
1

22S:30/105
Statistical Methods and

Computing

Linear Regression, continued

Lecture 6
Feb. 4-6, 2012

Kate Cowles
374 SH, 335-0727

kate-cowles@uiowa.edu

2

Another example: Men’s winning
times in the Boston Marathon, 1959-
80
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ŷ = 1221.05 − 0.5505x

What does this equation tell us?
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Prediction using an estimated regres-
sion line

Example: What is the predicted PCH for a
country with PCGDP = $20,000?

ŷ = −465.7 + 0.0968(20000)

= 2401.70

What is the predicted winning time for the
Boston marathon in 1965?
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How well does the regression line
predict the response variable?

• The coefficient of determination or
R2

– When there is only 1 explanatory vari-
able, R2 = r2 — the square of the cor-
relation coefficient r between the re-
sponse variable and the explanatory
variable

– the proportion of the variability among
the observed values of the response vari-
able that is explained by the linear re-
gression

• Example: in the OECD health care ex-
penditures data, R2 = 0.764

– 76.4% of the variability in per capita
health care expenditures is explained
by PCGDP
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Notation

Recall:

• yi is the observed value of the response
variable for subject i

• ŷi is the value predicted by the regression
line for subject i

ŷi = a + bxi
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Residuals

• A residual is the difference between an
observed value and a predicted value of
the response variable.

ri = yi − ŷi

• There is a residual for each data point.

• The residual for the ith observation will
be positive if the observed value lies above
the estimated regression line.

• The mean of the residuals from a least-
squares fit is always 0
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Example: the OECD health care ex-
penditures data

ŷ = −465.7 + 0.0968x

• The predicted score for the US, for which
x1 = 30, 514 dollars is

ŷ1 = −465.7 + 0.0968(30514) = 2488

• The actual value of PCH for the US is
$3898.

• The residual for the US is positive be-
cause the data point lies above the re-
gression line.

ri = 3898 − 2488 = 1410
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Residual plots

• A residual plot is a scatterplot of the re-
gression residuals against the predicted
values of the response variable.

• Residual plots help

– assess fit of a regression line

– look for violations of the assumptions
of linear regression and for problematic
data points
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Things to watch for in a residual
plot

• a random scatter of points

– This is what you want to see.

• A curved pattern

– indicates that the relationship between
the response variable and the explana-
tory variable is not linear

– violation of an assumption

• increasing or decreasing spread around
the zero line

– indicates violation of the assumption
that σ is the same in all the subpopu-
lations
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• individual points with large residuals

– outliers in the vertical direction

– these points are not well described by
the regression equation

• individual points that are extreme in the
horizontal direction (unusual values of ex-
planatory variable)

– These may be influential observations.
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Idealized patterns in residual plots
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The residual plot for the OECD health
care expenditures data
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The residual plot for the Boston marathon
data
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Outliers and influential observations

• Outlier: an observation that lies outside
the overall pattern of the other observa-
tions.

• Influential observation: an observaion is
influential for a statistical calculation if
removing it would markedly change the
result of the calculation. Points that are
outliers in the x direction (have unusual
values of the explanatory variable) are
often influential in computing the least-
squares regression line.
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• In the OECD data, the US and Luxem-
burg are both outliers.

• The US is influential.

– With the US included in the analysis,
R2 = 0.764. If the US is deleted, R2

increases to 0.846.
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Facts about least-squares regression

• Keep straight which is the response vari-
able and which is the explanatory vari-
able. If they are switched, a different re-
gression line results.

• The correlation coefficient r and the slope
b of the regression line are closely related.

– They always have the same sign (both
positive, or both negative, or both zero).

– The slope of the regression line is

b = r
sy

sx

This means that a change of one stan-
dard deviation in x corresponds to a
change of r standard deviations in y.

• How large or small the slope is does not

indicate how strong the relationship be-
tween the response variable and the ex-
planatory variable is.
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– The magnitude of the slope depends
on the units in which we measure both
variables.

∗ Example: If we measured the win-
ning times in the Boston marathon
in hours instead of minutes, the slope
would be -0.0092 instead of -0.55,
but the relationship between winning
time and year of race would be the
same!

– The correlation coefficient r is needed
to quantify the strength of the rela-
tionship.

• But the correlation coefficient is not enough
to enable us to predict the value of a re-
sponse variable if we know the value of
an explanatory variabl.e

– For prediction, we need the regression
equation.
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• The least-squares regression line always
passes through the point (x̄, ȳ).

• The square of the correlation coefficient,
r2, is the fraction of the variation in the
values of y that is explained by the least-
squares regression line.

– How much better are we able to pre-
dict y because we know x?
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Caveats about regression and corre-
lation

• It usually doesn’t make sense to try to
use the regression equation to predict for
values of the explanatory variable outside
the range of observed data.

• Correlations based on averaged data are
usually too large to be applicable to in-
dividuals.

– Example: Correlation between national
female literacy rates and national in-
fant mortality rates in countries in Latin
America

• Lurking variables

– one or more variables that have an im-
portant effect on the relationship among
variables under study but that are not
considered in the study


