the
first deck. What is the probability
that that card is a heart?

– If I draw one card at random from
the first deck and another card at
random from the second deck, what
is the probability that both cards are
hearts?
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Assigning probabilities when the sam-
ple space is finite

• Assign a probability to each individual
outcome.

• These probabilities must all be numbers
between 0 and 1, and they must sum to
1.

• Example: Our table of probabilities of
the birth positions of American kids is a
probability model.

Birth 1st 2nd 3rd 4th 5th 6+
order

Probability 0.416 0.330 0.158 0.058 0.021 0.017


