STAT:2010 Statistical Methods and Computing

1

3

2

4

Normal Distributions

Lecture 6 Feb. 12, 2020

Kate Cowles 374 SH, 335-0727 kate-cowles@uiowa.edu Using density curves to describe the distribution of values of a quantitative variable

- Imagine the heights of 100,000 men who completed physical exams as part of a national health survey.
- We might make relative frequency histograms of these height data using successively smaller-width intervals.

Density curve – a curve that describes the overall pattern of a distribution

- total area under a probability density curve is 1.0
- the curve never drops below the horizontal axis

7

Measures of center and spread can be used to describe density curves.

- To distinguish between these measures in the idealized curve vs. in actual sample data, we use different symbols:
 - $-\mu$ for the *mean* of a density curve
 - $-\sigma$ for the *standard deviation* of a density curve

Normal distributions

6

8

- characterized by a symmetric, smooth bell shape
- also called "Gaussian distributions" (after Karl Gauss)
- The normal distribution is a *mathematical model* that provides a good representation of the values of many kinds of real quantitative variables
 - Analogy: No room is *perfectly* rectangular in shape, but the geometric model of a rectangle is good enough to enable you to measure the room and buy the right amount of carpet!

Some characteristics of the normal distribution

- 1. Normal distribution is symmetric
 - (a) The proportion of the values of a normal random variable that are less than $\mu - z \sigma$ is equal to the proportion of the values that that are greater than $\mu + z \sigma$
 - (b) The proportion of the values of a normal random variable that are less than $\mu + z \sigma$ is equal to the proportion of the values that that are greater than $\mu - z \sigma$
 - (c) The mean is equal to the median

- 2. There are lots of different normal distributions, defined by different values of μ and σ . The values of μ and σ completely determine the normal distribution. When μ and σ are known, the proportion of population values in any interval can be evaluated.
- 3. If σ remains fixed but μ changes, the density of the random variable remains the same *shape*, but its location changes.
- 4. If μ remains fixed but σ changes, the density of the normal random variable has the same *location* but its shape changes.

The 68-95-99.7 Rule

In the normal distribution with mean μ and standard deviation σ

- 68% of the observations fall within σ of the mean μ
- \bullet 95% of the observations fall within 2 σ of the mean μ
- \bullet 99.7% of the observations fall within 3 σ of the mean μ

Example of the 68-95-99.7 rule

The distribution of systolic blood pressure in 18- to 74-year-old males in the US is approximately normal with mean $\mu = 129$ mm of mercury and standard deviation $\sigma = 20$ mm of mercury.

11

The standard normal distribution

- The *standard normal distribution* is the normal distribution with
 - $-\mu = 0$
 - $-\sigma = 1$
- The name Z is often used for a variable that has the standard normal distribution.

For this particular normal distribution,

12

10

9

Using tables of the standard normal distribution

- What if we wanted to know what proportion of values of a standard normal variable Z were less than some particular value?
- Suppose we live in a particular Scandinavian city, where temperature is measured in Centigrade. Weather records kept for many years indicate that the temperature at 11:00 a.m. on Jan. 28 follows a standard normal distribution.

14

- We want to know in what proportion of years we can expect the temperature at this time to be less than or equal to -1.5 C.
- We could use Table A in your textbook.
 - The proportion is 0.0668.
- Similarly, the proportion of years we can expect the temperature at this time to be ≤ -1.75 C is .0401.

What if we instead wanted to know the proportion of years with temperature ≥ -1.75 ? (Remember that the total area under the normal curve is 1.0.)

What if we instead wanted to know the proportion of years with temperature $\geq +1.75$? (Remember symmetry of the normal distribution.)

15

Standardizing values from other normal distributions

All normal distributions would be the same if we measured in units of size σ around the mean μ as center!

If x is an observation from a distribution that has mean μ and standard deviation σ , the *standardized value* of x is

$$z = \frac{x - \mu}{\sigma}$$

Standardized values are often called *z-scores*.

16

z-scores tell how many standard deviations the original observation is away from the mean of the distribution, and in which direction.

- If the z-score is positive, the original observation was larger than the mean μ.
- If the z-score is negative, the original observation was smaller than μ .

Example of z-scores

Recall that the distribution of systolic blood pressure of men aged 18-74 is approximately normal with $\mu = 129$ mm Hg and $\sigma = 20$ mm Hg. The standardized height is

$$z = \frac{sbp - 129}{20}$$

If a man has sbp = 157 mm Hg, his standardized sbp is

$$z = \frac{157 - 129}{20} = 1.4$$

If a man has sbp = 93 mm Hg, his standardized sbp is

$$z = \frac{93 - 129}{20} = -1.8$$

18

Using the standard normal distribution to compute proportions for other normal distributions

Let's use the symbol X for a variable representing the systolic blood pressure of men. What proportion of men have sbp < 100?

If a man has sbp = 100, his standardized sbp is

$$z = \frac{100 - 129}{20} = -1.45$$

According to Table A, the proportion of values of a standard normal variable that are less than or equal to -1.45 is 0.0735.

This proportion is the same as the proportion of X values that will be less than 100.

19

17

General procedure for finding normal proportions

- 1. State the problem in terms of the observed variable X.
- 2. Standardize the value of interest x to restate the problem in terms of a standard normal variable Z. You may then wish to draw a picture to show the area under the standard normal curve.
- 3. Find the required area under the standard normal curve, using Table A and remembering
 - The total area under the curve is 1.0.
 - The normal distribution is symmetric.

20

Standardizing values from other normal distributions

All normal distributions would be the same if we measured in units of size σ around the mean μ as center!

If x is an observation from a distribution that has mean μ and standard deviation σ , the *standardized value* of x is

$$z = \frac{x - \mu}{\sigma}$$

Standardized values are often called *z*-scores.

21

z-scores tell how many standard deviations the original observation is away from the mean of the distribution, and in which direction.

- If the z-score is positive, the original observation was larger than the mean μ .
- If the z-score is negative, the original observation was smaller than μ .

22

Example of z-scores

Recall that the distribution of systolic blood pressure of men aged 18-74 is approximately normal with $\mu = 129$ mm Hg and $\sigma = 20$ mm Hg. The standardized height is

$$z = \frac{sbp - 129}{20}$$

If a man has sbp = 157 mm Hg, his standardized sbp is

$$z = \frac{157 - 129}{20} = 1.4$$

If a man has sbp = 93 mm Hg, his standardized sbp is

$$z = \frac{93 - 129}{20} = -1.8$$

23

Using the standard normal distribution to compute proportions for other normal distributions

Let's use the symbol X for a variable representing the systolic blood pressure of men. What proportion of men have sbp < 100?

If a man has sbp = 100, his standardized sbp is

$$z = \frac{100 - 129}{20} = -1.45$$

According to the normal table, the proportion of values of a standard normal variable that are less than or equal to -1.45 is 0.0735.

This proportion is the same as the proportion of X values that will be less than 100.

24

General procedure for finding normal proportions

- 1. State the problem in terms of the observed variable X.
- 2. Standardize the value of interest x to restate the problem in terms of a standard normal variable Z. You may then wish to draw a picture to show the area under the standard normal curve.
- 3. Find the required area under the standard normal curve, using Table A and remembering
 - The total area under the curve is 1.0.
 - The normal distribution is symmetric.

Example

For women in the US between 18 and 74 years of age, diastolic blood pressure follows a normal distribution with mean is $\mu = 77$ mm Hg and standard deviation $\sigma = 11.6$ mm Hg.

We want to know the proportion of US women in this age group who have dbp between 60 and 100. ²⁶ 1. Call the variable representing a woman's dbp X, and call the specific value for an individual woman x. X has a normal distribution with $\mu = 77$ and $\sigma = 11.6$. We want to compute to compute the proportion of women such that

$$60 \le X \le 100$$

2. Standardize x to produce z, a draw from a standard normal distribution.

$$60 \leq X \leq 100$$

$$\frac{60 - 77}{11.6} \leq \frac{X - 77}{11.6} \leq \frac{100 - 77}{11.6}$$

$$-1.47 \leq Z \leq 1.98$$

3. Use Table A to find

- the proportion of Z values ≤ -1.47 , which = .0708
- and the proportion of Z values ≤ 1.98 , which = .9761.
- 4. So the percent of women with diastolic blood pressure between 60 and 100 is about 97.61% 7.08% = 90.5%.

28

27

Normal calculations going the other direction

What is the value of dbp such that 10% of women have values greater than or equal to it?

 Use Table A to find the z-score such that 10% of a standard normal population would have values greater than or equal to it. This is the same value such that 90% of values are less than or equal to it, namely 1.28.

2. Convert
$$z = 1.28$$
 into x .

$$\frac{x - \mu}{\sigma} = z$$

$$\frac{x - 77}{11.6} = 1.28$$

$$x = 77 + (11.6)(1.28)$$

$$x = 91.85$$

General formula for *un*standardizing a z-score:

$$x = \mu + z\sigma$$