22S:105 Statistical Methods and Computing

1

3

Two kinds of two-sample t-tests

Lecture 16 Mar. 25, 2020

Two-sample t-tests

2

So far we have talked about drawing inference about a single population mean μ based on data contained in one sample drawn from that population.

Now we will consider procedures for comparing two *different* population means.

There are different procedures depending on whether the samples are

- \bullet paired
- \bullet independent

Paired samples

- We are interested in the unknown population means μ_1 and μ_2 of two different populations.
- In our sample, each observation drawn from the first population is matched up with an observation drawn from the second population.
- *self-pairing*: two measurements are taken on each subject

Example:

4

- systolic blood pressure (sbp) upon entry into a clinical study
- -sbp after 1 month on treatment

The population means of interest are

- $-\mu_1$ = mean sbp of untreated patients of this type
- $-\mu_2$ = mean sbp of patients of this type after 1 month of treatment with the study regimen
- The question of interest is whether the treatment lowers blood pressure, i.e. is $\mu_2 < \mu_1$?

7

• *matched pairs*: investigator matches each subject in one treatment group with one subject in another treatment group so that members of a pair are as alike as possible

The population means of interest are

- $-\mu_1 = \text{mean response (say sbp at 1 month)}$ of patients receiving treatment 1
- $-\mu_2 =$ mean response of patients receiving treatment 2
- The question of interest is whether $\mu_1 = \mu_2$

Paired t-test

6

To carry out the hypothesis test of interest, we apply one-sample procedures to the *differences* between values measured on members of each pair.

Example:

- We are interested in whether the use of oral contraceptive (OC) drugs affects the level of systolic blood pressure (sbp) in women.
- We identify a group of nonpregnant, premenopausal women aged 16-49 from a prepaid health plan who are not currently OC users and measure their sbp, which we will refer to as baseline sbp.
- We rescreen these women 1 year later to ascertain a subgroup who have remained nonpregnant throughout the year and have be-

come OC users. This subgroup will be the study sample.

- Measure the sbp of the study sample at the follow-up visit.
- We will compare the baseline and follow-up sbps of the women in the study sample.

We will do a two-sided test, because we do not know in advance whether to expect μ_1 (mean sbp in OC users) to be higher or lower than μ_2 (mean sbp in non-users).

 $H_0: \mu_1 = \mu_2$ $H_a: \mu_1 \neq \mu_2$

or equivalently:

 $H_0: \mu_1 - \mu_2 = 0$ $H_a: \mu_1 - \mu_2 \neq 0$

or equivalently:

$$H_0: \delta = 0$$
$$H_a: \delta \neq 0$$

where δ denotes $\mu_1 - \mu_2$.

We will use the *observed differences* between the before and after values observed on each woman as our data to to carry out the hypothesis test regarding δ at the .05 significance level.

```
10
data sbpoc ;
infile '/group/ftp/pub/kcowles/datasets/sbpoc.dat' ;
input sbpnooc sbpoc ;
diff = sbpoc - sbpnooc ;
run ;
proc print ;
run ;
OBS
       SBPNOOC
                  SBPOC
                           DIFF
 1
        115
                  128
                            13
 2
        112
                  115
                             3
 3
                  106
        107
                             -1
```

-2

We will compute the sample mean of the d_i s

$$\bar{d} = \frac{\Sigma_i^n \, d_i}{n}$$

and the sample standard deviation of the d_i s

$$s_d = \sqrt{\frac{\Sigma_i^n (d_i - \bar{d})^2}{n - 1}}$$

proc means data = sbpoc ;
var diff ;
run ;

Analysis Variable : DIFF

N	Mean	Std Dev	Minimum	Maximum
10	4.800	4.5655716	-2.0000	13.0000

Then the t statistic is

$$t = \frac{\bar{d} - \delta_0}{s_d / \sqrt{n}}$$

From our data,

$$\bar{d} = 4.80$$

 $s_d = 4.566$
 $t = \frac{4.80}{4.566/\sqrt{10}}$
 $= 3.32$

Using Table c, we see that the value that cuts off the upper .025 area under a t distribution with 9 degrees of freedom is 2.262.

Because 3.32 > 2.262 (our result is more extreme than the required cutoff), we can reject the null hypothesis at the .05 level. We could use SAS to find the exact p-value, which is 0.0089.

Note that the one-sample t-test in **proc** univariate by default tests the null hypothesis that $\mu = 0$.

```
proc univariate data = sbpoc ;
var diff ;
run ;
```

The UNIVARIATE Procedure Variable: temp

Tests for Location: Mu0=0

Test	-Statistic-		p Value	
Student's t	t	3.324651	Pr > t	0.0089
Sign	M	3	Pr >= M	0.1094
Signed Rank	S	24	Pr >= S	0.0117