STAT:5400
Lecture 14
Oct. 8, 2018
Root-finding

The bisection method

e also called “binary-search method”

e conditions for use
— f continuous, defined on interval [a, b]
— f(a) and f(b) of opposite sign

e by Intermediate Value Theorem, there exists a
p, a < p < b, such that f(p) =0

e procedure works when f(a) and f(b) of opposite sign
and more than one root in [a, b]

o for simplicity, we’ll assume unique root in interval
e method consists of

— repeated halving of subintervals of [a, b]

— at each step, locating half containing p
e requires following inputs

— endpoints a, b

— tolerance TOL
— maximum number of iterations Ny

Root finding algorithms

e problem: to find values of variable x that satisfy
f(x) = 0 for given function f

e solution is called “zero of f” or “root of f”

e when is this an important problem in statistics?

function(func, a, b, tol, maxiters)

{

*

bisection
uses bisection algorithm to find root of func in interval [a,b]
Burden and Faires, section 2.1

3

inputs

tol -- maximum difference between subinterval endpoints to
consider root to have been found

f —-- function for which root needs to be found

a,b -- interval endpoints, b > a

maxiters -- maximum number of iterations

initial setup

if(£(a) * £(b) > 0)
print ("Function has same sign at both endpoints.")
else {
absdiff <- b-a
iters <- 1
p <- a + absdiff / 2
while ((absdiff > tol) & (iters <= maxiters) & (f(p) !=0))

absdiff <- b-a # note: absdiff is constructed to be positive
p <- a + absdiff / 2
if ((£(p) !'= 0) && (absdiff > tol)) {
if(£(p) * f(a) < 0)
b<-p
else
a<-p
iters <- iters + 1
}
}
if (iters > maxiters) # didn’t find solution in fewer than maxiters
print ("Maximum number of iterations exceeded.")

list(a = a, b =b, p = p, errflag = as.numeric(iters > maxiters))

}

Example > f <- function(x) {x"3 - 3*x"2 -x + 4}

s 10 5 0 5 10 i > bisection(f, -2,4, .0001, 100)
| ! ! ! ! ! | $a
> [1] -1.114960
i $b
[1] -1.114868
[1] -1.114914
$errflag
[1]1 0
w
S
5 6
uniroot function in R > £ <- function(x) {x"3 - 3%x"2 -x + 4)
> plot(seq(-2,4,by=0.01), f(seq(-2,4,by=0.01)),type="1")
uniroot package:stats R Documentation > uniroot (f=f,c(-2,4))
$root
One Dimensional Root (Zero) Finding [1] -1.114907
Description: $f.root

[1] 9.607438e-06

The function ’uniroot’ searches the interval from ’lower’ to

’upper’ for a root (i.e., zero) of the function ’f’ with respect $iter
to its first argument. tle
Usage: $estim.prec

[1] 6.103516e-05

uniroot(f, interval, lower = min(interval), upper = max(interval),
tol = .Machine$double.eps~0.25, maxiter = 1000, ...)

-
o

The Newton-Raphson Method

e one of most powerful and well-known numerical methods for solving
root-finding problem f(z) =0

e one derivation: Taylor series approximation
— suppose f’ and f” are continuous on [a, b]
— let zy € [a,b] be an approximation to p such that f’(z¢) # 0 and
|zg — p| is “small”
— first order Taylor approximation for f(z) expanded around
(z — mp)?

f(@) = f(zo) + (x = w0) ['(wo) + = f"(&(x))

where £(x) is between x and .

— with « = p this gives

_ e P
0= f(zo) + (p — @) f'(w0) + 3 1" (€(2))

— since |zy — p| is “small”, (zo — p)? should be negligible and
0= f(wo) + (p — 0).f"(w0)

— solving for p yields

~ 2 — f(o)
P)

The Secant Algorithm

o useful when computation of f/(z) is far more computationally intensive

than computation of f(z)
e uses forward (or backward)-difference formula to approximate f'(p,—1)

Flpnor) ~ f(pn2) — f(}h) _ f(érx 1) = f(P-2)
Pn—2 = Pn—1 Pn—1 — Pn-2

e Secant algorithm generates sequence as

(1) (Pa-1 — Pn2) o1

P e e) =) T

11

The Newton-Raphson Method

e start with initial approximation py

o let p = pooy — S

http://en.wikipedia.org/wiki/File:NewtonIteration_ Ani.gif

Convergence Theorem for Newton-Raphson Method

e conditions
— f has continuous first and second derivatives on [a, b]
— p € [a,b] is such that f(p) =0 and f'(p) #0

o conclusions

— then there exists a § > 0 such that Newton’s method generates a
sequence {p,}22; converging to p for any initial approximation
p€lp—dp+d.

