
STAT:5400
Lecture 14

Oct. 8, 2018
Root-finding

1

Root finding algorithms

• problem: to find values of variable x that satisfy
f (x) = 0 for given function f

• solution is called “zero of f” or “root of f”

• when is this an important problem in statistics?

2

The bisection method

• also called “binary-search method”

• conditions for use

– f continuous, defined on interval [a, b]

– f (a) and f (b) of opposite sign

• by Intermediate Value Theorem, there exists a
p, a < p < b, such that f (p) = 0

• procedure works when f (a) and f (b) of opposite sign
and more than one root in [a, b]

• for simplicity, we’ll assume unique root in interval

• method consists of

– repeated halving of subintervals of [a, b]

– at each step, locating half containing p

• requires following inputs

– endpoints a, b

– tolerance TOL

– maximum number of iterations N0

3

function(func, a, b, tol, maxiters)

{

bisection

uses bisection algorithm to find root of func in interval [a,b]

Burden and Faires, section 2.1

##

inputs

##

tol -- maximum difference between subinterval endpoints to

consider root to have been found

f -- function for which root needs to be found

a,b -- interval endpoints, b > a

maxiters -- maximum number of iterations

##

initial setup

if(f(a) * f(b) > 0)

print("Function has same sign at both endpoints.")

else {

absdiff <- b-a

iters <- 1

p <- a + absdiff / 2

while ((absdiff > tol) & (iters <= maxiters) & (f(p) != 0))

{

absdiff <- b-a # note: absdiff is constructed to be positive

p <- a + absdiff / 2

if ((f(p) != 0) && (absdiff > tol)) {

if(f(p) * f(a) < 0)

b <- p

else

a <- p

iters <- iters + 1

}

}

if (iters > maxiters) # didn’t find solution in fewer than maxiters

print("Maximum number of iterations exceeded.")

list(a = a, b = b, p = p, errflag = as.numeric(iters > maxiters))

}

}

4

Example

−
2

−
1

0
1

2
3

4

−15 −10 −5 0 5 10 15

x

f(x)

5

> f <- function(x) {x^3 - 3*x^2 -x + 4}

> bisection(f, -2,4, .0001, 100)

$a

[1] -1.114960

$b

[1] -1.114868

$p

[1] -1.114914

$errflag

[1] 0

6

uniroot function in R

uniroot package:stats R Documentation

One Dimensional Root (Zero) Finding

Description:

The function ’uniroot’ searches the interval from ’lower’ to

’upper’ for a root (i.e., zero) of the function ’f’ with respect

to its first argument.

Usage:

uniroot(f, interval, lower = min(interval), upper = max(interval),

tol = .Machine$double.eps^0.25, maxiter = 1000, ...)

7

> f <- function(x) {x^3 - 3*x^2 -x + 4)

> plot(seq(-2,4,by=0.01), f(seq(-2,4,by=0.01)),type="l")

> uniroot(f=f,c(-2,4))

$root

[1] -1.114907

$f.root

[1] 9.607438e-06

$iter

[1] 9

$estim.prec

[1] 6.103516e-05

8

The Newton-Raphson Method

• one of most powerful and well-known numerical methods for solving
root-finding problem f(x) = 0

• one derivation: Taylor series approximation

– suppose f ′ and f ′′ are continuous on [a, b]

– let x0 ∈ [a, b] be an approximation to p such that f ′(x0) 6= 0 and
|x0 − p| is “small”

– first order Taylor approximation for f(x) expanded around x0

f(x) = f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2
f ′′(ξ(x))

where ξ(x) is between x and x0.

– with x = p this gives

0 = f(x0) + (p− x0)f ′(x0) +
(p− x0)2

2
f ′′(ξ(x))

– since |x0 − p| is “small”, (x0 − p)2 should be negligible and

0 ' f(x0) + (p− x0)f ′(x0)

– solving for p yields

p ' x0 −
f(x0)

f ′(x0)

9

The Newton-Raphson Method

• start with initial approximation p0

• let pn = pn−1 − f(pn−1)
f ′(pn−1)

http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Convergence Theorem for Newton-Raphson Method

• conditions

– f has continuous first and second derivatives on [a, b]

– p ∈ [a, b] is such that f(p) = 0 and f ′(p) 6= 0

• conclusions

– then there exists a δ > 0 such that Newton’s method generates a
sequence {pn}∞n=1 converging to p for any initial approximation
p0 ∈ [p− δ, p+ δ].

10

The Secant Algorithm

• useful when computation of f ′(x) is far more computationally intensive
than computation of f(x)

• uses forward (or backward)-difference formula to approximate f ′(pn−1)

f ′(pn−1) '
f(pn−2)− f(pn−1)

pn−2 − pn−1
=
f(pn−1)− f(pn−2)

pn−1 − pn−2
• Secant algorithm generates sequence as

pn = pn−1 −
f(pn−1)(pn−1 − pn−2)
f(pn−1)− f(pn−2)

, n ≥ 1

11

