# 22S:30/105 <br> Statistical Methods and Computing 

Introduction to Types of Studies

Lecture 7
February 13, 2013

Kate Cowles
374 SH, 335-0727
kate-cowles@uiowa.edu

2
Experiments and observational studies

- In an experiment, the investigator studies the effect of varying some factor that he/she controls.
- In an observational study, the investigator merely observes and records information on the subjects but does not manipulate any factors.
- It is very difficult to establish causation between one variable and another.
- especially difficult based on observational studies


## Koch's postulates

- In 1890 the German microbiologist Robert Koch attempted to develop criteria for establishing whether a particular microorganism causes a particular disease
- not considered completely satisfactory today
- "... first, the organism is always found with the disease, in accord with the lesions and clinical stage observed; second, the organism is not found with any other disease; third, the organism, isolated from one who has the disease and cultured through several generations, reproduces the disease in a susceptible experimental animal. Even where an infectious disease cannot be transmitted to animals, the 'regular' and 'exclusive' presence of the organism proves a causal relationship."


## More formal criteria for judging whether an observed association is causal

- strength of the association
- dose-response relationship
- consistency of the association
- Is the association observed in one study observed in other study populations, in studies using different methods, etc.
- temporally correct association
- specificity of the association
- the alleged effect is rarely if ever observed without the alleged cause
- plausibility

Example: Female literacy and infant mortality

## Association does not by itself imply causation.

## Populations and samples

- A population is the entire set of items about which we might wish to draw conclusions.
- Example: I wish to find out the average income of families of current UI undergrads.
- Example: A political pollster would like to know the Presidential preference of every registered voter in South Carolina.
- Some populations we would like to study are hypothetical.
* Example: all pregnant women who are infected with the HIV virus now and in the future
- A sample is the subset of the population that we can actually study (on which we can measure values of variables).


## Confounding

Two variables (explanatory or lurking) are confounded when their effects on a response variable cannot be separated.

8

- How a sample is drawn from a population affects how valid it is to apply conclusions based on the sample to the population.
- The sample design is the method used to choose the sample from the population.


## Bias

- The results of a study are biased if they are subject to systematic error.
- i.e., there is something about the way the study is carried out such that, if we did many studies in this way, on average we'd get the wrong conclusions!
- One source of bias is if the sample is not representative of the entire population.
- The design of a study is biased if it systematically favors certain outcomes.


## Kinds of sample designs

- simple random sample (SRS)
- a sample of size $n$ individuals chosen in such a way that every set of $n$ indivduals in the population has an equal chance to be the sample
- the ideal
- biased or unbiased?
- voluntary response sample
- consists of people who choose themselves by responding to a general appeal
- biased or unbiased?
- convenience sample
- consists of subjects who are easy to get
- biased or unbiased?

12

## How simple random samples are drawn

- each member of the population is uniquely identified in some way
- example: the population of interest is UI students; each has a unique ID number
- intuitive idea: the identifiers are put in a hat and drawn at random
- usually actually done by a computer
- can be done manually using a table of random digits
- first assign a unique numeric label to each member of the population
- use table of digits to select labels at random.


## Example

- I wish to get an idea as to how well undergrad students in 22S:30 like the textbook. To do this, I want to administer a lengthy interview and I have time to do only 3. Therefore, I want to draw a simple random sample of size 3 from the population of 24 undergrad students in the class.

17. Derek N
18. Tuyet
19. Ben
20. Mitchell
21. Nicole
22. Cristina
23. Joanna
24. Jessica

- Use Table B in your book to find the first 3 of these identifiers that appear.
- Begin by giving each student a unique numeric identifier.

1. Derek A
2. Kara
3. Courtney
4. Karen
5. Cory
6. Catherine
7. Katie H
8. Ryan
9. Jenna
10. Peter
11. Anne
12. Todd
13. Anthony
14. Katie McE
15. Kimbra
16. Phil

## Table of random digits

- Each entry in the table is equally likely to be any of the 10 digits from 0 to 9 inclusive.
- The entries are "independent" of each other; i.e., knowledge of what digits are in one part of the table gives no information about the digits in any other part.

Using SAS to draw a simple random sample

```
options linesize = 79 ;
data students ;
input name $9. ;
datalines ;
Derek A
Kara
Courtney
Karen
Cory
Catherine
Katie H
Ryan
Jenna
Peter
Anne
Todd
Anthony
Katie McE
Kimbra
Phil
Derek N
```

20
Output

|  |  |
| ---: | :--- |
| Obs | Name |
|  |  |
| 1 | Derek A |
| 2 | Kara |
| 3 | Courtney |
| 4 | Karen |
| 5 | Cory |
| 6 | Catherine |
| 7 | Katie H |
| 8 | Ryan |
| 9 | Jenna |
| 10 | Peter |
| 11 | Anne |
| 12 | Todd |
| 13 | Anthony |
| 14 | Katie McE |
| 15 | Kimbra |
| 16 | Phil |
| 17 | Derek N |
| 18 | Tuyet |
| 19 | Ben |
| 20 | Mitchell |
| 21 | Nicole |

Derek A
Kara
Courtney
Karen
Cory
Catherine
Katie H
Ryan
Jenna
Peter
Anne
Todd
Anthony
Katie McE
Kimbra
Phil
Derek N
Tuyet
Ben

Nicole

Tuyet
Ben
Mitchell
Nicole
Cristina
Joanna
Jessica
;
proc print data $=$ students ;
run ;

## Proc plan

```
proc plan seed = 72950 ;
factors a = 3 of 24 ;
run ;
```

| Factor | The PLAN Procedure |  | Order |
| :---: | :---: | :---: | :---: |
|  | Select | Levels |  |
| a | 3 | 24 | Random |
|  |  |  |  |
|  |  | 7 |  |

23
Using a different seed will produce a different set of choices.
proc plan seed $=32542$;
factors $\mathrm{a}=3$ of 24 ;
run ;

Procedure PLAN

| Factor | Select | Levels | Order |
| :--- | :---: | :---: | :---: |
| a | 3 | 24 | Random |

2164

Using the same seed will reproduce exactly the same "random" choice!

```
proc plan seed = 72950 ;
factors a = 3 of 24 ;
run ;
```

The PLAN Procedure
Factor Select Levels Order
a
3
24
----a---

1247

24

## Drawing from a larger population

```
proc plan seed = 241 ;
factors a = 100 of 1000 ;
run ;
Procedure PLAN
\begin{tabular}{|c|c|c|c|}
\hline Factor & Select & Levels & Order \\
\hline a & 100 & 1000 & \\
\hline
\end{tabular}
```

$\qquad$

```
\begin{tabular}{rrrrrrrrrrrrrrr}
576 & 792 & 359 & 517 & 110 & 598 & 859 & 144 & 9 & 52 & 462 & 262 & 673 & 202 & 648 \\
630 & 705 & 286 & 412 & 597 & 868 & 488 & 621 & 240 & 674 & 651 & 923 & 298 & 419 & 865 \\
550 & 120 & 441 & 921 & 139 & 644 & 269 & 861 & 775 & 529 & 168 & 939 & 50 & 281 & 57 \\
119 & 944 & 692 & 265 & 432 & 470 & 311 & 585 & 69 & 329 & 143 & 562 & 974 & 996 & 904 \\
901 & 767 & 507 & 819 & 844 & 518 & 264 & 822 & 897 & 271 & 820 & 239 & 435 & 341 & 442 \\
497 & 773 & 687 & 449 & 41 & 424 & 24 & 326 & 863 & 178 & 752 & 423 & 233 & 834 & 358 \\
864 & 481 & 362 & 584 & 28 & 479 & 594 & 235 & 337 & 175 & & & & &
\end{tabular}
```


## Other statistical sampling designs

- Statistical sampling is based on chance.
- A probability sample gives each member of the population of interest a known chance of being selected.


## - stratified random sampling

- procedure
* first divide the population into strata - groups of similar individuals
* draw a simple random sample from each stratum
* combine the SRSs to form the full sample
- ensures that each stratum is represented in the overall sample
- Example: survey of class opinions on the textbook
* I might divide the class into men and women and take a SRS within each gender
- Probability sampling methods other than SRSs require more complicated statistical analysis than do SRSs.
- But meaningful results can be obtained because we know what population was actually sampled and exactly how it was done.
- This contrasts with voluntary response samples, convenience samples, and judgment samples.
${ }^{28}$
- Nonresponse
- Some members of the chosen sample cannot be contacted or refuse to answer.
- This biases the results of the survey if the members who do not respond are different from the general population.
- Example: in surveys that include questions about household income, families with unusually low or unusually high incomes are less likely to answer that question than are families with moderate income.
- Response bias
- Respondents may lie, especially about sensitive subjects.
- Attributes or behavior of interviewers can make this more likely.
- Example: In a survey concerning roles of family members, a father might tend to respond differently to the question
"How many hours per week do you spend caring for your children on average?"
depending on the gender of the interviewer.
- Bias due to wording of questions
- leading questions
- confusing questions
- questions involving undefined terms
- Example: Do you eat 5 servings of fruits and vegetables per day?

