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Abstract

All too often, a course on experimental design turns into a course that is

almost entirely devoted to analysis of experimental data, with design issues

in the background. The reason for this is that to learn to design experiments,

you actually have to do experiments, and that is much harder to organize

than lectures.

Design-conscious teachers often incorporate project work in a course.

Such activities are extremely valuable to students; but there are problems

too. Real experiments are often very time-consuming, and it is hard to

handle more than one or two per semester. If students are given the freedom

to choose their own project topics, the instructor has little opportunity to

focus projects on specific instructional goals. An alternative approach is to

develop scenarios and ask students to design and carry out experiments

using software that simulates the data. There is a range of possibilities for

how structured or unstructured is the activity. In this article, I illustrate my

experiences in teaching design with simulation projects, and demonstrate

some Web-based software that I have written to facilitate developing design

scenarios.

Key words Simulation; Experimental design; Statistical education; Activity-

based learning

1 Introduction

This article describes some of my experiences in using simulation activities to

teach experimental design, the reasons that I think this is a good approach, and

some web-based software in Java that facilitates these types of activities.

Section 2 discusses why “real data” don’t always satisfy the instructional

needs of a design course. In Section 3, I argue that simulation activities often

provide a better way to focus on the important aspects of experimental design.



To use simulations, we need suitable software, and Section 4 explains that

Java is a good choice because it is free, runs on the web, and implements an

object system whereby the common elements of a simulation activity can be

programmed once and for all. Also shown there are the features of some Java

software that I have developed. Section 5 describes the Java simulations that I

actually used in teaching a recent design course. Finally, the source code for a

particular plug-in is presented and explained in java-how.

2 Issues with using “real data”

The term “real data” always bothers me, because to me, “unreal data” would not

be data at all. However, maybe it is a useful term for this paper for purposes of

contrasting data that are collected in an experiment with data that are simulated.

It might seem at first that real data are always better than fake data, but I will

make the point that that is not always the case.

2.1 Emphasis on analysis, not design

Usually, real data are data that somebody else has collected. If you use data

collected by somebody else, then you’re not teaching design, you’re teaching

analysis. Certainly, analysis is a necessary part of just about any design course,

and it is often (again, not always) preferable to use real data in examples and

exercises.

2.2 Real experiments

To teach experimental design using real data, then students must do real ex-

periments. This is definitely possible to do. For example, my standard first

lecture in design involves an in-class experiment, where students are randomly

assigned to “running” and “marching” groups. Students (and teacher) then do

their assigned task (in place) for one minute, then each student counts her pulse

over a 15-second period (I call out the start and end times), and the data are

recorded. This is a completely randomized design (CRD). We can discuss the

randomization, experimental units, measurements, responses, effects, and so

forth.

Subsequently, I instruct everyone to switch treatments, and the experiment

is repeated. This, combined with the first experiment, comprises a crossover

design. We can now discuss what additional effects come into play. I usually

deliberately lengthen or shorten the period of time over which the pulses are

counted, which will tend to create a significant “period” effect when the data

are analyzed later. I confess to this deliberate introduction of an effect so that

students can think more concretely about how unintended effects can arise.

This real experiment can be done in one class period, plus it provides some

real data for future lectures or exercises on analyzing CRDs and crossover exper-
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iments. It has worked well for me because there are subjects already available.1

Real experiments can be very rewarding, but they also can often be costly,

time-consuming, or cumbersome—and they can be utter failures. I have had

students do projects where they choose what to investigate. Often, these are

kitchen experiments involving boiling water, cooking pasta, testing the strength

of paper towels, etc.; and sometimes, students are amazingly ingenious in the

way that they operationalize a research question. However, there is substantial

variation in the quality of the projects, not just in how well thought-out they are

but in what students can learn by doing them. They also vary considerably in

the amount of time and effort required to complete them.

Even if you are very careful (by collecting and reviewing project proposals,

etc.), it is hard to gauge the practicality of a project. An innocuous-sounding

project where one measures the length of time it takes for ice cubes to melt

under varying conditions is actually a nightmare for a busy student to carry out

because of the time and tedium—almost none of it spent thinking about statistics

or design issues. It is good for students to learn that real experiments are fraught

with unanticipated complications, but the price of learning this experientially can

be way beyond reasonable.

Having said all this, I am sure that many readers of this paper will be able

to give me a multitude of counterexamples—simple, short, effective real experi-

ments. I welcome hearing about them. I do know about paper helicopters, and

the dozens of factors that can be varied on them; but even there, you cannot

discount the difficulties associated with finding a place to drop them, various

mechanical difficulties, and interference due to wind drafts or passers by.

2.3 It’s a dirty world out there

Real data have built-in perils comparable to the complications encountered in

real experiments. Just understanding the goals of the experiment can be difficult

for a student, especially an international student. If there are too many compli-

cations, then the focus shifts to dealing with the complexities of the data, and

away from the concepts or techniques that need to be illustrated. Of course,

students should see examples of complicated data; but one usually needs to

see straightforward analyses of clean data sets first so they can understand what

makes the complicated ones complicated. If the textbook lacks them, it can

be difficult to find a clean real data set that illustrates a particular experimental

design. In that case, simulated or even made-up data are preferable for early

illustrations of analyses and concepts.

1I wonder if I should run this idea by our university’s Institutional Review Board, however,

because it is indeed an experiment involving human subjects. So far, I have not had differently

abled students in a design class, and if I did, this experiment could not be used.
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3 Advantages of simulations

An obvious goal of this paper is to expose some of the advantages of using

simulated data in certain parts of a design course. The main ones are now

discussed.

3.1 Allows emphasis on design

To simulate data, we need a computer program. Such a program can be tedious

to develop (more on this later); but once it is developed, it can be run just

as easily tomorrow as yesterday. That opens up the possibility of involving stu-

dents in the planning of the experiment—including pilot studies and sample-size

determination. Even though the data are simulated, the process of developing a

protocol and collecting data is real (though perhaps sanitized in important ways);

so students will have ownership of their data just like in real experiments.

3.2 Practical in terms of time and effort

Again, once a program is written, it can be tested to make sure that it works

and that a student can develop the protocol and collect the data in a reasonable

period of time. This improves the ratio of student time spent thinking about

the design to time spent doing the experiment. It also makes it possible to

incorporate more student-designed experiments in the term of the course.

3.3 Ability to tailor to teaching goals

Simulated data are not real data, but they can be realistic data; and realistic data

can have a real advantage over real data when one has specific instructional

goals. Simulated data can be made as clean or as dirty as you like. You can

simulate subjects dropping out or lying. You can make the data dirty in specific

ways and later show how a different design choice will improve the precision

of estimates. You can make the actual means or effects the same or different

for each student. You can collect students’ data sets and show the variation in

the results obtained, or combine their results into a mega-experiment as a class

illustration of a multi-center study.

4 Computational infrastructure

It is fairly simple to write computer code that simulates experimental data. What

is more complicated and more tedious is providing a user interface to the code

so that a student can vary factor levels and obtain response values. Moreover,

user interfaces themselves are more complicated than in the past, when the

norm was to interact with a computer via a terminal screen. Now, most human-

computer interaction is graphical, via mouse clicks, selecting items from a list,

and entering values in text fields. Programming with such graphical interfaces is
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Figure 1: Data-collection dialog for a the crop-yield experiment.

very different from simple print and read statements, and possibly very foreign

to the more senior among us.

4.1 Java and object-oriented design

Java is a relatively new programming language. For the present purpose, its

main advantages are

• Java applications can be run in an ordinary web browser, on any modern

PC. Thus, Java applications are available to any student in any location

where they can access a PC.

• Java provides for a graphical user interface.

• Java is object-oriented. This makes it possible to develop a common infras-

tructure for simulation experiments. Particular experiments may be built

on this infrastructure with minimal programming.

• A Java compiler is free and available on any platform. This makes it

possible for anyone to extend the simulation applications and object in-

frastructure that are described in this article.

4.2 Application features

Here is an illustration of a typical simulation-based activity that is implemented

in Java. Figure 1 shows the data-collection dialog for a simulation experiment

on crop yield. The scenario is that there are four fertilizers under test, and that
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Figure 2: Data-output window. Contents can be copied and pasted into a text

editor, then saved.

the spacing between rows of a crop can also be varied. The response variable is

yield at harvest. In addition, the amount of rainfall is recorded. The experimental

units are 24 farm fields at different locations around the state.

The student must design and randomize the experiment, then connect to the

web page where the applet is available. The web page contains a description of

the experimental objectives, and a button. The dialog in Figure 1 pops up when

the button is clicked. Each run of the experiment consists of a combination

of fertilizer and row spacing. In the dialog, the student selects one of the

four fertilizers from a drop-down list, and enters the row spacing as text. The

allowable row spacings are in the range from 1 to 4, inclusive. If a number

outside that range is entered, or a non-number is entered, a message box pops

up with an informative error message.

When the ”Collect Data” button is clicked, the simulated rainfall and yield

appear in the fields towards the bottom of the dialog. In addition, the values

or levels of all variables are displayed in an output window, shown in Figure 2.

(The window appears when the first observation is generated.) For security

reasons, a Java program running in a web browser does not allow saving of

files; so instead, the student may select the data, copy it to the PC’s clipboard,

paste it into a text editor, and save the data to a file. This is a bit cumbersome,

but still much easier than manually entering data.
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Figure 3: Dialog for the meat-storage experiment.

The Java code for the crop-yield experiment is given in Section 6. First,

some additional examples are presented, along with a discussion of their use in

teaching.

5 Examples and experiences

This section describes the simulation activities I used in a graduate-level design

course in the spring of 2002. It in fact describes all of them (the crop-yield

example previously described was not used). My original plans were to use

more, but this was the number that turned out to be practical, at least for those

students with that textbook in that semester. The textbook was Oehlert (2000).

The course topics included the chapters on completely randomized designs,

contrasts, multiple comparisons, assumptions and diagnostics, sample size, fac-

torials, random and mixed effects, complete-block designs, Latin squares, split

plots, and designs with covariates. We did not discuss two-level factorials, in-

complete blocks, fractional factorials, or response surfaces; those topics come in

a different course.

5.1 Simple CRD

The scenario for the first experiment in my class is based on an example in

another design text (Kuehl, 2000, Example 2.1, page 38). The instructions given

to the students called for a completely randomized design with one factor at four

levels—the type of gas treatment given to packaged meat. The response variable

given in the textbook is the logarithm of the psychotrophic bacteria count after

nine days of storage. In the user interface shown in Figure 3, the data are given

in raw counts rather than on a log scale. The instructions specifically ask the

student to log the data. (If the same exercise had been introduced a bit later,
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Figure 4: Dialog for the vacuum-tube experiment.

I probably would have expected students to discover on their own that it is

desirable to transform the response.)

Students were asked to design an experiment in 20 runs. The data-output

window (similar to that in Figure 2) includes sequence numbers, which helps to

encourage students not to cheat on the randomization. Unknown to the student,

the errors were not independent; instead, they were generated from a random

walk (on the scale of the logged response). Under those conditions, failing to

randomize will bias the treatment means and yield an unrealistically small mean

squared error. After the papers were turned in, I confessed that the errors were

not independent, and that laid the groundwork for some further discussion. For

example, using my own results of the same experiment, I displayed a plot of

residuals versus time order—reinforcing some of the material on diagnostics. It

also gave me an opportunity to say, “aren’t we glad we randomized?”

I think this example illustrates one of the real advantages of simulation over

real data. Simulation gives the teacher the chance to control the complexity of

the data, and the nature and the extent to which the data deviate from standard

assumptions. In general, I think it is usually a good idea to include some kind

of irregularity, not just to illustrate diagnostics but to create a real penalty for

not doing the experiment the right way. This simple simulation applet has rich

enough possibilities that it can be used again—as described later.

5.2 Factorial experiment

Figure 4 shows the user interface for what is perhaps the most mundane of

the simulations we did. It is for a two-factor experiment. Again, it is to be a

completely randomized design. The scenario is from Hicks and Turner Jr. (1999),

Table 5.1, page 138. Prior to collecting data from this applet, students needed to

8



determine an appropriate sample size based on stated results of earlier studies

with the same instrumentation (alternatively, I could have asked them to run a

pilot study using this or some other applet). Unlike the original data in Hicks

and Turner Jr. (1999), the generated data require a transformation—this time the

students had to discover it for themselves.

5.3 Block design

Now we return to the meat-storage experiment with the dialog shown in Fig-

ure 3. We run the same experimental procedures but with a different protocol.

Instead of using a complete randomization, view the 20 experimental runs as 5

sequences of 4 consecutive runs. In each sequence, run all four treatments in

random order (separate randomization for each sequence). This is a random-

ized complete-block design with sequences as blocks. Due to the random-walk

structure of the actual errors, there tends to be substantial variation among the

block means, and you can basically count on the mean square error being much

smaller for the blocked experiment than the original completely randomized

one. Thus, there is a clear advantage to blocking.

Re-using the same simulation exercise in these two different ways makes it

possible to teach some powerful lessons. Three of the most important ones are

1. You have a choice about how you conduct an experiment.

2. Your choice affects the way the data are analyzed.

3. Your choice can make a big difference in the quality of the results.

5.4 Split-split-plot experiment

Near the end of the course, I asked the students to do a small project involving a

fairly complex experiment. The scenario is cooking a soufflé, and the response

variable is the height of the soufflé. Factors include the baking temperature (2

levels), baking time (2 levels), and amount of flour (2 levels). The procedure is

to bake (or rather, to simulate baking) four soufflés at a time—two on the top

shelf and two on the bottom shelf of the oven. The experiment is to be carried

out in a five-day period, and it is possible to bake four oven loads per day.

Students were asked to first write a proposal describing their basic procedures

for randomizing and carrying out the experiment; then, after obtaining feedback

from me, to develop the protocol, collect the data, explore and analyze, and

write a report.

The user interface for this experiment is shown in Figure 5. The “Day” and

“Oven” fields increment automatically and cannot be changed by the student;

once day 5, oven 4 is completed, a message box pops up advising that the

experiment is over, and no further data may be generated. After pondering this

for awhile, students come to realize that the experimental units for Time and

Temp are the ovens, while the experimental units for Flour are the individual

soufflés. In addition, it seems apparent that the top shelf may be different
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Figure 5: User interface for the souffle experiment.

from the bottom shelf, so it is probably a good idea to control for Shelf—i.e.,

randomize each shelf separately. These considerations suggest a split-split-plot

design with days as blocks, ovens as whole plots (with whole-plot factors Time

and Temp), shelves a split plots, and soufflés as split-split plots.

Most students were able to figure out the required design! All I can guess is

that their success was due to a combination of necessity, discussion among stu-

dents (not always such a bad thing), and the concreteness of the data-collection

environment that forces them to collect data under certain constraints. In a

couple of cases, more elaborate designs were considered that involved a Latin

square structure on each oven (so as to control for both shelf effects and side

effects (as in left and right). Students actually had an easier time identifying a

reasonable design and corresponding model than randomizing it.

6 Developing a plug-in

In this section, I show the basics of developing a simulation experiment. Several

Java objects provide the necessary infrastructure; these classes are kept together
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in a package named rvl.datasim and in a Java archive named datasim.
jar . All that is needed for a particular simulation activity is a small Java class

that extends an abstract class named rvl.datasim.TestBed . Such a class

may be viewed as a plug-in for the datasim library, because all that is needed

is for a handful of methods to be defined.

This section is not intended to be a complete reference; for that, the reader

should refer to the javadoc -generated documentation available on my web

site, http://www.stat.uiowa.edu/˜rlenth/datasim/ .

6.1 Java code

Figure 6 displays the complete source code for the plug-in that generates the

user interface shown in Figure 1. The import statement brings-in references to

the rvl.datasim classes. The plug-in is defined as the class CropYield , an

extension of TestBed . The first three lines within the class define the factor,

covariate, and responses required in the simulation. Then follows a constructor

and four methods.

The constructor, CropYield() , sets up the required objects. First, a title

is passed to its super class; this is what is displayed in the title bar in Figure 1.

The factor fert is obtained by calling the constructor for a Factor , whose

arguments include the name of the factor, the names of its levels, and the values

of the factor effects at each level. In the user interface, it will be associated with

a drop-down list. spac is constructed as a Covariate named “Row spacing”

with an allowed range of [1,4] and a linear effect (slope) of –1.2. The responses

rain and yield are constructed with the names shown, and specified to be

displayed with 1 and 0 decimal places, respectively. All of the factors, covariates,

and responses are automatically associated with suitable graphical components

(drop-down lists, etc.); the programmer does not have to worry about that.

The getInputs() and getOutputs() methods are always pretty trivial;

they need to return vectors of inputs to be controlled by the experimenter (fac-

tors and covariates), and responses to be observed.

The only other required method is simulate() . It is called when the user

clicks on the “Collect Data” button, and is the only place that real programming

is done. In this example, we need to simulate the amount of rainfall. Then

the yield is calculated as the sum of a linear effect of rainfall, the spacing and

fertilizer effects, and normally distributed error. Finally, we need to set the

Response objects to their simulated values. The method returns zero, indicating

no errors.

The last method, main , is not required at all, but is useful for development

because when the class is compiled, it can be run and tested as a standalone

Java application. A DataSimGUI object is an instance of the actual application

that displays a window and implements the plug-in.

This example does not show some important features. For instance, another

constructors for a Factor object creates a factor having random levels. There

are PredArray and RespArray objects that allow for multiple instances of the

same Factor , Covariate , or Response , such as in Figure 5.
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import rvl.datasim.*;

public class CropYield extends TestBed
{

Factor fert;
Covariate spac;
Response rain, yield;

public CropYield () {
super ("Crop Yield Experiment");
fert = new Factor ("Fertilizer",

new String[]{ "None","Manure","Premium","CopyCat" },
new double[]{ -5, -1, 4, 2 } );

spac = new Covariate ("Row spacing", 1, 4, -1.2);
rain = new Response ("Rainfall", 1);
yield = new Response ("Bushels per acre", 0);

}

public Predictor[] getInputs() {
return new Predictor[] { fert, spac };

}

public Response[] getOutputs() {
return new Response[] { rain, yield };

}

public int simulate() {
double rnfl = 2.4 + normal(0.5);
double yld = 24.5 + .35 * rnfl

+ spac.getEffect()
+ fert.getEffect() + normal(2.3);

rain.setValue (rnfl);
yield.setValue (yld);
return 0;

}

public static void main (String argv[]) {
new DataSimGUI (new CropYield(), true);

}
}

Figure 6: Source code for the crop-yield simulation dialog in Figure 1. This code

should be saved in a file named CropYield.java —that is, its base file name

should exactly match the class name.
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6.2 Compiling and testing

The Java development kit is available for free download for most platforms

from http://java.sun.com/ . Before a plug-in can be compiled, the rvl.
datasim objects must be made available to the Java compiler. To do this, down-

load the file http://www.stat.uiowa.edu/˜rlenth/datasim/datasim.
jar . There is usually a standard place (on Windows, it is the subdirectory lib\
ext of the Java installation) where the file may be stored, such that its classes are

made available to the Java virtual machine. Either store datasim.jar there, or

explicitly include its location in the CLASSPATH used by Java.

To compile the plug-in in Figure 6, use the command

javac CropYield.java

Assuming that it compiles with no errors, this will create a file named CropYield.
class in the current directory. The plug-in may be tested using the command

java CropYield

6.3 Putting it on the web

Finally, once a plug-in is developed, we want to make it available to students.

This requires three files to be made available: the .jar file, the .class file, and

an HTML file. The latter presumably also contains instructions to the students.

Create it using your favorite web-page editor. At the location where you want it

in the web page, insert the following HTML code:

<APPLET
code = "rvl.datasim.DataSimLoader.class"
archive = "datasim.jar"
width = 300 height = 30>
<PARAM

name = plugin
value = "CropYield">

</APPLET>

rvl.datasim.DataSimLoader is an applet that requires one parameter, the

name of the plug-in to be loaded. When the web page is loaded in a Java-

capable browser, it displays as a button labeled “Press here to collect data.” The

above assumes that files datasim.jar , CropYield.class , and the HTML

file are all copied to the same web-accessible directory, and that they all be

publicly readable.

7 Conclusions

I have tried to demonstrate that simulation experiments have a number of ad-

vantages over “real data” in teaching experimental design. Real data are usually
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collected by someone else, hence students never see the experiment. Real ex-

periments take time, cost money, carry a real possibility of catastrophic failure,

and tend to provide fairly uneven experiences among students. Simulation exer-

cises can be tailored to particular instructional needs and made arbitrarily easy or

complex. The same simulation scenario can be used with different experimental

designs to teach their relative advantages and disadvantages. Simulations are

inexpensive, less prone to catastrophe, provide more uniform benefits across a

class, and can be used more often than real experiments.

The Java classes described here provide the infrastructure for quick develop-

ment of simulation experiments. The user interface is implicit in the specifica-

tions of factors, covariates, and responses. It is only necessary to write code that

defines these elements and that simulates the response value(s).
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