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Simple Linear Regression

• If a scatterplot suggests a linear relationship
between 2 variables, we want to summarize
the relationship by drawing a straight line on
the plot.

• A regression line summarizes the relation-
ship between a response variable and an ex-
planatory variable.

– Both variables must be quantitative.

• definition: A regression line is a straight
line that describes how a response variable Y

changes as an explanatory variable X changes.

– often used to predict the value of Y that
corresponds to a given value of X .
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Idea of linear regression

• We are considering a population for which
a response variable and an explanatory vari-
able are of interest.

• Example

– population: adult Americans

– response variable: systolic blood pressure
(sbp)

– explanatory variable: age

• Each value of the explanatory variable de-
fines a subpopulation of the whole popula-
tion.

– example: subpopulations are all 21-yr-olds,
all 22-yr-olds, etc.
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• Each of the subpopulations has its own mean
of the response variable, µY |X=x∗

– example: population mean sbp in 21-yr-
old Americans is some fixed but unknown
number µY |X=21

• The means for all these subpopulations lie on
a straight line.
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Other ideas of linear regression

• The distribution of the response variable in
each subpopulation is normal.

– example: sbp in 21-yr-old Americans has
a normal distribution

sbp in 61-yr-old Americans also follows a
normal distribution, but with a different
mean (µY |X=61)

• The standard deviation of the response vari-
able is the same in all the subpopulations.
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What’s so great about all this?

We can describe the means of all the subpopu-
lations by describing one straight line!

• It takes only 2 numbers to specify a straight
line.

• We can use sample data to estimate these 2
numbers.

• The estimated line summarizes the relation-
ship between the two variables in our sample
data.

– similar to how x̄ summarizes sample val-
ues of a single variable

• We can use the estimated line to predict fu-
ture values of the response variable based on
the explanatory variable.
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The population regression line

• We can write the population regression line
as

µY |X=x = α + βx

• α and β are unknown population parameters

• β is the slope of the line

– For a 1-unit increase in X, we would expect
a change of β units in Y

– slope is “rise over run”
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• α is the intercept of the line

– This is µY |X=0

– Often the notion of a subpopulation for
which X = 0 is not meaningful.

Example: There are no adults of age 0!

– In these cases, consider the intercept to
be the number that makes the line fit cor-
rectly in the range of observed X values.
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Example: Powerboats and manatees in

Florida

Data on powerboat registrations (in 1000’s) in
Florida and the number of manatees killed by
boats in Florida.

OBS YEAR POWERBT KILLED

1 1977 447 13

2 1978 460 21

3 1979 481 24

4 1980 498 16

5 1981 513 24

6 1982 512 20

7 1983 526 15

8 1984 559 34

9 1985 585 33

10 1986 614 33

11 1987 645 39

12 1988 675 43

13 1989 711 50

14 1990 719 47
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Scatterplot

Plot of KILLED*POWERBT. Symbol used is ’.’.
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Using sample data to estimate the in-

tercept and slope

• We will write an estimated regression line
based on sample data as

ŷ = a + bx

• a is the estimated intercept, and b is the es-
timated slope

• Example: the estimated regression line for
the manatees-and-powerboats problem is

ŷ = −41.4 + 0.125x

• This means that for a 1-unit increase in power-
boat registrations we would expect 0.125 more
manatees to be killed.

– Since we are measuring powerboat regis-
trations in 1000’s, this means for every ad-
ditional 1000 powerboat registrations, we
expect 0.125 more manatees to be killed.
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• Note that it makes no sense in this problem
to say that the intercept (-41.4) is the num-
ber of manatees that we would expect to be
killed in a year when there were no power-
boat registrations.

• An estimated regression line is mean-

ingful only for the range of X values

actually observed.

– In the manatee problem, this is 450 to
725 (thousands). The estimated intercept
makes the linear relationship come out right
over this range of X values.
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Prediction using an estimated regres-

sion line

Example: What is the predicted number of man-
atees killed in a year when there are 600 thou-
sand powerboat registrations?

ŷ = −41.4 + 0.125(600)

= 33.6

14

Least squares: choosing the “best” es-

timated line

a and b are estimated by choosing a line as fol-
lows:

• for each observed value yi in the sample data,
compute the distance from yi to the line

• square each of the distances

• add up all the squared distances

• choose the line that makes the sum of these
squared distances the smallest
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Notation

Recall:

• yi is the observed value of the response vari-
able for subject i

• ŷi is the value predicted by the regression line
for subject i

ŷi = a + bxi

• A residual is the difference between an ob-
served value and a predicted value of the re-
sponse variable.

ri = yi − ŷi
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How well does the regression line pre-

dict the response variable

• The coefficient of determination or R2

– the square of the correlation coefficient be-
tween the response variable and the ex-
planatory variable

– the proportion of the variability among
the observed values of the response vari-
able that is explained by the linear regres-
sion

• Example: in the manatee data, R2 = 0.8864

– 88.6% of the variability in number of man-
atee deaths is explained by number of power-
boat registrations
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Inference about the slope and intercept

• The least squares estimates of the intercept
and slope based on our data are the point es-
timates of the population intercept and slope.

– a is the point estimate of the population
intercept α

– b is the point estimate of the population
slope β

• As usual, we also need to estimate the vari-
ability in our point estimates in order to com-
pute confidence intervals and carry out hy-
pothesis tests.

– i.e., we need the standard errors of a and
b

– These depend on the sample standard de-
viation of the data

18

sy|x — the sample standard deviation

from regression

• This is the estimate of the common σy|x in
all the subpopulations.

•
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• n − 2 is the degrees of freedom

– Recall that ŷi = a + bxi. That is, there
are two estimated quantities, a and b, in-
volved in calculating the ŷis.

– The degrees of freedom is the sample size n

minus the number of estimated quantitiees
that are involved in calculating the sample
standard deviation.
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Confidence intervals for the regression

slope

• The population slope β usually is the param-
eter in which we are most interested in regres-
sion.

• We need not only the point estimate b but
also an interval that expresses the amount of
uncertainty in the estimate.

• As usual, the form of the confidence interval
is

estimate ± t∗SEestimate

b ± t∗SEb
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• The standard error of the least-squares slope
b is

SEb =
sy|x

√

∑n
i=1(xi − x̄)2

• For a two-sided, level C confidence interval,
t∗ is the upper 1−C

2 cutoff for a t distribution
with n − 2 degrees of freedom.
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Example: the manatee data

proc reg data = manatee ;

model killed = powerbt / clb ; /* clb option prints confidence intervals

for regression coefficients */

run ;

Model: MODEL1

Dependent Variable: KILLED

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 1711.97866 1711.97866 93.615 0.0001

Error 12 219.44991 18.28749

C Total 13 1931.42857

Root MSE 4.27639 R-square 0.8864

Dep Mean 29.42857 Adj R-sq 0.8769

C.V. 14.53141
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Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 -41.430439 7.41221723 -5.589 0.0001

POWERBT 1 0.124862 0.01290497 9.675 0.0001

Parameter Estimates

Variable DF 95% Confidence Limits

Intercept 1 -57.58027 -25.28060

powerbt 1 0.09674 0.15298

• sy|x = 4.276

• The estimated slope b = 0.1249.

• SEb = 0.0129

• To construct a 95% confidence interval for
the unknown population slope β, we need
the upper .025 cutoff for a t distribution with
n − 2 = 12 degrees of freedom.
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– From Table C, this is 2.179.

• So our 95% confidence interval is

0.1249 ± 2.179(0.0129)

0.1249 ± 0.02811

(0.0968, 0.1530)

• We are 95% confident that the unknown pop-
ulation slope β lies in this interval.

24

Testing the hypothesis of no linear re-

lationship

• We often want to test the null hypothesis
that there is no linear relationship between
the explanatory variable and the response
variable.

H0 : β = 0

• If the slope is 0, the regression line is hori-
zontal. This says that the means of all the
subpopulations are the same! That is, there
is no linear relationship (no correlation) be-
tween the two variables.

• Usually the alternative hypothesis of interest
is two-sided.

Ha : β 6= 0

• The test statistic is a t statistic:

t =
b

SEb
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• The p-value is obtained by comparing the ob-
served value of the t statistic to a t distribu-
tion with n − 2 degrees of freedom.
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Example: the manatee data

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 -41.430439 7.41221723 -5.589 0.0001

POWERBT 1 0.124862 0.01290497 9.675 0.0001

• Let’s carry out the hypothesis test at the α =
.05 significance level.

• The t statistic value is 9.675, and the p-value
is less than 0.0001.

• Therefore, we would have had less than 1
chance in 10,000 of obtaining sample data
that produced a t statistic this far away from
0 or farther if the true population slope was
0.


