Basics

STAT:5400 Computing in Statistics

Simulation studies in statistics
Lecture 9
September 21, 2016

Based on a lecture by Marie Davidian for
ST 810A - Spring 2005
Preparation for Statistical Research
North Carolina State University
http://www4.stat.ncsu.edu/ davidian/st810a/

- simulation studies are commonly done to evaluate the performance of a frequentist statistical procedure, or to compare the performance of two or more different procedures for the same problem
- enable us to see what happens "when many many samples of the same size are drawn from the same population"
- properties of estimators that are often evaluated by simulation
- bias
- mean squared error
- coverage of confidence intervals
- properties of hypothesis tests also can be evaluated by simulation studies
- size
- power
- simulation studies are experiments, and the things you know about experimental design and sample size calculation apply

Terminology

- simulation: a numerical technique for conducting experiments on the computer
- Monte Carlo simulation: a computer experiment inolving random sampling from probability distributions
- what statisticians usually mean by "simulations"

Rationale

- Properties of statistical methods must be established before the methods can safely be used in practice.
- But exact analytical derivations of properties are rarely possible
- Large sample approximations to properties are often possible
- evaluation of the relevance of the approximation to (finite) sample sizes likely to be encountered in practice is needed
- Analytical results may require assumptions such as normality
- What happens when these assumptions are violated? Analytical results, even large sample ones, may not be possible

Questions to be addressed regarding an estimator or testing procedure

- Is an estimator biased in finite samples? What is its sampling variance?
- How does it compare to competing estimators on the basis of bias, precision, etc.?
- Does a procedure for constructing a confidence interval for a parameter achieve the claimed nominal level of coverage?
- Does a hypothesis testing procedure attain the claimed level or size?
- If so, what power is possible against different alternatives to the null hypothesis? Do different test procedures deliver different power?

Simulation for properties of estimators

Simple example: Compare three estimators for the mean μ of a distribution based on i.i.d. draws Y_{1}, \ldots, Y_{n}

- Sample mean $T^{(1)}$
- Sample 20\% trimmed mean $T^{(2)}$
- Sample median $T^{(3)}$

Remarks:

- If the distribution of the data is symmetric, all three estimators indeed estimate the mean
- If the distribution is skewed, they do not

Role of Monte Carlo simulation

- Goal is to evaluate sampling distribution of an estimator under a particular set of conditions (sample size, error distribution, etc.)
- Analytic derivation of exact sampling distribution is not feasible
- Solution: Approximate the sampling distribution through simulation
- Generate S independent data sets under the conditions of interest
- Compute the numerical value of the estimator/test statistic T (data) for each data set, yielding T_{1}, \ldots, T_{S}
- If S is large enough, summary statistics across T_{1}, \ldots, T_{S} should be good approximations to the true sampling properties of the estimator/test statistic under the conditions of interest

Simulation procedure

For a particular choice of μ, n, and true underlying distribution

- Generate independent draws Y_{1}, \ldots, Y_{n} from the distribution
- Compute $T^{(1)}, T^{(2)}, T^{(3)}$
- Repeat S times \Rightarrow

$$
T_{1}^{(1)}, \ldots, T_{S}^{(1)} ; \quad T_{1}^{(2)}, \ldots, T_{S}^{(2)} ; \quad T_{1}^{(3)}, \ldots, T_{S}^{(3)}
$$

- Compute for $k=1,2,3$

$$
\begin{gathered}
\text { mean }=S^{-1} \sum_{s=1}^{S} T_{s}^{(k)}=\bar{T}^{(k)}, \text { b仑्as }=\bar{T}^{(k)}-\mu \\
\widehat{\mathrm{SD}}=\sqrt{(S-1)^{-1} \sum_{s=1}^{S}\left(T_{s}^{(k)}-\bar{T}^{(k)}\right)^{2}}, \\
\widehat{\mathrm{MSE}}=S^{-1} \sum_{s=1}^{S}\left(T_{s}^{(k)}-\mu\right)^{2} \approx \widehat{\mathrm{SD}}^{2}+\widehat{\text { bias }}^{2}
\end{gathered}
$$

Relative efficiency

R code for example

For a particular choice of μ,
Relative efficiency: For any estimators for which $E\left(T^{(1)}\right)=E\left(T^{(2)}\right)=\mu$

$$
R E=\frac{\operatorname{var}\left(T^{(1)}\right)}{\operatorname{var}\left(T^{(2)}\right)}
$$

is the relative efficiency of estimator 2 to estimator 1

- When the estimators are not unbiased it is standard to compute

$$
R E=\frac{\operatorname{MSE}\left(T^{(1)}\right)}{\operatorname{MSE}\left(T^{(2)}\right)}
$$

- In either case $R E<1$ means estimator 1 is preferred (estimator 2 is inefficient relative to estimator 1 in this sense)

```
```

> set.seed(3)

```
```

> set.seed(3)
> S <- 1000
> S <- 1000
> n <- 15
> n <- 15
> trimmean <- function(Y){mean(Y,0.2)}
> trimmean <- function(Y){mean(Y,0.2)}
>mu <- 1
>mu <- 1
> sigma <- sqrt(5/3)

```
```

> sigma <- sqrt(5/3)

```
```

```
Normal data:
```

> out <- generate.normal(S,n,mu,sigma)

```
> out <- generate.normal(S,n,mu,sigma)
> outsampmean <- apply(out$dat,1,mean)
> outsampmean <- apply(out$dat,1,mean)
> outtrimmean <- apply(out$dat,1,trimmean)
> outtrimmean <- apply(out$dat,1,trimmean)
> outmedian <- apply(out$dat,1,median)
> outmedian <- apply(out$dat,1,median)
> summary.sim <- data.frame(mean=outsampmean,trim=outtrimmean,
> summary.sim <- data.frame(mean=outsampmean,trim=outtrimmean,
+ median=outmedian)
+ median=outmedian)
> results <- simsum(summary.sim,mu)
> results <- simsum(summary.sim,mu)
> view(round(summary.sim,4),5)
> view(round(summary.sim,4),5)
First 5 rows
First 5 rows
    mean trim median
    mean trim median
1 0.7539 0.7132 1.0389
1 0.7539 0.7132 1.0389
2 0.6439 0.4580 0.3746
2 0.6439 0.4580 0.3746
31.5553 1.6710 1.9395
31.5553 1.6710 1.9395
4 0.5171 0.4827 0.4119
4 0.5171 0.4827 0.4119
51.3603 1.4621 1.3452
```

```
51.3603 1.4621 1.3452
```

```
> results
\begin{tabular}{lrrr} 
& Sample mean & Trimmed mean & \multicolumn{1}{c}{ Median } \\
true value & 1.000 & 1.000 & 1.000 \\
\# sims & 1000.000 & 1000.000 & 1000.000 \\
MC mean & 0.985 & 0.987 & 0.992 \\
MC bias & -0.015 & -0.013 & -0.008 \\
MC relative bias & -0.015 & -0.013 & -0.008 \\
MC standard deviation & 0.331 & 0.348 & 0.398 \\
MC MSE & 0.110 & 0.121 & 0.158 \\
MC relative efficiency & 1.000 & 0.905 & 0.694
\end{tabular}
1.000

\section*{Performance of estimates of uncertainty}

How well do estimated standard errors represent the true sampling variation?
- E.g., For sample mean \(T^{(1)}\left(Y_{1}, \ldots, Y_{n}\right)=\bar{Y}\)
\[
S E(Y)=\frac{s}{\sqrt{n}}, \quad s^{2}=(n-1)^{-1} \sum_{j=1}^{n}\left(Y_{j}-Y\right)^{2}
\]
- MC standard deviation approximates the true sampling variation
- Compare average of estimated standard errors to MC standard deviation

For sample mean: MC standard deviation 0.331
> outsampmean <- apply(out\$dat, 1 , mean)
> sampmean.ses <- sqrt(apply(out\$dat, 1, var)/n)
> ave.sampmeanses <- mean(sampmean.ses)
> round (ave.sampmeanses, 3)
[1] 0.329

\section*{Simulations for properties of hypothesis} tests

Simple example: Size and power of the usual \(t\)-test for the mean
\[
H_{0}: \mu=\mu_{0} \quad \text { vs. } \quad H_{1}: \mu \neq \mu_{0}
\]
- To evaluate whether size/level of test achieves advertised \(\alpha\) generate data under \(\mu=\mu_{0}\) and calculate proportion of rejections of \(H_{0}\)
- Approximates the true probability of rejecting \(H_{0}\) when it is true
- Proportion should \(\approx \alpha\)
- To evaluate power, generate data under some alternative \(\mu \neq \mu_{0}\) and calculate proportion of rejections of \(H_{0}\)
- Approximates the true probability of rejecting \(H_{0}\) when the alternative is true (power)
- If actual size is \(>\alpha\), then evaluation of power is flawed

\section*{Usual \(100(1-\alpha) \%\) confidence interval for \(\mu:\)}

Based on sample mean
\[
\left[Y-t_{1-\alpha / 2, n-1} \frac{s}{\sqrt{n}}, Y+t_{1-\alpha / 2, n-1} \frac{s}{\sqrt{n}}\right]
\]
- Does the interval achieve the nominal level of coverage \(1-\alpha\) ?
\(\bullet\) E.g. \(\alpha=0.05\)
\(>\) t05 <- qt ( \(0.975, \mathrm{n}-1\) )
> coverage <- sum((outsampmean-t05n*sampmean.ses <= mu) \& (outsampmean+t05n*sampmean.ses \(>=m u\) )) \(/ \mathrm{S}\)

\section*{Size/level of test:}
```

> set.seed(3); S <- 1000; n <- 15; sigma <- sqrt(5/3)
>mu0 <- 1; mu <- 1
> out <- generate.normal(S,n,mu,sigma)
> ttests <-

+ (apply(out$dat,1,mean)-mu0)/sqrt(apply(out$dat,1,var)/n)
> t05 <- qt(0.975,n-1)
> power <- sum(abs(ttests)>t05)/S
> power
[1] 0.051

```

\section*{Power of test:}
```

> set.seed(3); S <- 1000; n <- 15; sigma <- sqrt(5/3)
> mu0 <- 1; mu <- 1.75
> out <- generate.normal(S,n,mu,sigma)
> ttests <-

+ (apply(out$dat,1,mean)-mu0)/sqrt(apply(out$dat,1,var)/n)
> t05 <- qt(0.975,n-1)
> power <- sum(abs(ttests)>t05)/S
> power
[1] 0.534

```

\section*{Choosing \(S\) : Coverage probabilities, size, power}
- Estimating a proportion \(p\) (= coverage probability, size, power) \(\Rightarrow\) binomial sampling, e.g. for a hypothesis test
\[
Z=\# \text { rejections } \sim \operatorname{binomial}(S, p) \Rightarrow \sqrt{\operatorname{var}\left(\frac{Z}{S}\right)}=\sqrt{\frac{p(1-p)}{S}}
\]
- Worst case is at \(p=1 / 2 \Rightarrow 1 / \sqrt{4 S}\)
- \(d\) acceptable error \(\Rightarrow S=1 /\left(4 d^{2}\right)\); e.g., \(d=0.01\) yields \(S=2500\)
- For coverage, size, \(p=0.05\)

\section*{Principle 2: Save everything!}
- Save the individual estimates in a file and then analyze (mean, bias, SD, etc) later
- as opposed to computing these summaries and saving only them
- Critical if the simulation takes a long time to run!
- Advantage: can use software for summary statistics (e.g., SAS, R, etc.)

\section*{Principle 3: Keep \(S\) small at first}
- Test and refine code until you are sure everything is working correctly before carrying out final "production" runs
- Get an idea of how long it takes to process one data set

\section*{Principle 4: Set a different seed for each run and keep records}
- Ensure simulation runs are independent
- Runs may be replicated if necessary

\section*{Principle 5: Document your code}```

