STAT:2010/4200
Statistical Methods and Computing

Robustness of t procedures Inference for Proportions

Lecture 18
Apr. 6, 2020
Kate Cowles
374 SH, 335-0727
kate-cowles@uiowa.edu

Robustness

- Recall: we use t confidence intervals and onesample t hypothesis tests when we assume that values in the population of interest follow a normal distribution.
$-t$ confidence levels and significance levels are exacltly correct if the population distribution is exactly normal.
- But no population is exactly normal, so...
- Critical issue: how strongly are t procedures affected by small and large violations of the assumption of normality of the population?
- A procedure to compute a confidence interval or significance test is called robust if the confidence level or p-value does not change much when the assumptions of the procedure are violated.
- Samples from normal distributions usually have very few outliers.
- Outliers suggest that data are not a sample from a normal population.
- t procedures are strongly influenced by outliers in the sample data
- because they are based on \bar{x} and s
- But t procedures are quite robust against violations of the normality assumption when there are no outliers.
- especially if population distribution is roughly symmetrical
- and especially if sample size is large
* Recall that Central Limit Theorem says that sampling distribution of \bar{x} becomes approximately normal if sample size is "large enough" even if population distribution is not normal.

Rules of thumb regarding one-sample t procedures

- Always plot sample data to check for skewness and outliers before using t procedures, especially for small samples.
- Sample size less than 15: Use t procedures if the sample data look close to normal. If not, or if outliers are present, get help regarding an appropriate alternative to t.
- Sample size \geq 15: t procedures can be used except in the presence of outliers or very strong skewness.
- Sample size \geq about 40: t procedures can be used even when distribution of sample data is clearly skewed.
- Assumption that data are a SRS from the population generally is more critical than normality assumption for use of t procedures.

Rules of thumb regarding two-sample t procedures

- 2 -sample t procedures are more robust than 1 -sample t procedures, especially if distributions are asymmetric
- If
- sample sizes are equal in the 2 samples
- and distributions in the two populations are similar in shape
then 2 -sample t procedures are quite accurate even for $n_{1}=n_{2}$ as small as 5 .
- for different shapes of population distributions, larger samples needed
- for rules of thumb, use those for 1 -sample t procedures, but replace "sample size" with "sum of sample sizes"
- Is the advice given by a physician during a routine physical exam effective in encouraging patients to quit smoking? A study looked at 114 current smokers whose doctors talked to them during a routine exam about the hazards of smoking and encouraged them to quit smoking. A second group of 96 current smokers who had a routine exam were given no advice regarding smoking. All patients were given a follow-up exam. 11 of the 114 patients (9.6%) who had received the advice reported that they had quite smoking, while 7 of the 96 others (7.3\%) reported that they had quit smoking.

Is this significant evidence that physician advice makes a difference in patients' quitting smoking? We wish to compare two population proportions.

The point estimate of an unknown population proportion

- wish to estimate unknown population parameter p
- proportion of a population that has some outcome
- designate the outcome a "success"
- in first example, population of interest is NYC children requiring special ed
- p is proportion whose mothers had more than 12 years of schooling

Inference for a population proportion

What would happen if we took many different samples and computed \hat{p} from each one?

If we:

- Choose a simple random sample of size n from a large population that contains an unknown population proportion p of "successes"
- Compute the sample proportion of successes

$$
\hat{p}=\frac{\text { number of successes in sample }}{n}
$$

- statistic that estimates p is sample proportion \hat{p}

$$
\begin{aligned}
\hat{p} & =\frac{\text { number of successes in sample }}{\text { number of observations in sample }} \\
& =\frac{5}{45} \\
& =0.111
\end{aligned}
$$

- As the sample size increases, the sampling distribution of \hat{p} becomes approximately normal
- The mean of the sampling distribution is the true p.
- The standard deviation of the sampling distribution is

$$
\sqrt{\frac{p(1-p)}{n}}
$$

How large must n be in order for the normal approximation to the distribution of \hat{p} to be reasonably accurate?

- Rule of thumb: both $n p$ and $n(1-p)$ should equal at least 10 .
Note: Up until about 10 years ago, the recommendation was that both $n p$ and $n(1-p)$ should equal at least 5 . However, the more conservative rule with 10 is now considered safer.

Another consideration: The formula for the standard deviation of \hat{p} is not accurate unless the population is much larger than the sample.

- Rule of thumb: The population must be at least 10 times as large as the sample.

Inference about proportions is still possible when the rules of thumb are not satisfied, but more

- Suppose that in fact 12% of all NYC children requiring special ed had mothers with more than 12 years of schooling.
- The study sampled 45 children.
- What is the probability that at least 8% of such a sample have mothers with more than 12 years of schooling?

The rules of (old) thumb are met, so we'll proceed for now:

- There are at least 10×45 children in NYC who require special ed.
- $n p=45(.12)=5.4$
- $n(1-p)=45(.88)=39.6$

$$
\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{(0.12)(0.88)}{45}}=0.048
$$

elaborate methods are needed.

Inference about p

To do inference about a population proportion p, we use the z statistic that results from standardizing the sample proportion \hat{p} :

$$
z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}
$$

This z statistic has approximately the standard normal distribution with mean 0 and standard deviation 1 as long as the rules of thumb obtain.

Of course we don't know the value of the unknown p, so:

- To test the null hypothesis

$$
H_{0}: p=p_{0}
$$

just replace p by p_{0} in the z statistic and in rule of thumb 2 .

Assumptions for inference about a proportion

- The data are a simple random sample from the population of interest.
- The population is at least 10 times as large as the sample.
- For a test of $H_{0}: p=p_{0}$, the sample size n is large enough that
$-n p_{0} \geq 10$
$-n\left(1-p_{0}\right) \geq 10$
- For a confidence interval, n is large enough that
- the count of the number of successes $n \hat{p} \geq$ 10
- the count of the number of failures $n(1-$ $\hat{p}) \geq 10$
- In a confidence interval for p, we have no specific value to substitute. In large samples, \hat{p} will be close to the true p. So:
- Replace p by \hat{p} in rule of thumb 2 .
- Replace p by \hat{p} to estimate the standard deviation of \hat{p}. This gives the standard error of \hat{p}.

$$
S E=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

20

Example: the study of children requiring special ed

We wish to use the data to compute a c.i. for the proportion of NYC children requiring special ed whose mothers had more than 12 years of schooling. Are the assumptions met?

- What is the population of interest, and is it at least 10 times as large as the sample?
- The counts of "Yes" (5) and "No" (40) responses are both ≥ 10 ?
No! But let's continue just to see how the procedure works. This is a case where we really should use SAS to get the exact results instead of using this normal approximation.

Computing the confidence interval using the normal approximation

Suppose we want a two-sided 99% confidence interval for p. Table A (and previous experience) tells us that the normal critical value $z^{*}=2.58$.

$$
\begin{aligned}
\hat{p} \pm z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} & =0.111 \pm 2.58 \sqrt{\frac{(0.111)(0.889)}{45}} \\
& =0.111 \pm 0.121 \\
& =(0.00,0.232)
\end{aligned}
$$

We are 99% confident that the percent of NYC children requiring special ed whose mothers have at least 12 years of schooling about 0% and 23.2%.

The plus-four confidence interval for p

- previously accepted rules of thumb for sample sizes needed for accuracy of normal-theory confidence intervals for proportions aren't reliable
- confidence level actually may be smaller than claimed - bad!
- quick-and-dirty solution: the plus-four confidence interval:
- add 2 successes and 2 failures to the true counts in your sample
- then use the normal-theory approximation with augmented data
- better solution: use the exact confidence interval calculation in SAS

