22S:30/105, Statistical Methods and Computing Spring 2013, Instructor: Cowles Midterm 1

Show your fork on any problems that involve calculations.
Name:
-
Course no. (30, 105, of 197)

1. What is the datia type of each of the following variables (circle one for each):
(a) systolic bload pressure in women ages 65-74
i. Binary
ii. Nominal
iii. Ordinal
iv. Discrete quantitative

Continuous quantilative
(b) the number of auto thefts in Wyoming in each year from 1901-2060
i. Binary
ii. Nominal
iii. Ordinal
iv. Discrete quantitative
v. Continuous quantitative
(c) the ratings of high school choirs in a statewide competition (saperior, excellent, good, fair, poor)
i. Binary
ii. Nominal

2 iii. Ordinal
jv. Discrete quantitative
v. Continuous quantitative
2. For each of the following variables, which shape wouid you expect its distribution to have? (circle one answer for each)
(a) lengths of oak leaves
i. roughly symmetric
ii. right skewed
iii. left skewed
(b) the amount of money spent on clothing in 2012 by each woman in lowa Gity
i. roughly symmetric
$2 \frac{\text { ni. right skewed }}{\text { ii. left skewed }}$
3. The respiratory rate in healthy dogs follows a normal density with mean 22 breaths per minute and standard deviation 6 breaths per minute.
The body temperature in healthy dogs follows a normal density with mean 101.5 degrees Fahrenheit and standard deviation 0.5 degrees F.
If my dog Donny has a respiratory rate of 12 breaths per minute and a body demperature of 100 degrees F, is he more unusual with regard to respiratory rate or temperature? Justify your answer with appropriate numeric calculations.

$$
\begin{aligned}
& Z_{\text {nos }}=\frac{12-22}{6}=-1.67 \\
& Z_{\text {促 }}=\frac{100-101.5}{0.5}=-3.0
\end{aligned}
$$

He is mon urnauate in "tompenatine.
4. A dataset on predictors of low birthweights in infants is included in the textbook Hosmer and Lemeshow (2000) Applied Logistic Regression: Second Edition. These data are copyrighted by John Wiley \& Sons Inc. The observations in the dataset are mother-ifant pairs. Three of the variables are:

but	-
age	--
age of the mother inf years at time of giving birth	
smoke	--
1 if the mother was a smoker; 0 otherwise	

Refer to the attached SAS output in answering the following questions about this dataset.
(a) Based on the scatterplot of but versus age, what is your best guess of the corselation between these two variables? (circle one)
i. -0.67
ii. -0.33
iii. 0.00
iv. 0.33
v. 0.67
(b) If bot were measured in pounds instead of grams, would the sample correlation coefficient r between but and age change? Explain briefly.
(c) On the scatterplot, circle any points that would be influential if we fit a linear regression model to these data.
(d) If but were measured in pounds instead of grams, would the value of the regresssion slope b change? Explain briefly.
2 Yes. the slope in the numpren of units change is the Leapome variable tet he worked expect guin a

(e) What is the lowest birthweight in the group in which mothers were smokers (smoke $=1$)? Give a numeric answer and explain bow you got it.
2 phr $6.1 \times 10^{2}=610$ grams
(f) The distribution of birthweights in the group in which mothers were nonsmokers (smoke $=0$) is (circle one):
i. roughly symmetric)
ii. skewed right
iii. skewed left \& ? - ?
iv. multimodal
v. no information is given in the SAS output to answer this
(g) Would the mean and standard deviation be good numeric summaries to report for the birthweight variable bet in each of the groups defined by smoke $=0$ and

(h) In this dataset, are birthweights generally higher for nonsmoking mothers or smoking mothers? Justify you answer referring to SAS output.

$$
2
$$ Q1, inkiath, and Q_{3} she all hen is in inomorke.

(i) Does the difference in birthweights between smoking and nonsmoking mothers mean that there is a correlation between mother's smoking status and infant's birthweight? (Yes or no; briefly explain your answer.)
2

Plot of BWT*AGE. Symbol used is '.'.

The UNIVARIATE Procedure
Variable: BWT

Schematic Plots

