1. A large population contains an unknown proportion (p) of black marbles. A sample of n=200 drawn scientifically from the population contained x=40 black marbles. Which picture shows the posterior distribution of the population proportion p? Justify your answer. A. Because sep = sqrt(.2*.8/200) = .028

- 2. An investigator wants to determine the proportion (p) of retirees who chose not to fill a prescription last year because it was too expensive. In a scientific sample of n=525, x=98 respondents said that they had done this. State in words the posterior distribution of p. Obtain a 95% credible interval for p. What (approximately) is the probability that p exceeds .25 ? 95% CI: .153 to .220. $P(p > .25 \mid data) = (Area above z = 3.72) = .0000$.
- **3.** A prospective study recruited 10,000 smokers and 10,000 non-smokers aged 30 to 39 and followed them for 20 years. The cases of throat cancer are shown in this table.

	no Cancer	Cancer	Relative	
			Frequency(%)	
Smokers	9800	200	2.0%	
Non-Smokers	9950	50	0.5%	

What is the estimated relative risk of throat cancer for smokers vs. non-smokers? $\widehat{RR} = 2.0/.5 = 4.0$

4. Two hundred forty dieters volunteered for a study of chromium picolinate, a fat-reducing dietary supplement. They were randomly assigned to receive placebo or chromium picolinate. One side effect is reduction in iron, a key component of hemoglobin. Here are the data on percents of subjects with lower iron after 8 weeks of treatment.

		Chromium	
_	Placebo	Picolinate	
n	120	120	
% with reduced iron	16%	29%	
sep	0.033	0.041	
$\hat{\Delta}$	X	0.130	
sed		0.053	_
95% CI	0.026	0.234	
	_		

- What are the mean difference and the standard error of the difference (SED) between the percents?
- Obtain a 95% credible interval for the difference.
- Is the difference statistically significant? Yes.
- 5. In a study to compare osteoporosis rates for men and women over the age of 70 it was observed that 6.9% of 25000 men and 67% of 27000 women had osteoporosis. The difference is 60.1 percentage points and the credible interval is 59.4 to 60.7. Is the difference significant? Yes, zero is ruled out.

6. In a randomized experiment, 400 kids brushed with baking powder and 400 brushed with toothpaste. 52 of the baking powder kids (13%) got cavities and 40 of the toothpaste kids (10%) got cavities. The difference is 3 percentage points. Obtain a 95% credible interval for the true difference. Is the difference significant?

$$\hat{\Delta}$$
 = .030, SED = .023 95% CI: -.0142 to .0742 Not Significant.

7. An economic survey of a sample of 225 US wage earners showed an average of \bar{x} =\$23.50 was spent per week eating out. The standard deviation of the sample was reported to be s = \$12.00. State the posterior distribution and obtain a 95% credible interval on the mean (μ) of all wage earners.

The posterior distribution is approximately normal with $\mu = \overline{x}$ =\$23.50, and σ = sem = 12/sqrt(225) = .80. The approximate 95% CI is 23.5 + 1.96x.80; i.e. from 21.9 to 25.1.

8. A random roadside survey of 481 males and 138 females found that 77 males and 16 females had detectable amounts of alcohol by a breathalyzer test. Is the difference significant?

n	481	138	
X	77	16	
phat	0.160	0.116	
sep	0.017	0.027	
Dhat	0.04	14	
sed	0.03	32	
95% CI	-0.019	0.107	Not Significant

9. R. M. Lyle, reported a study in which healthy men aged 45 to 65 received either a calcium supplement or a placebo for 12 weeks. He reported, "The calcium group had significantly lower blood pressure compared with the placebo group." (Note: blood pressure is measured in millimeters of mercury, abbreviated mm Hg.)

Which of the following sets of data is consistent with Lyle's statement? Why?

- A: Difference = 10 mm Hg with 95% credible interval 2.4 to 17.6. (Consistent rules out 0.)
- B: Difference = 20 mm Hg with 95% credible interval -5 to 45.
- 10. A sample drawn from a box of numbers with a fairly normal distribution has sample mean $\bar{x} = 16.5$ and sample standard deviation s = 8.8. State the approximate posterior distribution of the box average (μ_{box})
- a) if n=400 b) if n=36
 - a) Approximately normal with μ = 16.5 and σ = 0.44.
 - b) Approximately t(35) with μ = 16.5 and σ = 1.47.
- 11. An unknown quantity, which we will call η , has an approximately t(9) distribution with $\mu = 3.1$ and $\sigma = 0.6$ Find the 95% credible interval for the unknown quantity.

95% Credible interval: μ + 2.26· σ ; i.e. from 1.74 to 4.46

12. One hundred male alcoholics suffering from secondary hypertension participated in a study to determine the efficacy of a new antihypertensive agent. The men were assigned at random to either the control group or the treatment group. Men in the control group received a placebo. Statistics for arterial pressure at 30 days post treatment for the 97 subjects who completed the study are shown in this Table.

Hypertension Study	Placebo	Treatment
n	22	23
mean (\bar{x})	127.1	99.0
standard deviation (s)	24.08	8.81

State the approximate posterior distribution of the difference ($\Delta = \mu_{Pbo} - \mu_{Trt}$).

The posterior distribution is: Approximately t(26.3) with μ = 28.1 and σ = 5.453

95% Credible interval: **16.9** to **39.3**

	A	В	С
1	n	22	23
2	xbar	127.1	99
3	s	24.08	8.81
4	mu=xbar	127.1	99
5	sigma=sem	5.134	1.837
6	df=n-1	21	22
7	mu=deltaHat=b5-c5	28.1	
8	sigma=sqrt(b6^2+c6^2)	5.453	
9	$df = B9^4/(B6^4/B7+C6^4/C7)$	26.3	
10	t(26) - percentile	2.05	
11	95% CI	16.9	39.3

$$sem = \frac{s}{\sqrt{n}}$$

$$sep = \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}}$$

$$sed = \sqrt{(se_1)^2 + (se_2)^2}$$

$$sem = \frac{1}{\sqrt{n}}$$

$$sep = \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}}$$

$$sed = \sqrt{(se_1)^2 + (se_2)^2}$$

$$Satterthwaite's df = \frac{(sed)^4}{\frac{(sem_1)^4}{df_1} + \frac{(sem_2)^4}{df_2}}$$