Root finding algorithms

STAT:5400
Lecture 14
Oct. 8, 2018
Root-finding

- problem: to find values of variable x that satisfy $f(x)=0$ for given function f
- solution is called "zero of f " or "root of f "
\bullet when is this an important problem in statistics?

The bisection method

- also called "binary-search method"
- conditions for use
- f continuous, defined on interval $[a, b]$
$-f(a)$ and $f(b)$ of opposite sign
- by Intermediate Value Theorem, there exists a
$p, a<p<b$, such that $f(p)=0$
- procedure works when $f(a)$ and $f(b)$ of opposite sign and more than one root in $[a, b]$
- for simplicity, we'll assume unique root in interval
- method consists of
- repeated halving of subintervals of $[a, b]$
- at each step, locating half containing p
- requires following inputs
- endpoints a, b
- tolerance $T O L$
- maximum number of iterations N_{0}

```
function(func, a, b, tol, maxiters)
{
# bisection
# uses bisection algorithm to find root of func in interval [a,b
# Burden and Faires, section 2.1
###############################################################
# inputs
###############################################################
# tol -- maximum difference between subinterval endpoints to
# consider root to have been found
# f -- function for which root needs to be found
# a,b -- interval endpoints, b > a
# maxiters -- maximum number of iterations
################################################################
# initial setup
if( f(a) * f(b) > 0)
print("Function has same sign at both endpoints.")
else {
absdiff <- b-a
iters <- 1
    p <- a + absdiff / 2
while ((absdiff > tol) & (iters <= maxiters) & (f(p) != 0) )
    {
        absdiff <- b-a # note: absdiff is constructed to be positive
        p <- a + absdiff / 2
```

```
b}<-\textrm{p
```

b}<-\textrm{p
else
else
a <- p
a <- p
iters <- iters + 1
iters <- iters + 1
}
}
if (iters > maxiters) \# didn't find solution in fewer than maxiters
if (iters > maxiters) \# didn't find solution in fewer than maxiters
print("Maximum number of iterations exceeded.")
print("Maximum number of iterations exceeded.")
list(a = a, b = b, p = p, errflag = as.numeric(iters > maxiters))
list(a = a, b = b, p = p, errflag = as.numeric(iters > maxiters))
}
}

```

\section*{Example}

```

> f <- function(x) {x^3 - 3*x^2 -x + 4}
> bisection(f, -2,4, .0001, 100)
\$a
[1] -1.114960
\$b
[1] -1.114868
\$p
[1] -1.114914
\$errflag
[1] 0

```
\(>f<-\) function \((x)\left\{x^{\wedge} 3-3 * x^{\wedge} 2-x+4\right)\)
\(>\operatorname{plot}(\operatorname{seq}(-2,4, b y=0.01), f(\operatorname{seq}(-2,4, b y=0.01))\),type="l")
\(>\) uniroot \((f=f, c(-2,4))\)
\$root
[1] -1.114907
\$f.root
[1] \(9.607438 \mathrm{e}-06\)
The function 'uniroot' searches the interval from 'lower' to 'upper' for a root (i.e., zero) of the function 'f' with respect to its first argument.

\section*{Usage:}
uniroot(f, interval, lower \(=\min (i n t e r v a l)\), upper \(=\max (i n t e r v a l)\),
tol \(=\). Machine\$double.eps^0.25, maxiter \(=1000, \ldots\) )

\section*{The Newton-Raphson Method}
- one of most powerful and well-known numerical methods for solving root-finding problem \(f(x)=0\)
- one derivation: Taylor series approximation
- suppose \(f^{\prime}\) and \(f^{\prime \prime}\) are continuous on \([a, b]\)
- let \(x_{0} \in[a, b]\) be an approximation to \(p\) such that \(f^{\prime}\left(x_{0}\right) \neq 0\) and \(\left|x_{0}-p\right|\) is "small"
- first order Taylor approximation for \(f(x)\) expanded around \(x_{0}\)
\[
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} f^{\prime \prime}(\xi(x))
\]
where \(\xi(x)\) is between \(x\) and \(x_{0}\).
- with \(x=p\) this gives
\[
0=f\left(x_{0}\right)+\left(p-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(p-x_{0}\right)^{2}}{2} f^{\prime \prime}(\xi(x))
\]
- since \(\left|x_{0}-p\right|\) is "small", \(\left(x_{0}-p\right)^{2}\) should be negligible and
\[
0 \simeq f\left(x_{0}\right)+\left(p-x_{0}\right) f^{\prime}\left(x_{0}\right)
\]
- solving for p yields
\[
p \simeq x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
\]

The Newton-Raphson Method
- start with initial approximation \(p_{0}\)
- let \(p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}\)
http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

\section*{Convergence Theorem for Newton-Raphson Method}
- conditions
- \(f\) has continuous first and second derivatives on \([a, b]\)
\(-p \in[a, b]\) is such that \(f(p)=0\) and \(f^{\prime}(p) \neq 0\)
- conclusions
- then there exists a \(\delta>0\) such that Newton's method generates a sequence \(\left\{p_{n}\right\}_{n=1}^{\infty}\) converging to \(p\) for any initial approximation \(p_{0} \in[p-\delta, p+\delta]\).

\section*{The Secant Algorithm}
- useful when computation of \(f^{\prime}(x)\) is far more computationally intensive than computation of \(f(x)\)
- uses forward (or backward)-difference formula to approximate \(f^{\prime}\left(p_{n-1}\right)\)
\[
f^{\prime}\left(p_{n-1}\right) \simeq \frac{f\left(p_{n-2}\right)-f\left(p_{n-1}\right)}{p_{n-2}-p_{n-1}}=\frac{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}{p_{n-1}-p_{n-2}}
\]
- Secant algorithm generates sequence as
\[
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)\left(p_{n-1}-p_{n-2}\right)}{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}, n \geq 1
\]```

