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Abstract

The cumulative link model provides a flexible framework for regression anal-
ysis with ordinal response data. While the likelihood function of the cu-
mulative link model generally admits a closed-form expression, maximum
likelihood estimation as commonly implemented via iteratively re-weighted
least squares and Fisher scoring often fails to converge due to the strong non-
linearity of the likelihood function. Empirical study shows that the failure
rate of convergence can be substantial and generally increases with the extent
of multicollinearity of the covariates. We develop minorization-maximization
(MM) algorithms for maximum likelihood estimation of the cumulative link
model, with link-function specific minorization function. The proposed ap-
proach inherits the strong advantage of the MM algorithm in ensuring that
the likelihood always increases along the parametric iterates, thereby guar-
anteeing that the iterative MM scheme converges to the global maximizer,
thanks to the concavity of the likelihood function for the cumulative link
model, with commonly used links. Simulation studies show that the proposed
approach generally yields more accurate estimates as compared to maximum
likelihood estimates based on iteratively re-weighted least squares and Fisher
scoring. The proposed MM algorithms can be sped up with monotonic over-
relaxation. An empirical study shows that suitable monotone over-relaxation
can significantly cut computation time.
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1. Introduction

Ordinal response variables abound in scientific and quantitative analyses,
whose outcomes comprise a few categorical values that admit a natural or-
dering, so that their values are often represented by non-negative integers,
for instance, pain score (0-10) or disease severity (0-3) in medical research.
Ordinal variables play an important role where precise measurement is not
always available. A popular model for regression analysis with ordinal re-
sponse is the cumulative link model. The cumulative link model (McCullagh,
1980; Anderson and Philips, 1981; Agresti, 2002) assumes that the cumula-
tive probability of the ordinal response is linked to some linear predictor with
constant regression coefficients but a variable intercept term that preserves
the ordering of the ordinal category; the link function is generally taken as
the inverse function of some fixed cumulative distribution function, e.g., that
of the standard normal distribution. The cumulative link model is known
as the proportional odds model or the ordered logit model in the case of a
logistic link (McCullagh, 1980; Greene and Hensher, 2010), the ordered pro-
bit model in the case of a probit link (Aitchison and Silvey, 1957) and the
proportional hazards model in the case of a complementary log-log link.

A useful alternative representation of the cumulative link model stipulates
that the ordinal response results from quantization of a latent continuous
response variable driven by a linear regression model. This alternative rep-
resentation renders it natural to consider link functions other than the logit
and probit link, and opens up alternative approaches to drawing inference,
e.g., model diagnostics with a cumulative link model. For instance, the er-
ror distribution in the latent regression model may be the standard Cauchy
distribution or the standard Gumbel distribution. The standard Cauchy
distribution is symmetric but, compared with the normal distribution, it
has heavier tails. The standard Gumbel distribution (for modeling minima,
which is a sub-model of the generalized extreme value distribution, with zero
shape parameter, location at zero and unit scale) is an asymmetric distribu-
tion, which corresponds to using the complementary log-log link (Simonoff,
2013). As alluded to before, the cumulative link model with a complemen-
tary log-log link is also known as the proportional hazards model, which is
commonly used in survival analysis. Interestingly, if the error distribution
is the standard Gumbel distribution for modeling maxima, it corresponds to
the log-log link function. The log-log link is then equivalent to the comple-
mentary log-log link with the the order of the categories reversed; thus, the
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log-log link is generally omitted in the theoretical development below.
Other approaches for analyzing ordinal responses include the adjacent-

categories logits and continuation-ratio logits (Agresti, 2002). We focus on
the cumulative link model for it provides a familiar regression framework
that is easy to interpret.

While the likelihood function of the cumulative link model has a closed-
form solution for the aforementioned error distributions, its strong nonlin-
earity renders direct optimization of the likelihood to sometimes fail with
substantial failure rate which tends to increase with the extent of collinearity
in the covariates; see Section 3. To mitigate this problem, we propose spe-
cific minorization-maximization (MM) algorithms for maximum likelihood
estimation of a cumulative link model for each of the preceding four error
distributions. Our approach leverages on the latent variable representation
of the cumulative link model, in which case, in principle, the expectation-
maximization (EM) algorithm may be applied to derive an MM algorithm
for maximum likelihood estimation. Specifically, a minorization function is
naturally constructed in the E-step. Unfortunately, except for the probit
link, the minorization function constructed via the EM algorithm does not
admit a tractable solution. We solve the problem by deriving a link-specific
minorization function to the minorization function constructed in the E-step,
for Gumbel link and the Cauchy link. In the case of the complementary log-
log link, we develop a local minorization function with a tractable maximizer
within the domain of minorization; see Section 2 for details. An important
property of the proposed MM algorithms is that the iterative estimation al-
gorithms always increase the likelihood. We report some simulation results in
Section 3, illustrating that the proposed algorithms generally result in more
accurate estimates than the commonly used approach of maximum likeli-
hood estimation via Fisher scoring and iteratively re-weighted least squares.
In Section 4 we discuss a simple approach to accelerate the proposed MM
methods to fit cumulative link models. All theoretical derivations are col-
lected in Section 5. We conclude in Section 6.

2. Cumulative Link Model

The cumulative link model can be formulated by considering a continuous
latent variable y∗. The observed ordinal response variable y, which takes
values in {0, 1, 2, · · · , q}, is observed in category p if and only if τp−1 < y∗i ≤
τp, where p = 0, . . . , q and the fixed but unknown threshold parameters are
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such that −∞ = τ−1 < τ0 < τ1 < . . . < τq−1 < τq = ∞. Consider a linear
model for the underlying latent variable y∗, for i = 1, . . . , n,

y∗i =
d∑

j=1

βjXij + εi, εi ∼ F, (1)

where the Xs are covariates, {βj, j = 1, . . . , d} is a vector of unknown pa-
rameter to be estimated, the εs are independent and identically distributed,
continuous random variables with known cumulative distribution F and f
the corresponding probability density function (pdf); n is the sample size.
Without loss of generality, all covariates are standardized. Consequently,

P (yi = p) = P (τp−1 < y∗i ≤ τp) = F

(
τp −

d∑
j=1

βjXij

)
−F

(
τp−1 −

d∑
j=1

βjXij

)
.

(2)
Naturally, F (·) and f(·) vary with the specific error distribution assumption.
Let F−1 denote the inverse of F . Then,

F−1 {P (y ≤ p | X)} = τp −
d∑

j=1

βjXij, (3)

which links the cumulative probabilities to the linear predictors, thence the
model is known as the cumulative link model.

Denote the vector of the observed responses by y = (y1, · · · , yn)⊤, and
the vector of corresponding latent variables y∗ = (y∗1, . . . , y

∗
n)

⊤. Let θ =
(β⊤, τ⊤)⊤. Conditional on the covaraites, the log-likelihood for the cumula-
tive link model is given by

ℓ(θ|y) =
n∑

i=1

q∑
p=0

1(yi = p) log
{
F (τp − x⊤

i β)− F (τp−1 − x⊤
i β)

}
, (4)

where 1(·) is an indicator function of the enclosed event and we have sup-
pressed X’s from the notation ℓ(θ|y) and the like, for simplicity. Below, we
sometimes write ℓ(θ) for ℓ(θ|y). Burridge (1981) and Pratt (1981) showed
that ℓ(θ|y) is a concave function of θ = (β, τ ) for the cumulative link model
with the logit, probit and complementary log-log links, hence the optimiza-
tion problem can be solved by searching a local maximizer. The concavity
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result does not extend to the cumulative link model with a Cauchy link.
Maximum likelihood estimation with the cumulative link model is generally
implemented by iteratively re-weighted least squares and Fisher scoring, as
implemented in the polr function in the statistical computing software R
(R Core Team, 2022; Venables and Ripley, 2002) As mentioned earlier, ML
estimation via iteratively re-weighted least squares and Fisher scoring may
fail, since the initial values may not be sufficiently close to the true value,
see Section 3.

Below, we propose minorization-maximization (MM) algorithms (Hunter
and Lange, 2004) to do maximum likelihood estimation of the cumulative
link model, which is link specific for four commonly used links. An MM al-
gorithm is an iterative method for obtaining maximum likelihood estimates,
when the objective function (here the observed-data log-likelihood) is diffi-
cult to optimize directly. Each iteration of the MM algorithm comprises two
steps, namely, the minorization step and the maximization step. The idea
of an MM algorithm is to first create a surrogate function that minorizes
the objective function and then maximize the surrogate function, which in-
creases the objective function; the iterations are repeated until convergence.
Following Hunter and Lange (2004), a function Q(θ|θ(m)) is said to minorize
ℓ(θ) at the point θ(m), if

Q(θ|θ(m)) ≤ ℓ(θ) for all θ,

Q(θ(m)|θ(m)) = ℓ(θ(m)).

That is, the function Q(θ|θ(m)) always lies below ℓ(θ) while it coincides
with ℓ(θ) at θ(m). The MM algorithm enjoys the property of increasing the
objective function value along the iterates because

ℓ(θ(m+1)) ≥ Q(θ(m+1) | θ(m)) ≥ Q(θ(m) | θ(m)) = ℓ(θ(m)).

2.1. Cumulative logit model

The most commonly used approach for handling ordered categorical re-
sponses is the cumulative logit model, often known as the proportional odds
model. This model specifies a logit link:

logit {P (Y ≤ p | X)} = log

{
P (y ≤ p | X)

1− P (y ≤ p | X)

}
= τp−

d∑
i=1

βjXj, p = 0, 1, . . . q.

(5)
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It assumes that the cumulative logit lines are parallel as they share the same
β but different intercepts τp per response value.

Anderson and Philips (1981) proposed to view this model using an un-
derlying (latent) continuous response variable y∗. For the cumulative logit
model, the error ε in (1) follows the standard logistic distribution. The shape
of the logistic distribution is similar to that of the normal distribution but
with heavier tails.

The celebrated expectation-maximization (EM) algorithm is a special
case of the more general MM algorithm (Dempster et al., 1977; Zhou and
Zhang, 2012). The E-step of the EM algorithm provides a general recipe for
constructing a minorization function, which starts with the complete-data
log-likelihood for the latent response y∗:

ℓ∗(β) = ℓ∗(β|y∗) =
n∑

i=1

log f(y∗i − x⊤
i β)

=
n∑

i=1

[
−y∗i + x⊤

i β − 2 log
{
1 + exp(−y∗i + x⊤

i β)
}]

.(6)

Then, a minorization function is obtained by taking the conditional expec-
tation of the complete-data log-likelihood given the observed data and the
current parametric iterate. Since the errors follow the logistic distribution,
taking expectation of the complete-data log-likelihood does not yield a closed-
form solution, unlike the case of normal error distribution. Hence, we shall
develop a minoziation-maximization (MM) algorithm by further minorizing
the function E{ℓ∗(β)|y,θ(k)}.

Let β(0) and τ (0) be the initial values for the unknown parameters β and
τ . For k = 0, 1, 2, . . . , the MM algorithm proceeds as follows:

� Minorization step: Compute a minorization function Q(β|θ(k)) of the
observed-data log-likelihood ℓ(β, τ (k)|y).

� Maximization step: Set β(k+1) to be the argument maximizing Q(·|θ(k))
and set τ (k+1) to be the argument maximizing ℓ(β(k+1), τ |y).

The iteration alternates between the two M-steps, until some convergence
criterion is met.

For the minorization step, the minorization function is obtained by apply-
ing a second-order Taylor expansion to the complete-data log-likelihood (6),
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and taking conditional expectation given the observed data and the current
parameter estimates. By the mean value theorem, there exists a β̃ between
β and β(k) such that

E
{
ℓ∗(β)|y,θ(k)

}
= E

{
ℓ∗(β(k))|y,θ(k))

}
+ (β − β(k))⊤E

{
∂ℓ∗(β(k))

∂β

∣∣∣∣∣y∗,θ(k)

}
+

1

2
(β − β(k))⊤E

{
∂2ℓ∗(β̃)

∂β∂β⊤

∣∣∣∣∣y∗,θ(k)

}
(β − β(k)).

Writing pi for 1/{1+exp(−y∗i +x⊤
i β)}, the first derivative and Hessian matrix

of ℓ∗(β) are given as belows:

∂ℓ∗(β)

∂β
=

n∑
i=1

(2pi − 1)xi

∂2ℓ∗(β)

∂β∂β⊤ = −
n∑

i=1

2pi(1− p1)xix
⊤
i

≥ −1

2

n∑
i=1

xix
⊤
i ,

because pi(1− pi) is bounded above by 1
4
. Thus,

E
{
ℓ∗(β)|y,θ(k)

}
≥ E

{
ℓ∗(β(k))|y,θ(k)

}
+ (β − β(k))⊤E

{
∂ℓ∗(β(k))

∂β

∣∣∣∣∣y,θ(k)

}
−

1

4
(β − β(k))⊤

n∑
i=1

xix
⊤
i (β − β(k)). (7)

The right hand side of the preceding inequality is a minorization function of
ℓ(β, τ (k)|y) around β(k), which is denoted as Q(β|θ(k)).

The maximization step requires finding β(k+1) and τ (k+1) by maximizing
Q(β|θ(k)) and the observed-data log-likelihood ℓ(β(k+1), τ |y) respectively.
Taking partial derivative of Q(β|θ(k)), the quadratic function is maximized
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at

β(k+1) = β(k) + 2

(
n∑

i=1

xix
⊤
i

)−1

E

{
∂ℓ∗(β(k))

∂β

∣∣∣∣∣y,θ(k)

}

= β(k) + 2

(
n∑

i=1

xix
⊤
i

)−1 n∑
i=1

[
E

{
2

1 + exp(−y∗i + x⊤
i β)

∣∣∣∣y,θ(k)

}
− 1

]
xi,

(8)

where

E
[{

1 + exp(−y∗i + x⊤
i β)

}−1 |y,θ(k)
]

=
1

2

{
2 exp(τ

(k)
yi−1 − x⊤

i β
(k)) + 1

(exp(τ
(k)
yi−1 − x⊤

i β
(k)) + 1)2

− 2 exp(τ
(k)
yi − x⊤

i β
(k)) + 1

(exp(τ
(k)
yi − x⊤

i β
(k)) + 1)2

}
×{

F (τ (k)yi
− x⊤

i β
(k))− F (τ

(k)
yi−1 − x⊤

i β
(k))
}−1

;

here F is the standard logistic cdf and we use the convention that exp(−∞) =
F (−∞) = 0 and exp(∞) = F (∞) = 1.

Because the threshold parameters τ s do not play a role in the complete-
data log-likelihood (6), they are, instead, updated by maximizing the observed-
data log-likelihood (4) with β fixed using the Fisher scoring algorithm. Pratt
(1981) showed that the observed-data log-likelihood of the cumulative logit
model is concave. Therefore, a local maximizer is necessarily the global max-
imizer. We apply the Fisher scoring algorithm to obtain the maximizer of
τ . The Fisher information matrix of the cumulative logit model is derived in
Appendix 5, which is shown to be positive definite, under the mild assump-
tion that the covariates are not collinear. Since τ follows the constraint that
τ−1 = −∞ < τ0 ≤ τ1 ≤ . . . < τq−1 < τq = ∞, we reparametrizate τ using
the unconstrained δ such that

δ0 = τ0
δ1 = log(τ1 − τ0)

...
δq−1 = log(τq−1 − τq−2)

 .

Applying the Fisher scoring algorithm, the maximizer of δ is given by

δ(k+1) = δ(k) + I−1(δ(k))S(δ(k)),
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where S(δ(k)) is the score function for δ(k) and I(δ(k)) is the Fisher informa-
tion matrix evaluated at δ(k); see Section 5 for the expression of the Fisher
information matrix and the proof of its positive definiteness. Note that
I(δ) = J⊤I(τ )J, where the (i, j)th element of the q × q Jacobian matrix
J is defined by Ji,j = ∂τi

∂δj
and S(δ) = J⊤S(τ ). Hence, the maximizer of τ

can be obtained by iteratively applying the following equation

δ(k+1) = δ(k) + {J⊤I(τ )J}−1J⊤S(τ )

= δ(k) + J−1I−1(τ )S(τ ). (9)

2.2. Cumulative probit model

The cumulative probit model employs the probit link, which assumes a
conditional normal distribution for the latent response y∗. The observed-data
log-likelihood of the cumulative probit model is

ℓ(β, τ |y) =
n∑

i=1

q∑
p=0

1(yi = p) log
{
Φ
(
τp − x⊤

i β
)
− Φ

(
τp−1 − x⊤

i β
)}

, (10)

where Φ(·) is the cdf of the standard normal distribution and 1(·) is the
indicator function of the enclosed event. The complete-data log-likelihood
has the following form:

ℓ∗(β) =
n∑

i=1

log f(y∗i − x⊤
i β) = −1

2

n∑
i=1

(
y∗i − x⊤

i β
)2

. (11)

Here, the E-step results in a tractable minorization function:

Q(β|θ(k)) = −1

2

n∑
i=1

E[(y∗i − x⊤
i β)

2|yi,θ(k)]

= −1

2

n∑
i=1

{
E(y∗i |yi,θ(k))− x⊤

i β
}2

− 1

2

n∑
i=1

var(y∗i |yi,θ(k))

Since var(y∗i |yi,θ(k)) is a constant, we shall drop it so that

Q(θ|θ(k)) = −1

2

n∑
i=1

{
E(y∗i |yi,θ(k))− x⊤

i β
}2

.
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It is readily checked in Barr and Sherrill (1999), upon letting yi = p ∈
{0, 1, . . . , q} and ϕ(·) be the standard normal pdf, then

E(y∗i |θ(k), yi) = x⊤
i β

(k) +
ϕ
(
τ
(k)
p−1 − x⊤

i β
(k)
)
− ϕ

(
τ
(k)
p − x⊤

i β
(k)
)

Φ
(
τ
(k)
p − x⊤

i β
(k)
)
− Φ

(
τ
(k)
p−1 − x⊤

i β
(k)
) , (12)

with the convention that ϕ(−∞) = ϕ(∞) = 0, Φ(−∞) = 0 and Φ(∞) = 1.
The M-step requires finding β(k+1) = argmaxβ Q(β|θ(k)) which equals

β(k+1) = (X⊤X)−1X⊤E(y∗|y,θ(k)). (13)

The maximizer of the threshold parameter τ is similarly obtained using Eqn.
(9), but under the normal error distribution assumption.

2.3. Cumulative link model with Cauchy latent variable

In the case of the Cauchy link, i.e., the link function is the inverse of
the standard Cauchy cdf, the complete-data log-likelihood has the following
form:

ℓ∗(β) = −
n∑

i=1

[
log π + log{1 + (y∗i − x⊤

i β)
2}
]
. (14)

We derive below an MM algorithm using an approach similar to the case of
the cumulative logit model by first applying a second-order Taylor expan-
sion to the complete-data log-likelihood, then taking conditional expectation
given the observed data and a current estimate, and finally bounding the
second partial derivative by a known matrix. The first derivative of ℓ∗(β)
takes the form

∂ℓ∗(β)

∂β
=

n∑
i=1

2(y∗i − x⊤
i β)

1 + (y∗i − x⊤
i β)

2
xi.

The second derivative of ℓ∗(β) can be lower-bounded as follows:

∂2ℓ∗(β)

∂β∂β⊤ =
n∑

i=1

−2 + 2(y∗i − x⊤
i β)

2

{1 + (y∗i − x⊤
i β)

2}2
xix

⊤
i

≥ −2
n∑

i=1

xix
⊤
i .
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Altogether, we have the following minorizing function:

Q(β|θ(k)) = E
{
ℓ∗(β(k))|y,θ(k)

}
+ (β − β(k))⊤E

{
∂ℓ∗(β(k))

∂β

∣∣∣∣∣y,θ(k)

}
−

(β − β(k))⊤
n∑

i=1

xix
⊤
i (β − β(k)) (15)

The maximization step proceeds to maximizing this quadratic Q function,
which is maximized at

β(k+1) = β(k) +
1

2

(
n∑

i=1

xix
⊤
i

)−1

E

{
∂ℓ∗(β(k))

∂β

∣∣∣∣∣y,θ(k)

}

= β(k) +
1

2

(
n∑

i=1

xix
⊤
i

)−1 n∑
i=1

{
E

(
2(y∗i − x⊤

i β)

1 + (y∗i − x⊤
i β)

2

∣∣∣∣y,θ(k)

)
xi

}
,

where

E

(
2(y∗i − x⊤

i β)

1 + (y∗i − x⊤
i β)

2

∣∣∣y,θ(k)

)
=

1

π

(
1

(τ
(k)
yi−1 − x⊤

i β
(k))2 + 1

− 1

(τ
(k)
yi − x⊤

i β
(k))2 + 1

)
×{

F (τ (k)yi
− x⊤

i β
(k))− F (τ

(k)
yi−1 − x⊤

i β
(k))
}−1

;

here F is the standard Cauchy cdf and we use the convention that 1/∞ = 0,
F (−∞) = 0 and F (∞) = 0.

The maximizer of the threshold parameter τ is similarly obtained using
Eqn. (9), but under the Cauchy error distribution assumption.

2.4. Cumulative link model with complementary log-log link

Another choice of link in Equation (3) is the complementary log-log trans-
formation

log[− log{1− P (y ≤ p |X)}] = τp −
d∑

j=1

βjXij,

in which case the latent variable y∗ follows a standard Gumbel distribution
(minimum), which belongs to the family of the generalized extreme value dis-
tribution (Embrechts et al., 2013). Normal, logistic and Cauchy distributions
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are all unimodal symmetric distributions, and their cumulative distribution
functions approach zero at the same rate they approach one. But the Gum-
bel distribution for minima has an asymmetric density which approaches
zero slowly and one quickly. The probability density function of the Gumbel
distribution with zero mean and unit scale is

f(x) = exp{x− exp(x)}, for x ∈ (−∞,∞).

The corresponding cumulative distribution function is

F (x) = 1− exp{− exp(x)}, for x ∈ (−∞,∞). (16)

In the case of a Gumbel link, the complete-data log-likelihood has the fol-
lowing form:

ℓ∗(β) =
n∑

i=1

y∗i − x⊤
i β − exp

(
y∗i − x⊤

i β
)
. (17)

The first derivative and the Hessian matrix of ℓ∗(β) are given by

∂ℓ∗(β)

∂β
=

n∑
i=1

{
exp(y∗i − x⊤

i β)− 1
}
xi

∂2ℓ∗(β)

∂β∂β⊤ = −
n∑

i=1

exp(y∗i − x⊤
i β)xix

⊤
i .

Unfortunately, there is no global lower bound for ∂2ℓ∗(β)

∂β∂β⊤ . So we develop a

local lower bound to enable a local minorization function, with the local
minorization function suitably chosen such that it is maximized within the
minorization domain. Let K = max{∥xj∥∞, 1 ≤ j ≤ n} where ∥ · ∥∞ is the

max norm. It can be shown that for β ∈ N (∆) = {|β − β(k)| ≤ ∆},

∂2ℓ∗(β̃)

∂β∂β⊤ ≥ −
n∑

i=1

exp(y∗i − x⊤
i β

(k)) exp(K∆)xix
⊤
i . (18)

Then the local minorizing function is

Q(β|θ(k)) = E{ℓ∗(β(k) |y,θ(k)}+ (β − β(k))⊤E

{
∂ℓ∗(β(k))

∂β

∣∣∣∣∣y,θ(k)

}
−

1

2
exp(K∆)(β − β(k))⊤

n∑
i=1

E{exp(y∗i − x⊤
i β

(k)) |y,θ(k)}xix
⊤
i (β − β(k)).
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Write
[∑n

i=1E{exp(y∗i − x⊤
i β

(k)) |y,θ(k)}xix
⊤
i

]−1

E
{

∂ℓ∗(β(k))
∂β

|y,θ(k)
}
asH(k).

Set

∆ =

√
1 + 4K|H(k)| − 1

2K
.

Then it can be checked that the Q function is maximized at

β(k+1) = β(k) + exp(−K∆)H(k) ∈ N (∆).

Note that

E{exp(y∗i − x⊤
i β

(k)) |y,θ(k)}

=
[
exp{− exp(τ

(k)
yi−1 − x⊤

i β)} × {exp(τ (k)yi−1 − x⊤
i β) + 1}−

exp{− exp(τ (k)yi
− x⊤

i β)} × {exp(τ (k)yi
− x⊤

i β) + 1}
]
{F (τ (k)yi

− x⊤
i β)− F (τ

(k)
yi−1 − x⊤

i β)}−1,

where exp(−∞) = 0 and exp(∞) = 1.
The maximizer of the threshold parameter τ is similarly obtained using

Eqn (9), but under the standard Gumbel error distribution assumption.

3. Simulations

We report some simulation results showing that fitting a cumulative link
model by the proposed MM algorithm generally outperforms the standard,
iterative re-weighted least squares as implemented by the R function polr, in
terms of estimation accuracy and empirical coverage of confidence intervals,
especially in the presence of strong multicollinearity among the explanatory
variables. Realizations from the cumulative link model can be simulated in
two stages. First, the latent responses are simulated according to the linear
model, y∗ = Xβ + ε where ε is a random sample from one of the four
error distributions, namely, normal, logistic, Cauchy or Gumbel distribution.
Second, the thresholds, τ−1 = −∞ < τ0 < τ1 < . . . < τq−1 < τq = ∞,
are set as certain quantiles of the unconditional marginal distribution of y∗,
so as to make a pre-determined unconditional probability distribution for
the response variable. Finally, yi is set to be j if and only if τj−1 < y∗i ≤
τj. In the experiment, the ordinal response variable takes value from five
categories: 0, 1, 2, 3, and 4, and the thresholds are chosen to make the
five categories equally frequent. The number of covariates d = 5, with the
true regression coefficients being β0 = (1, 3,−2, 5, 0.5)⊤. Multicollinearity of
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various degrees is introduced by drawing the covariates from a d-dimensional
Gaussian distribution N(0,Σ), where the (h, l)th entry of Σ = ρ|h−l|. The
marginal distribution of y∗ is determined by which distribution we simulate
data from. For normal distribution, y∗ is normally distributed with zero
mean and variance 1+β⊤

0 Σβ0. For other error distributions, it is difficult to
obtain the marginal distribution of y∗. However, the mean and variance can
be calculated for the logistic and extreme value errors. For the logistic error
distribution, the marginal distribution of y∗ has zero mean and variance
π2

3
+ β⊤

0 Σβ0. For the Gumbel distribution, y∗ has mean γ and variance
π2

6
+ β⊤

0 Σβ0, where γ is the Euler’s constant. For Cauchy errors, the mean
and variance of y∗ are undefined. The thresholds are determined so that the
five ordinal outcomes are equally likely.

We set the initial values for the estimation schemes as follows. We can
initialize β(0) as the ordinary least square estimate obtained by regressing
the ordinal response on the covariates, i.e., treating the ordinal response
as continuous response. Initial values of τ (0) can be set as the maximum
likelihood estimates for the case that none of the covariates are relevant,
i.e., β = 0, in which case the maximum likelihood estimator of F (τ̂j) is the
fraction of observed response values not greater than j and F depends on
assumptions of the error distribution. We use the same sets of initial values
for β and τ for the proposed MM algorithm and the polr function to fit the
cumulative link models under different error assumptions.

As alluded to earlier, maximum likelihood estimation of the cumulative
link models via direct optimization as implemented by the commonly used
R function polr may fail to converge, due to the strong nonlinearity of the
objective function. Table 1 lists the frequency when polr fails to converge
until the accumulation of 400 successful fits, with data simulated from the
cumulative link model with the probit link and ρ ranging from 0 to 0.8
with increment of 0.2. With increasing correlation among the covariates,
polr tends to fail more frequently. On the other hand, maximum likelihood
estimation using the proposed MM algorithm, however, is superior to the
polr in that it always converges, based on our stopping criterion.

[Table 1 about here.]

Below, we report further simulation results for the case of ρ = 0 and 0.8,
with the four commonly used link functions. Each simulation is replicated
1000 times.
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[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]

Define the model error as ∥Xβ − Xβ̂∥2/n, where n is the number of
observations (100 here). Table 2 shows that the model error increases with
multicollinearity, i.e, larger ρ. Model fits using the proposed MM algorithm
yielded smaller model errors than those using the polr function, under all
four error distributions. Tables 3 and 4 list the average estimators of β
using the proposed MM algorithm and the R function polr. As ρ increases,
the estimation bias increases. For probit, logit and Cauchy distribution,
biases of the estimates based on the MM algorithm are relatively smaller
than those based on the polr function. However, for the complementary log-
log link, the polr estimates have smaller biases when ρ = 0. The threshold
estimators for these two methods tended to perform similarly as shown in
Tables 5 and 6. However, for the complementary log-log link, the proposed
MM algorithm yielded much closer threshold estimates to their true values.
Note that the true thresholds change somewhat with ρ. We also observe
that variability in the estimates for the proposed MM algorithm tended to
be smaller, as compared with the polr estimates. Empirical coverage rates
for both methods (Tables 7 and 8) are similar and both close to the nominal
95%, except that for the complementary log-log link, the polr estimates have
much lower coverage rates than 95%. Overall, the simulation results confirm
the robust performance of the proposed MM estimation method.
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4. Acceleration of the MM algorithm

One disadvantage of the proposed MM algorithm is that it is compu-
tationally intensive. Yu (2012) proposed the monotonic over-relaxation for
accelerating an EM algorithm. We adopt it to speed up the convergence of
the MM algorithm for fitting a cumulative link model.

The idea of monotonic over-relaxation applies to the maximization step.
At the maximization-step, update β(k+1) as

β(k+1) = (1 + ω)β
(k+1)
MM − ωβ(k), (19)

where ω ≥ 0 is the over-relaxation parameter. Because the minorizing func-
tion is a quadratic function of β, hence for any ω ∈ [0, 1],

Q(β(k+1)|β(k)) ≥ Q(β(k)|β(k)).

For the MM algorithm, any parameter update that increases the minorizing
function does the same for the observed data log-likelihood. Thus mono-
tonicity of the observed data log-likelihood is maintained by updating β(k)

to β(k+1) with a suitable ω ∈ [0, 1], but could still be true for larger ω that
further speeds up the convergence. Although the preceding equation is guar-
anteed to be valid for ω ∈ [0, 1], this inequality may still hold with larger ω.
We have performed an experiment to assess potential improvements of the
over-relaxation method in reducing the computation time and yet obtain-
ing correct estimation results. We illustrate the gains of the over-relaxation
method in Table 9. Computation was done using a MaxOS computer with
a 1.8 Ghz i5 Core with 4GB memory. We observe significant improvements
due to monotonic over-relaxation, in terms of reduced computation time for
these four cumulative link models.

[Table 9 about here.]

5. The Information Matrix for a Cumulative Link Model

Consider the observed log-likelihood

ℓ(θ|y) =
n∑

i=1

q∑
p=0

di,p log[F (τp − x⊤
i β)− F (τp−1 − x⊤

i β)],
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where di,p = 1 if yi = p and 0 otherwise. We denote F (τp − x⊤
i β) as Fi,p,

f(τp − x⊤
i β) as fi,p, and τp − x⊤

i β as αi,p. Let θ = (β⊤, τ0, . . . , τq−1)
⊤. The

observed score function of θ is

S(θ) =
n∑

i=1



∑q
p=0 di,p

[
fi,p−1−fi,p
Fi,p−Fi,p−1

]
xi

di,0
fi,0
Fi,0

− di,1
fi,0

Fi,1−Fi,0

di,1
fi,1

Fi,1−Fi,0
− di,2

fi,1
Fi,2−Fi,1

...

di,q−1
fi,q−1

Fi,q−1−Fi,q−2
− di,q

fi,q−1

1−Fi,q−1


.

Next we take the second derivative of the observed-data log-likelihood, it can
be written as

∂2ℓ(θ)

∂θ∂θ⊤ =
n∑

i=1

(
Di Ci

Bi Ai

)
, (20)

where Ai is a q× q matrix, Bi is q× d matrix, Ci is a d× q matrix and Di is
a d× d matrix. We denote for k = 0, · · · , q − 1,

γi,k = di,k

∂fi,k
∂τk

(Fi,k − Fi,k−1)− f 2
i,k

(Fi,k − Fi,k−1)2
− di,k+1

∂fi,k
∂τk

(Fi,k+1 − Fi,k) + f 2
i,k

(Fi,k+1 − Fi,k)2
,

ηi,k = −di,k+1
−fi,kfi,k+1

(Fi,k+1 − Fi,k)2
.

Moreover,

∂

(
di,k

fi,k
Fi,k−Fi,k−1

−di,k+1
fi,k

Fi,k+1−Fi,k

)
∂β

= di,k

∂fi,k
∂β

(Fi,k−Fi,k−1)−f2
i,k

∂fi,k
∂β

(Fi,k−Fi,k−1)2
− di,k+1

∂fi,k
∂β

(Fi,k+1−Fi,k)−fi,k(fi,k+1
∂fi,k+1

∂β
−fi,k

∂fi,k
∂β

)

(Fi,k+1−Fi,k)2
.

We note that
∂fi,k
∂β

=
∂fi,k
∂τk

(−xi), then

Ai =



γi,0 ηi,0 0 0 · · · 0
ηi,0 γi,1 ηi,1 0 · · · 0
0 ηi,1 γi,2 ηi,2 · · · 0
...

. . . . . . . . .
...

...
0 0 · · · ηi,q−3 γi,q−2 ηi,q−2

0 0 · · · 0 ηi,q−2 γi,q−1


,
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Bi =


−(γi,0 + ηi,0)x

⊤
i

−(γi,1 + ηi,0 + ηi,1)x
⊤
i

...
−(γi,q−1 + ηi,q−2)x

⊤
i

 ,

Ci = B⊤
i

Di =

q∑
p=0

di,p

[
(fi,p−1 − fi,p)

2 − (αi,p−1fi,p−1 − αi,pfi,p)(Fi,p − Fi,p−1)(
Fi,p − Fi,p−1

)2 ]
(xix

⊤
i ).

For normal errors,

∂fi,k
∂τk

= ϕ(τk − x⊤
i β){−(τk − xiβ)}.

For logistic errors,

∂fi,k
∂τk

=
exp(τk − x⊤

i β){1− exp(τk − x⊤
i β)}

{1 + exp(τk − x⊤
i β)}3

.

For Cauchy errors,
∂fi,k
∂τk

=
−2(τk − x⊤

i β)

{(τk − x⊤
i β)

2 + 1}2
.

For Gumbel errors,

∂fi,k
∂τk

= − exp{τk − x⊤
i β − exp(τk − x⊤

i β)}{exp(τk − x⊤
i β)− 1}.

Next, we show that expected Fisher information matrix is positive definite,
under the mild assumption that the covariates are not collinear, i.e., there
exists no non-zero linear combination of X that is a constant almost every-
where. Let ω = (ω⊤

1 ,ω
⊤
2 )

⊤ = (ω1, . . . , ωq, ω
∗
1, . . . , ω

∗
d)

⊤ be a non-zero vector.
Our aim is to verify that

ω⊤E
(
− ∂2ℓ

∂θ∂θ⊤

)
ω = ω⊤

n∑
i=1

E

{
E

(
Ai Bi

Ci Di

∣∣∣∣xi

)}
ω

=
n∑

i=1

E
{
ω⊤

1 E(Ai|xi)ω1 + 2ω⊤
1 E(Bi|xi)ω2 + ω⊤

2 E(Di|xi)ω2

}
= T1 + T2 + T3 > 0.
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First we notice that

E(Ai|xi) =


f2
i,0

Fi,0
+

f2
i,0

Fi,1−Fi,0

−fi,0fi,1
Fi,1−Fi,0

0 0 · · · 0

−fi,0fi,1
Fi,1−Fi,0

f2
i,1

Fi,1−Fi,0
+

f2
i,1

Fi,2−Fi,1

−fi,1fi,2
Fi,2−Fi,1

0 · · · 0

...
. . .

. . .
. . .

...
...

0 0 · · · 0
−fi,q−2fi,q−1

Fi,q−1−Fi,q−2

f2
i,q−1

Fi,q−1−Fi,q−2
+

f2
i,q−1

1−Fi,q−1


and

ω⊤
1 E(Ai|xi)ω1 = ω2

1

f 2
i,0

Fi,0

+
1

Fi,1 − Fi,0

(ω1fi,0 − ω2fi,1)
2 +

1

Fi,2 − Fi,1

(ω2fi,1 − ω3fi,2)
2

+ · · ·+ 1

Fi,q−1 − Fi,q−2

(ωq−1fi,q−2 − ωqfi,q−1)
2 + ω2

q

f 2
i,q−1

1− Fi,q−1

.

(21)

This must be greater than 0, which can be proved by contradiction. Sup-

pose ω⊤
1 E(Ai|xi)ω1 = 0. Every term on the right side of (21) must be

equal to 0. Therefore ω1 = ω2 = . . . = ωq = 0. However this contra-

dicts the assumption that ω is a non-zero vector. Hence ω⊤
1 E(Ai|xi)ω1

is strictly greater than 0 and E(Ai) is positive definite. It can be readily

verified that E(Bi|xi) = −E(Ai|xi)1x
⊤
i , E(Di|xi) = E(1⊤Ai1|xi)xix

⊤
i . By

Cauchy-Schwarz inequality,

T1 + T2 + T3 =

n∑
i=1

E
(
ω⊤

1 E(Ai|xi)ω1 + 2ω⊤
1 E(Bi|xi)ω2 + ω⊤

2 E(Di|xi)ω2

)
=

n∑
i=1

E
(
ω⊤

1 E(Ai|xi)ω1 − 2ω⊤
1 E(Ai|xi)1x

⊤
i ω2 + ω⊤

2 1⊤E(Ai|xi)1xix
⊤
i ω2

)
=

n∑
i=1

E
(
ω⊤

1 E(Ai|xi)ω1 − 2
ω⊤

1 E(Ai|xi)1√
1⊤E(Ai|xi)1

√
1⊤E(Ai|xi)1x

⊤
i ω2 + ω⊤

2 1⊤E(Ai|xi)1xix
⊤
i ω2

]
≥

n∑
i=1

E
(
ω⊤

1 E(Ai|xi)ω1 − 2
√

ω⊤
1 E(Ai|xi)ω1

√
1⊤E(Ai|xi)1x

⊤
i ω2 + ω⊤

2 1⊤E(Ai|xi)1xix
⊤
i ω2

)
=

n∑
i=1

E
(√

ω⊤
1 E(Ai|xi)ω1 −

√
1⊤E(Ai|xi)1x

⊤
i ω2

)2
.

Cauchy-Schwarz inequality indicates that the inequality is an equality if and

only if ω1 = κ1 for some constant κ. Hence, T1 + T2 + T3 = 0 if and only if

there exists κ such that

E{1⊤E(Ai|xi)1(κ− x⊤
i ω2)

2} = 0.
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Since 1⊤E(Ai|xi)1 > 0 for all xi, T1+T2+T3 = 0 implies that E(κ−x⊤
i ω2)

2 =

0, which entails that κ − x⊤
i ω2 = 0 almost everywhere. Hence x⊤

i ω2 is a

constant. By the non-collinearity assumption for the covariates, ω2 = 0, but

then κ = 0 and ω1 = 0, which is a contradiction. Therefore, we conclude

that T1 + T2 + T3 > 0 of ω ̸= 0.

6. Conclusion

We have developed MM algorithms for doing maximum likelihood esti-

mation of the cumulative link model, for four commonly used links. The

maximum likelihood estimates so obtained are generally more accurate than

those based on iteratively re-weighted least squares and Fisher scoring. The

latter approach suffers from the problem of high failure rate of convergence,

especially with highly correlated covariates. The MM algorithms can be

readily extended to penalized likelihood estimation with high-dimensional

covariate, which will be reported elsewhere.
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Table 1: Failure frequencies for the R function polr until 400 successes were obtained.

ρ 0 0.2 0.4 0.6 0.8
Number of Failures (Non-convergence) 249 220 216 252 330
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Table 2: Average model error comparison

Model Error
probit logit cauchy cloglog

MM polr MM polr MM polr MM polr
ρ = 0 3.96 6.05 1.96 2.15 2.36 5.73 0.80 3.32
ρ = 0.8 5.94 15.37 2.06 2.27 2.25 6.96 1.13 5.04
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Table 3: ρ = 0: Comparison of average regression estimates (standard deviation of esti-
mators enclosed in parentheses)

β 1 3 -2 5 0.5

Probit
MM 1.20 (0.32) 3.56 (0.77) -2.38 (0.54) 5.94 (1.25) 0.58 (0.24)
polr 1.23 (0.39) 3.66 (0.96) -2.44 (0.66) 6.10 (1.56) 0.60 (0.28)

Logit
MM 1.10 (0.33) 3.31 (0.59) -2.22 (0.43) 5.52 (0.90) 0.55 (0.28)
polr 1.11 (0.34) 3.34 (0.61) -2.24 (0.44) 5.57 (0.93) 0.56 (0.28)

Cauchy
MM 1.10 (0.36) 3.30 (0.67) -2.19 (0.50) 5.49 (1.05) 0.56 (0.33)
polr 1.18 (0.46) 3.57 (0.99) -2.37 (0.71) 5.94 (1.59) 0.60 (0.38)

Cloglog
MM 1.06 (0.24) 3.15 (0.40) -2.11 (0.30) 5.27 (0.62) 0.53 (0.21)
polr 1.02 (0.38) 3.01 (0.87) -2.01 (0.60) 5.04 (1.40) 0.50 (0.28)
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Table 4: ρ = 0.8: Comparison of average regression estimates (standard deviation of
estimators enclosed in parentheses)

β 1 3 -2 5 0.5

Probit
MM 1.18 (0.46) 3.58 (1.02) -2.37 (0.74) 5.95 (1.52) 0.62 (0.42)
polr 1.24 (0.61) 3.75 (1.59) -2.48 (1.06) 6.25 (2.59) 0.65 (0.49)

Logit
MM 1.10 (0.50) 3.32 (0.78) -2.23 (0.70) 5.51 (1.02) 0.55 (0.49)
polr 1.11 (0.51) 3.36 (0.80) -2.25 (0.71) 5.57 (1.05) 0.55 (0.49)

Cauchy
MM 1.07 (0.55) 3.23 (0.87) -2.17 (0.79) 5.40 (1.16) 0.54 (0.52)
polr 1.19 (0.69) 3.56 (1.21) -2.39 (1.01) 5.96 (1.79) 0.60 (0.61)

Cloglog
MM 0.98 (0.37) 2.96 (0.69) -1.95 (0.55) 4.91 (0.99) 0.50 (0.34)
polr 1.02 (0.52) 3.09 (1.12) -2.04 (0.85) 5.11 (1.67) 0.53 (0.47)

27



Table 5: ρ = 0: Comparison of average threshold estimates (standard deviation of estima-
tors enclosed in parentheses)

τ 0|1 1|2 2|3 3|4

Probit
True τ -5.33 -1.60 1.62 5.36

MM -6.34 (1.40) -1.89 (0.53) 1.91 (0.57) 6.35 (1.30)
polr -6.51 (1.72) -1.93 (0.58) 1.96 (0.61) 6.53 (1.75)

Logit
True τ -5.46 -1.60 1.69 5.49

MM -5.99 (1.03) -1.79 (0.52) 1.86 (0.53) 6.06 (1.02)
polr -6.05 (1.06) -1.80 (0.53) 1.87 (0.54) 6.11 (1.05)

Cauchy
True τ -6.06 -1.76 1.84 6.10

MM -6.63 (1.30) -1.92 (0.61) 2.05 (0.62) 6.70 (1.37)
polr -7.12 (1.89) -2.06 (0.77) 2.20 (0.79) 7.19 (1.95)

Cloglog
True τ -5.90 -2.14 1.12 4.82

MM -6.55 (1.03) -2.34 (0.51) 1.34 (0.43) 5.51 (0.92)
polr -4.78 (1.58) -1.02 (0.63) 2.26 (0.57) 6.02 (1.48)
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Table 6: ρ = 0.8: Comparison of average threshold estimates (standard deviation of
estimators enclosed in parentheses)

τ 0|1 1|2 2|3 3|4

Probit
True τ -5.73 -1.75 1.68 5.68

MM -6.86 (1.79) -2.08 (0.63) 2.01 (0.67) 6.77 (1.76)
polr -7.19 (2.92) -2.19 (1.01) 2.10 (0.87) 7.10 (2.85)

Logit
True τ -5.86 -1.76 1.76 5.82

MM -6.47 (1.10) -1.97 (1.56) 1.94 (0.55) 6.42 (1.06)
polr -6.53 (1.13) -1.99 (0.57) 1.96 (0.56) 6.48 (1.09)

Cauchy
True τ -6.41 -1.88 1.93 6.42

MM -6.88 (1.33) -2.00 (0.60) 2.05 (0.59) 6.90 (1.34)
polr -7.54 (2.10) -2.19 (0.79) 2.25 (0.79) 7.56 (2.08)

Cloglog
True τ -6.37 -2.33 1.18 5.18

MM -6.25 (1.13) -2.26 (0.51) 1.22 (0.41) 5.19 (1.00)
polr -5.36 (1.94) -1.25 (0.72) 2.37 (0.65) 6.51 (1.83)
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Table 7: ρ = 0: Average empirical coverage rates for the estimates

β1 β2 β3 β4 β5 τ0 τ1 τ2 τ3

Probit
MM 0.94 0.95 0.94 0.94 0.95 0.94 0.94 0.95 0.95
polr 0.94 0.94 0.93 0.93 0.95 0.93 0.94 0.94 0.95

Logit
MM 0.94 0.94 0.94 0.94 0.95 0.96 0.95 0.95 0.95
polr 0.94 0.94 0.93 0.93 0.95 0.95 0.95 0.95 0.94

Cauchy
MM 0.97 0.98 0.97 0.98 0.95 0.98 0.96 0.97 0.98
polr 0.97 0.98 0.96 0.98 0.96 0.98 0.96 0.96 0.98

Cloglog
MM 0.95 0.98 0.97 0.98 0.95 0.97 0.96 0.94 0.98
polr 0.84 0.75 0.79 0.75 0.86 0.49 0.24 0.28 0.78
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Table 8: ρ = 0.8: Average empirical coverage rates for the estimates

β1 β2 β3 β4 β5 τ0 τ1 τ2 τ3

Probit
MM 0.94 0.94 0.94 0.95 0.94 0.94 0.95 0.93 0.94
polr 0.94 0.93 0.92 0.93 0.94 0.92 0.94 0.92 0.93

Logit
MM 0.94 0.95 0.94 0.94 0.93 0.95 0.95 0.95 0.95
polr 0.94 0.94 0.94 0.94 0.93 0.94 0.95 0.95 0.95

Cauchy
MM 0.97 0.96 0.97 0.97 0.96 0.98 0.97 0.96 0.98
polr 0.97 0.97 0.96 0.97 0.96 0.97 0.97 0.96 0.98

Cloglog
MM 0.94 0.93 0.94 0.93 0.95 0.92 0.92 0.93 0.92
polr 0.86 0.80 0.82 0.79 0.87 0.53 0.30 0.30 0.79
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Table 9: Average computation time (in seconds) per fitting a cumulative link model, using
the monotonic over-relaxation method, and based on 100 replications

ω 0 0.25 0.5 0.75 1 3
Probit 3.4 2.8 2.3 2.0 2.0 0.9
Logit 1.02 0.84 0.71 0.62 0.55 0.28
Cauchy 7.6 7.5 6.9 6.2 5.5 3.3
Cloglog 8.0 6.8 5.9 5.2 4.6 2.6
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