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Standardizing values from other nor-
mal distributions

All normal distributions would be the same
if we measured in units of size σ around the
mean µ as center!

If x is an observation from a distribution
that has mean µ and standard deviation σ,
the standardized value of x is

z =
x− µ

σ

Standardized values are often called z-scores.
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z-scores tell how many standard deviations
the original observation is away from the
mean of the distribution, and in which di-
rection.

• If the z-score is positive, the original ob-
servation was larger than the mean µ.

• If the z-score is negative, the original ob-
servation was smaller than µ.
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Example of z-scores

Recall that the distribution of systolic blood
pressure of men aged 18-74 is approximately
normal with µ = 129 mm Hg and σ = 20
mm Hg. The standardized height is

z =
sbp− 129

20

If a man has sbp = 157 mm Hg, his stan-
dardized sbp is

z =
157− 129

20
= 1.4

If a man has sbp = 93 mm Hg, his standard-
ized sbp is

z =
93− 129

20
= −1.8
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Using the standard normal distri-
bution to compute proportions for
other normal distributions

Let’s use the symbol X for a variable repre-
senting the systolic blood pressure of men.
What proportion of men have sbp < 100?

If a man has sbp = 100, his standardized
sbp is

z =
100− 129

20
= −1.45

According to the normal table, the propor-
tion of values of a standard normal variable
that are less than or equal to -1.45 is 0.0735.

This proportion is the same as the propor-
tion of X values that will be less than 100.
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General procedure for finding nor-
mal proportions

1. State the problem in terms of the ob-
served variable X .

2. Standardize the value of interest x to re-
state the problem in terms of a standard
normal variable Z. You may then wish
to draw a picture to show the area under
the standard normal curve.

3. Find the required area under the stan-
dard normal curve, using Table A and
remembering

• The total area under the curve is 1.0.

• The normal distribution is symmetric.
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Example

For women in the US between 18 and 74
years of age, diastolic blood pressure follows
a normal distribution with mean is µ = 77
mm Hg and standard deviation σ = 11.6
mm Hg.

We want to know the proportion of US women
in this age group who have dbp between 60
and 100.

8

1. Call the variable representing a woman’s
dbp X , and call the specific value for an
individual woman x. X has a normal dis-
tribution with µ = 77 and σ = 11.6. We
want to compute to compute the propor-
tion of women such that

60 ≤ X ≤ 100

2. Standardize x to produce z, a draw from
a standard normal distribution.

60 ≤ X ≤ 100

60− 77

11.6
≤ X−77

11.6 ≤ 100− 77

11.6

−1.47 ≤ Z ≤ 1.98
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3. Use Table A to find

• the proportion of Z values ≤ −1.47,
which = .0708

• and the proportion of Z values ≤ 1.98,
which = .9761.

4. So the percent of women with diastolic
blood pressure between 60 and 100 is about
97.61% - 7.08% = 90.5%.
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Normal calculations going the other
direction

What is the value of dbp such that 10% of
women have values greater than or equal to
it?

1. Use Table A to find the z-score such that
10% of a standard normal population would
have values greater than or equal to it.

This is the same value such that 90% of
values are less than or equal to it, namely
1.28.

2. Convert z = 1.28 into x.
x− µ

σ
= z

x− 77

11.6
= 1.28

x = 77 + (11.6)(1.28)

x = 91.85
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General formula for unstandardizing
a z-score:

x = µ + zσ
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Scatterplots

• represent the relationship between two dif-
ferent continuous variables measured on
the same subjects

• each point represents the values for one
subject for the two variables
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Example: data reported by the Organiza-
tion for Economic Development and Coop-
eration on its 29 member nations in 1998

• Per capita gross domestic product (a mea-
sure of wealth of the country) is on x-axis
(horizontal)

• Per capita health care expenditures is on
y-axis (vertical)
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We can describe the overall pattern
of a scatterplot by

• form or shape

• direction
• strength
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Positive and negative association

• Two variables are positively associated
when above-average values of one tend to
occur in individuals with above-average
values of the other, and below-average
values of both also tend to occur together.

• Two variables are negatively associated
when above-average values of one tend to
occur in individuals with below-average
values of the other, and vice-versa.
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Linear relationships

• The form of a relationship shown by a
scatterplot is linear if the points lie in a
straight-line pattern.

• The linear relationship is strong if the
points lie close to a line, with little scat-
ter.



17

Example: per capita health care ex-
penditures and gross domestic prod-
uct

• “individuals” studied are countries

• form of relationship is roughly linear

• direction of relationship is positive

• strength: determined by how closely the
points follow a clear pattern

– quite strong
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Correlation

• a numeric measure of the direction and
strength of the linear relationship between
two continuous variables measured on the
same subjects

• terminology and notation

– sample correlation coefficient r

19

Computing the sample correlation
coefficient

•We have measured two different variables
X and Y on the subjects in a study.

• There are n subjects.

• Let x̄ and ȳ be the sample means of the
two variab les.

• Denote the sample standard deviation of
the x variable as sx and the sample stan-
dard deviation of the y variable as sy.

• Then the sample correlation coefficient is
computed as

r =
1

n− 1

n∑

i=1




xi − x̄

sx







yi − ȳ

sy




20

• Note that the first step in computing r is
to standardize the measurements.

• Example: supposeX is heart rate in beats
per minute and Y is body temperature
in degrees Fahrenheit, and we have both
heart rate and temperature measurements
on n = 10 people.

– The quantity

xi − x̄

sx
is the standardized heart rate for per-
son i

∗ howmany standard deviations above
or below the mean herat rate person
i’s heart rate is

– Standardized values are no longer in
their original units (e.g., the st andard-
ized heart rates are not in beats per
minute)
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– The sample correlation coefficient r is
an average of the products of the stan-
dardized heart rates and temperatures
for the 10 people.
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Facts about correlation

• Correlation requires that both variables
be quantitative, so that we can do arith-
metic computations with them.

• r has no units, and, because it uses stan-
dardized values, it does not change when
we change the units of measurements of
x, y, or both.

– For the same 10 people, r would not
change whether we measured the heights
and weights in inches and pounds or in
centimeters and kilograms.

• r > 0 indicates a positive association be-
tween the two variable; r < 0 indicates a
negative association

• r is always between -1 and +1

– values of r near 0 mean a very weak
linear relationship
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– values near +1 indicate a very strong
positive relationship (all points lie al-
most exactly on a straight line)

– values near -1 indicate a very strong
negative relationship (all points lie al-
most exactly on a straight line)

• Correlation measures only the strength
of linear relationships. r may be close
to 0 even if the relationship between two
variables is strong, if that relationship is
curved.

• The sample correlation coefficient is very
sensitive to outliers.

• A high correlation between two variables
does not by itself imply a causal relation-
ship.
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Correlation and regression

• Correlation enables us to assess the strength
of a linear relationship between two vari-
ables, but it does not enable us to pre-
dict the value of one variable for a subject
for whom we know the value of the other
variable.

• Prediction often is an important goal of
statistical analysis.

• Example: we may wish to predict an in-
fant’s birthweight based on a laboratory
measurement taken on the mother during
pregnancy
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Response variables and explanatory
variables

• response variable

– what we want to explain or predict

– also called “dependent” or “outcome”
variable

• explanatory variable

– a variable that explains or influences
differences in a response variable

– also called “predictor” variables, “co-
variates,” or “independent” variables

•When making a scatterplot of such data:

– response variable goes on y-axis (ver-
tical)

– explanatory variable goes on x-axis (hor-
izontal)
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• Note: Correlation analysis does not dis-
tinguish between response and explana-
tory variables.

• Example: The admissions director of the
University of Iowa wants to guess how
successful incoming students are likely to
be.

• The high school GPA is part of each in-
coming student’s record. The admissions
director wishes to predict the student’s
UI GPA.

•What is the response variable and what
is the explanatory variable?
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Simple Linear Regression

• If a scatterplot suggests a linear relation-
ship between 2 variables, we want to sum-
marize the relationship by drawing a straight
line on the plot.

• A regression line summarizes the rela-
tionship between a response variable and
an explanatory variable.

– Both variables must be quantitative.

• definition: A regression line is a straight
line that describes how a response vari-
able Y changes as an explanatory vari-
able X changes.

– often used to predict the value of Y
that corresponds to a given value of
X .
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Recall straight lines

y = a + bx

• a : intercept; the value of Y when X = 0

• b : slope; how much Y changes when X
increases by 1 unit
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Least squares: choosing the “best”
estimated line for a set of sample
data

a and b are estimated by choosing a line as
follows:

• for each observed value yi in the sample
data, compute the distance from yi to the
line

• square each of the distances

• add up all the squared distances

• choose the line that makes the sum of
these squared distances the smallest
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Using sample data to estimate the
intercept and slope

•We will write an estimated regression line
based on sample data as

ŷ = a + bx

• a is the estimated intercept, and b is the
estimated slope

• The hat over the y means that ŷ is the
predicted value of the response variable,
not an actual observed value
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• Example: the estimated regression line
for the health care expenditures and gross
domestic product is

ŷ = −465.7 + 0.0968x

• This means that if country A has 1 unit
higher PCGDP than country B, we would
expect country A to have 0.0968 higher
PCH than country B.
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– Since we are measuring PCH in dol-
lars and PCGDP in dollars, this means
for every additional dollar in PCGDP,
we expect about a 9.7-cent increase in
PCH.
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• Note that it makes no sense in this prob-
lem to say that the intercept (-465.7) is
the amount of per capital health care ex-
penditure that we would expect in a coun-
try with PCGDP = 0.

•An estimated regression line is mean-
ingful only for the range of X val-
ues actually observed.

– In the PCH/PCGDP problem, this is
about $8000 - 33000. The estimated
intercept makes the linear relationship
come out right over this range of X
values.


