22S:30/105
 Statistical Methods and Computing

Inference for Proportions, continued

Lecture 19
Apr. 4, 2012

Kate Cowles
374 SH, 335-0727
kcowles@stat.uiowa.edu

Hypotheses

The null hypothesis says that the population proportion p in those diagnosed before age 40 is the same as the known proportion in those diagnosed at a later age.

$$
H_{0}: p=0.082
$$

The alternative hypothesis is two-sided because we do not know in advance in which direction a difference might go. (Younger people in general are more likely to survive for 5 years than older people, but perhaps a more severe form of lung cancer occurs in younger people.)

$$
H_{a}: p \neq 0.082
$$

Significance level

We choose to do our test at the $\alpha=.05$ significance level.

Single-sample hypothesis testing about a proportion

Example:

- We know from large databases of medical records that, among patients diagnosed with lung cancer when they are 40 years of age or older, the proportion that survive for 5 years after diagnosis is 0.082 .
- We are interested in determining whether the proportion of 5 -year survivors is the same in the population of patients diagnosed with lung cancer before age 40 .
- The parameter of interest is the population proportion p in the population diagnosed with lung cancer before age 40 .
- We will get data on a sample of persons under 40 who have been diagnosed with lung cancer.

4

Data

From a 1991 article in the journal Cancer, we obtain data on a sample of 52 person diagnosed with lung cancer at age 40 or younger. Only 6 of them survived for 5 years after diagnosis.

The sample proportion was

$$
\hat{p}=\frac{6}{52}=0.115
$$

The test statistic

The z test statistic is:

$$
z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}
$$

$$
\begin{aligned}
& =\frac{0.115-0.082}{\sqrt{\frac{0.082(1-0.082)}{52}}} \\
& =0.87
\end{aligned}
$$

The p-value

Because the test is two-sided, the p-value is the area under the standard normal curve more than 0.87 away from 0 in either direction. Table A tells us that the area to the left of -0.87 is 0.192 . The p-value is twice this area:

$$
p=2(0.192)=0.384
$$

The 95% confidence interval for the proportion p of patients diagnosed with lung cancer before age 40 who will survive 5 years is:

$$
\begin{aligned}
\hat{p} \pm z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} & =0.115 \pm 1.96 \sqrt{\frac{(0.115)(1-0.115)}{52}} \\
& =0.115 \pm 0.087 \\
& =(0.028,0.202)
\end{aligned}
$$

Conclusion

Can we reject the null hypothesis that $p=0.082$?
A proportion of survivors as far from 0.082 as what we found would happen 38% of the time if a sample of 52 patiients were drawn from a population in which the true proportion of survivors was 0.082 . Our result does not show that that the proportion of 5 -year lung cancer survivors is different in the population of patients diagnosed before age 40 from in the population diagnosed at age 40 or later.

Choosing the sample size for a desired margin of error

- Recall that the margin of error is the quantity that we add to and subtract from a point estimate in order to compute the right and left endpoints of a confidence interval.
- For a proportion, the confidence interval is

$$
\hat{p} \pm z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

- so the margin of error is

$$
z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

- Since we don't know in advance what \hat{p} is going to be, we have to guess it. Call our guess p^{*}. Some ways to make an "educated guess":
- Use a pilot study or past experience with similar studies.
- Use $p^{*}=0.5$. This is conservative, since it will give the largest possible margin of error.
- Then if m is the desired margin of error, the required sample size n is:

$$
n=\left(\frac{z^{*}}{m}\right)^{2} p^{*}\left(1-p^{*}\right)
$$

Example:

- PTC is a substance that has a strong bitter taste for some people and is tasteless for others. The ability to taste PTC is inherited. About 75% of Italians can taste PTC, for example.
- You want to estimate the proportion of Americans with at least one Italian grandparent who can taste PTC.
- Starting with the 75% estimate for Italians, how large a sample must you test in order to estimate the proportion of PTC tasters within ± 0.04 with 95% confidence?

12

Sample size calculation for a hypothesis test regarding a single population proportion

- Consider a one-sided test:

$$
\begin{aligned}
& H_{0}: p=p_{0} \\
& H_{a}: p<p_{0}
\end{aligned}
$$

- To compute sample size, we need to specify:
- the significance level α
- a specific alternative hypothesis $p=p_{1}$
- the power $1-\beta$
- Then the sample size n is

$$
n=\left[\frac{z_{1-\alpha} \sqrt{p_{0}\left(1-p_{0}\right)}+z_{1-\beta} \sqrt{p_{1}\left(1-p_{1}\right)}}{\left(p_{1}-p_{0}\right)}\right]^{2}
$$

Example:

- Suppose in the PTC example that instead of just estimating p in Americans with at least one Italian grandparent, we wished to test the hypotheses:

$$
\begin{aligned}
& H_{0}: p=.75 \\
& H_{a}: p<.75
\end{aligned}
$$

- We choose
$-\alpha=.05$
- We would not consider the difference to be scientifically meaningful unless the true p were .60 or less, so we set $p_{1}=.6$.
- We want 90% power if the true p is .6.

15
For a two-sided test, use $z_{1-\frac{\alpha}{2}}$ instead of $z_{1-\alpha}$ in the formula:

$$
n=\left[\frac{z_{1-\frac{\alpha}{2}} \sqrt{p_{0}\left(1-p_{0}\right)}+z_{1-\beta} \sqrt{p_{1}\left(1-p_{1}\right)}}{\left(p_{1}-p_{0}\right)}\right]^{2}
$$

In our example, this would be:

$$
\begin{aligned}
n & =\left[\frac{1.96 \sqrt{.75(.25)}+1.28 \sqrt{.6(.4)}}{(.6-.75)}\right]^{2} \\
& =9.838^{2}
\end{aligned}
$$

$$
=96.8 \text { or } 97
$$

- According to Table A

$$
\begin{aligned}
& -z_{1-\alpha}=1.645 \\
& -z_{1-\beta}=1.28
\end{aligned}
$$

- So our sample size is

$$
\begin{aligned}
n & =\left[\frac{1.645 \sqrt{.75(.25)}+1.28 \sqrt{.6(.4)}}{(.6-.75)}\right]^{2} \\
& =8.929^{2} \\
& =79.73 \text { or } 80
\end{aligned}
$$

