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Idea of linear regression

e We are considering a population for which
a response variable and an explanatory vari-
able are of interest.

e Example

— population: adult Americans

—response variable: systolic blood pressure
(sbp)

— explanatory variable: age

e Bach value of the explanatory variable de-

fines a subpopulation of the whole popula-

tion.

— example: subpopulations are all 21-yr-olds,
all 22-yr-olds, etc.
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Simple Linear Regression

o [f a scatterplot suggests a linear relationship
between 2 variables, we want to summarize
the relationship by drawing a straight line on
the plot.

e A regression line summarizes the relation-
ship between a response variable and an ex-
planatory variable.

— Both variables must be quantitative.

e definition: A regression line is a straight
line that describes how a response variable Y’
changes as an explanatory variable X changes.

— often used to predict the value of Y that
corresponds to a given value of X.

s
e Fach of the subpopulations has its own mean
of the response variable, 1y | X =
—example: population mean sbp in 21-yr-
old Americans is some fixed but unknown
number 1y | x=21

e The means for all these subpopulations lie on
a straight line.



Other ideas of linear regression

e The distribution of the response variable in
each subpopulation is normal.

—example: sbp in 21-yr-old Americans has
a normal distribution
sbp in 61-yr-old Americans also follows a
normal distribution, but with a different

mean (fy | x=g1)

e The standard deviation of the response vari-
able is the same in all the subpopulations.

The population regression line

e We can write the population regression line
as

fy|X=p = @+ Bz
e o and (3 are unknown population parameters
e (3 is the slope of the line

— For a 1-unit increase in X, we would expect
a change of 3 units in Y

—slope is “rise over run”
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What’s so great about all this?

We can describe the means of all the subpopu-
lations by describing one straight line!

o [t takes only 2 numbers to specify a straight
line.

e We can use sample data to estimate these 2
numbers.

e The estimated line summarizes the relation-
ship between the two variables in our sample
data.

—similar to how z summarizes sample val-
ues of a single variable

e We can use the estimated line to predict fu-
ture values of the response variable based on
the explanatory variable.
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e « is the intercept of the line

— This is 1y | X =0

— Often the notion of a subpopulation for
which X = 0 is not meaningful.
Example: There are no adults of age 0!

—In these cases, consider the intercept to
be the number that makes the line fit cor-
rectly in the range of observed X values.
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Example: Powerboats and manatees in
Florida

Data on powerboat registrations (in 1000’s) in
Florida and the number of manatees killed by
boats in Florida.

0BS YEAR POWERBT KILLED

1 1977 447 13
2 1978 460 21
3 1979 481 24
4 1980 498 16
5 1981 513 24
6 1982 512 20
7 1983 526 15
8 1984 559 34
9 1985 585 33
10 1986 614 33
11 1987 645 39
12 1988 675 43
13 1989 711 50
14 1990 719 47
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Using sample data to estimate the in-
tercept and slope

o We will write an estimated regression line
based on sample data as

y=a-+bx

e ¢ is the estimated intercept, and b is the es-
timated slope

e Example: the estimated regression line for
the manatees-and-powerboats problem is

§=—41.4+0.125z

e This means that for a 1-unit increase in power-
boat registrations we would expect 0.125 more
manatees to be killed.

— Since we are measuring powerboat regis-
trations in 1000’s, this means for every ad-
ditional 1000 powerboat registrations, we
expect 0.125 more manatees to be killed.
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Scatterplot

Plot of KILLED*POWERBT. Symbol used is ’.’.
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e Note that it makes no sense in this problem
to say that the intercept (-41.4) is the num-
ber of manatees that we would expect to be
killed in a year when there were no power-
boat registrations.

¢ An estimated regression line is mean-
ingful only for the range of X values
actually observed.

—In the manatee problem, this is 450 to
725 (thousands). The estimated intercept
makes the linear relationship come out right
over this range of X values.
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Prediction using an estimated regres-
sion line

Example: What is the predicted number of man-

atees killed in a year when there are 600 thou-
sand powerboat registrations?

j = —41.4+ 0.125(600)
= 33.6

Notation

Recall:

e y; is the observed value of the response vari-
able for subject ¢

e 3, is the value predicted by the regression line

for subject 4

Ui = a+ bx;

e A residual is the difference between an ob-
served value and a predicted value of the re-
sponse variable.

TP =Yi — Y
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Least squares: choosing the “best” es-
timated line

a and b are estimated by choosing a line as fol-
lows:

o for each observed value y; in the sample data,
compute the distance from y; to the line

e square each of the distances
e add up all the squared distances

e choose the line that makes the sum of these
squared distances the smallest

16

How well does the regression line pre-
dict the response variable

e The coefficient of determination or R?

— the square of the correlation coefficient be-
tween the response variable and the ex-
planatory variable

—the proportion of the variability among
the observed values of the response vari-
able that is explained by the linear regres-
sion

e Example: in the manatee data, R? = 0.8864

— 88.6% of the variability in number of man-
atee deaths is explained by number of power-
boat registrations
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Inference about the slope and intercept

e The least squares estimates of the intercept
and slope based on our data are the point es-
timates of the population intercept and slope.

—a is the point estimate of the population
intercept «
—b is the point estimate of the population
slope (3
e As usual, we also need to estimate the vari-
ability in our point estimates in order to com-

pute confidence intervals and carry out hy-
pothesis tests.

—1i.e., we need the standard errors of a and
b

— These depend on the sample standard de-
viation of the data
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Confidence intervals for the regression
slope

e The population slope 3 usually is the param-
eter in which we are most interested in regres-
sion.

e We need not only the point estimate b but
also an interval that expresses the amount of
uncertainty in the estimate.

e As usual, the form of the confidence interval
is

estimate & t*SE,qimate
b + t*SE),
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Sylg — the sample standard deviation
from regression

e This is the estimate of the common o | 1D

all the subpopulations.

Y

1
= s residual?
S JH—QZ'TGSZ ual

1
— (15 — ;)2
Jn_m(yz 9i)

e n — 2 is the degrees of freedom

— Recall that ¢; = a + bx;. That is, there
are two estimated quantities, a and b, in-
volved in calculating the y;s.

— The degrees of freedom is the sample size n
minus the number of estimated quantitiees
that are involved in calculating the sample
standard deviation.
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e The standard error of the least-squares slope

bis
Syla

SE; =
DT (- @)

e For a two-sided, level C confidence interval,

t* is the upper 1_20 cutoff for a ¢ distribution

with n — 2 degrees of freedom.




Example: the manatee data

proc reg data = manatee
model killed = powerbt / clb ; /* clb option prints confidence intervals
for regression coefficients */

run ;

Model: MODEL1

Dependent Variable: KILLED

Source

Model
Error
C Total

Root MSE
Dep Mean
C.V.

Analysis of Variance

Sum of Mean
DF Squares Square

1 1711.97866  1711.97866
12 219.44991 18.28749
13 1931.42857

4.27639 R-square
29.42857 Adj R-sq
14.53141

— From Table C, this is 2.179.
e So our 95% confidence interval is

0.1249 = 2.179(0.0129)
0.1249 & 0.02811
(0.0968, 0.1530)

F Value

93.615

0.8864
0.8769
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Prob>F

0.0001
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e We are 95% confident that the unknown pop-
ulation slope (3 lies in this interval.
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Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 -41.430439 7.41221723 -5.589 0.0001
POWERBT 1 0.124862 0.01290497 9.675 0.0001

Parameter Estimates

Variable DF 95% Confidence Limits
Intercept 1 -57.58027 -25.28060
powerbt 1 0.09674 0.15298
s .. =4.2
yle 7
e The estimated slope b = 0.1249.
o SE, = 0.0129

e To construct a 95% confidence interval for
the unknown population slope 3, we need
the upper .025 cutoff for a t distribution with
n — 2 = 12 degrees of freedom.
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Testing the hypothesis of no linear re-
lationship

e We often want to test the null hypothesis
that there is no linear relationship between
the explanatory variable and the response
variable.

Hy:3=0

o [f the slope is 0, the regression line is hori-
zontal. This says that the means of all the
subpopulations are the same! That is, there
is no linear relationship (no correlation) be-
tween the two variables.

e Usually the alternative hypothesis of interest
is two-sided.

Hy, 3#0
e The test statistic is a t statistic:
b
t=——

SE,
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e The p-value is obtained by comparing the ob-

served value of the ¢ statistic to a t distribu-
tion with n — 2 degrees of freedom.
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Example: the manatee data

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 -41.430439 7.41221723 -5.589 0.0001
POWERBT 1 0.124862 0.01290497 9.675 0.0001

e Let’s carry out the hypothesis test at the o =
.05 significance level.

e The t statistic value is 9.675, and the p-value
is less than 0.0001.

o Therefore, we would have had less than 1
chance in 10,000 of obtaining sample data
that produced a t statistic this far away from
0 or farther if the true population slope was
0.



