
$3 \quad 4$

The Challenger:

 How understanding of statistical methods might have prevented a tragedyReferences:

Dalal, SR, Fowlkes, EB, Hoadley, B. (1989) "Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure." Journal of the American Statistical Association, 84, 945-957.

Tufte, Edward R. (1997) "The Decision to Launch the Space Shuttle Challenger," in Visual and Statistical Thinking: Displays of Evidence for Making Decisions, Graphics Press

On $1 / 28 / 86$ space shuttle Challenger exploded during launch

- 7 astronauts killed
- reason: gas leak through a joint that should have been sealed by two rubber O-rings
- O-rings had lost resiliency due to cold temperature

On the previous day, extensive discussions of whether or not it would be safe to launch

- predicted temperature for launch time: $26-29^{\circ}$
- no shuttle had ever been launched at temperature lower than 53°
- engineers who designed rocket faxed to NASA a recommendation not to launch due to risk of O-ring failure at low temperatures
- NASA officials pointed out weaknesses of engineers' evidence
- after lengthy discussion, managers of rocket- making company changed their minds and recommended launch

The engineers' evidence

- history of serious but non-catastrophic O-ring damage during previous cool-weather launches
- physics of resiliency of rubber
- experimental data

The engineers' plot of data from previous shuttle launches: joint temperature vs. number of O-rings having some temperature-related problems

What was missing from the engineers' argument?

- quantification of the relationship between joint temperature and O-ring failure
- prediction of the probability of O-ring failure at 29°, with assessment of degree of uncertainty
an appropriate statistical method: logistic regression
- Dalal et al. carried out such an analysis (after the fact) using data from the 23 shuttle launches prior to the Challenger
- found strong statistical evidence of a temperature effect on O-rings
- we will analyze these data later in the semester

Subjects, observations, and variables

In statistical studies, we generally choose a set of individuals or subjects on whom data is collected.
We usually are interested in collecting a number of different kinds of information to describe each subject.

A variable is a particular characteristic that may take on different values for different subjects. For example,

- age

- gender
- diagnosis
are three variables that might be included in a study of length of hospital stays of hospital patients.

A plot showing data from all 23 previous launches, including those in which no O-rings were damaged

Figure 1. Joint Temperature Versus Number of O-Rings Having Some Thermal Distress Identified by Flight Number. Panel b includes flights with no incidents.

12
For analysis by a computer, a set of data collected for a study is often organized as a table with a row for each subject and a column for each variable.

Pat id age sex diagnosis
10125 F hepatitis A
10238 F cirrhosis
10376 M hepatitis C

Each row in such a table, corresponding to the data for a single subject, is called an observation.

Types of variables

- Qualitative (textbook calls this "categorical")

- Nominal

* values fall into unordered categories
* numbers may be used to represent categories, but they are just labels
* example: variable called "occupational area" coded as
- $1=$ education
- $2=$ business
- $3=$ service
- $4=$ industry
- etc., etc.
* special case: binary data, which can take on only 2 possible values
- Ordinal
* data representing ordered categories
* example: variable called "prognosis" taking on possible values "poor," "fair," "good"

What data type is each of the following?

- a variable defined for each pre-Challenger shuttle launch as the answer to the question "Were any primary Orings damaged during launch (yes/no)?"
- a variable defined for each pre-Challenger shuttle launch as the total number of primary O-rings that were damaged (out of the 6 primary O-rings in a shuttle)
- a variable defined as outdoor temperature in degrees F at launch time of each shuttle
- Quantitative

- Discrete

* both order and magnitude are important
* numbers represent measurable quantities
* possible values are restricted, often to be integers
* example: count of number of homicides in Johnson County in 1998

- Continuous

* numbers represent measurable quantities and are not restricted to a set of specified values
* examples: temperature, blood pressure, annual profit
* Special case: censored data
- continuous data in which values for some subjects are not observable
- some values are known only to be larger (or smaller) than some observed value
- example: time-to-failure data

16

Exploratory data analysis

- initial examination to discover main features of data
- should begin with examining each variable one at a time
- may proceed to examining relationships between variables
- should begin with graphs
- may continue with numerical summaries

The distribution of a variables tells what values it takes and how frequently it takes them.

Describing binary, nominal, and ordinal data

- tables of frequencies and percents
- bar charts (also called bar graphs)
- pie charts
frequency distribution for nominal or ordinal data
- a set of classes or categories along with numerical counts of the number of members of each class

19
6. fat: grams of fat
7. sodium: milligrams of sodium
8. fiber: grams of dietary fiber
9. carbo: grams of complex carbohydrates
10. sugars: grams of sugars
11. potass: milligrams of potassium
12. vitamins: vitamins and minerals $-0,25$, or 100 , indicating the typical percentage of FDA recommended
13 . shelf: display shelf (1,2 , or 3 , counting from the floor)
14. weight: weight in ounces of one serving
15. cups: number of cups in one serving
16. rating: a rating of the cereals

18
Example: Study of nutrition in breakfast cereals
Abstract:
This datafile contains nutritional information and grocery shelf location for 77 breakfast cereals. Data was obtained from the Data and Story Library http://lib.stat.cmu.edu/DAS

Variable Names

1. Name: Name of cereal
2. mfr: Manufacturer of cereal where $\mathrm{A}=$ American Home Food Products; $\mathrm{G}=$ General Mills; $\mathrm{K}=$ Kelloggs; $\mathrm{N}=$ Nabisco; $\mathrm{P}=$ Post; $\mathrm{Q}=$ Quaker Oats; R $=$ Ralston Purina
3. type: cold or hot
4. calories: calories per serving
5. protein: grams of protein

20

A frequency distribution may be tabulated for a quantitative variable if the range of possible values for the variable is first divided into non-overlapping intervals.

sodium	Frequency	Percent	Cumulative Frequency	Cumulative Percent
$0-<80$	14	18.18	14	18.18
80-<160	18	23.38	32	41.56
160-<240	33	42.86	65	84.42
240-320	12	15.58	77	100.00

Relative frequency

- The relative frequency for a class is the percentage of the total number of observations that are in that class.
- It is computed as

$$
\frac{\text { number in class }}{\text { total number of observations }} \times 100
$$

- Relative frequencies are particularly useful for comparing sets of data with different total numbers of observations
- SAS just calls this "Percent"

24

Cumulative relative frequency

- Cumulative relative frequency for a category of an ordinal variable is the percentage of the total number of observations that have a value less than or equal to the category value.
- Cumulative relative frequency for an interval of a continuous variable is the percentage of the total number of observations that have a value less than or equal to the upper limit of the interval.
- SAS calls this "cumulative percent."

sodium	Frequency	The FREQ Procedure		
		Percent	Cumulative Frequency	Cumulative Percent
80-<160	4	18.18	4	18.18
160-<240	13	59.09	17	77.27
240-320	5	22.73	22	100.00
mfr=Kelloggs				
The FREQ Procedure				
sodium	Frequency	Percent	Cumulative Frequency	Cumulative Percent
$0-<80$	3	13.04	3	13.04
80-<160	6	26.09	9	39.13
160-<240	9	39.13	18	78.26
240-320	5	21.74	23	100.00

