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where k1,k2,....kn are any scalars.
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£ matrix of this form is called a

Vandermonde matrix, after Alexandre Theophile Vandermonde (1735-1796¢).

Let us find the determinant of A.

Observe that
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Note that the effect of postmultiplying A by T is to add, to the jth
column of A, a scalar multiple of the preceding column (j = 2,...,n),
thus creating a matrix whose last row is (1,0,0,...,0).

Observe also that B is expressible as

B = DC (2)
and
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Thus, B is expressible as a product of a dizgonal matrix and of the (a-1)
x (n-1) submatrix of A obtained by deleting the last row and column of
A. MNote that this submatrix (i.e., the matrix C) is an (n-1) x (n-1)
Vandermonde matrix.

Making use of the decompositions (1) and (2) and of basic properties
of determinants, we find that

|al = |al[T| = {aT]
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Formula (3) serves to relate the determinant of an n x = Vandermonde
matrix to that of an (n-1) x (n-1) Vanderronrnde matrix, .agd {8 reoeates
application allows us to evaluate the determinant of any Vandermon:te

matrix.



Clearly, when n = 2,

Al =k, -k, ;
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when n = 3
|A| « (k3-k1)(k3-k2)(!<2-k1) ;

and. in general,
s e (k2-—k1 )

as can be formally verified by a simple mathematical induction argument
based on the relationship (3).

It is evident from formula (4) that |A| # O 1f and only if kg # Ky
for § >1{ = 1,.s.sn. Thus, A is nonsingular if and only if the n

scalars k,. kz. evas kn are distinct,



