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1 Introduction

Spatial data, either areal or geostatistical (point-referenced), are becoming increasingly uti-
lized in the study of many scientific fields due to the accessibility of data monitoring systems
and associated datasets. When both types of data are available for the same underlying spa-
tial process, computationally efficient and statistically sound methods are needed for their
joint analysis. Markov chain Monte Carlo (MCMC) is a very powerful tool often used for the
Bayesian analysis of spatial data. However, its efficiency can be diminished by substantial au-
tocorrelation in values of the model parameters sampled from the posterior distribution. Yan,
Cowles, Wang, and Armstrong (2007) recently proposed a reparameterized and marginalized
posterior sampling (RAMPS) algorithm which leads to lower autocorrelation in MCMC sam-
ples for Bayesian spatiotemporal geostatistical modeling. The RAMPS algorithm has been
further extended to a unified framework of linear mixed models (Cowles, Yan, and Smith,
2007) that allows fusion of data obtained at different resolutions (areal and point-referenced)
and spatial heteroskedasticity. The general framework also covers cases where prediction at
arbitrary sites and non-spatial random effects are needed. This article describes the imple-
mentation of the RAMPS algorithm in the R package ramps (Smith, Yan, and Cowles, 2007)
and illustrates its use with a synthetic dataset.

Existing R packages for geostatistical analysis include fields (Fields Development Team,
2006), geoR (Ribeiro and Diggle, 2001), geoRglm (Christensen and Ribeiro, 2002), gstat
(Pebesma and Wesseling, 1998), sgeostat (Majure and Gebhardt, 2007), spatial (Venables
and Ripley, 2002), and spBayes (Finley, Banerjee, and Carlin, 2007). The fields, gstat,
sgeostat, and spatial packages rely on frequentist kriging for modeling and prediction of
geostatistical data. The geoR (and the associated package geoRglm for generalized linear
models) and spBayes packages offer routines to fit Bayesian geostatistical models. These
packages do not accommodate combined analysis of point-source data and areal data, which
is one of the unique features of the ramps package. The spBayes package is not tailored
to yield MCMC samples with lower auto-correlations, which may be critically important in
analyzing large datasets. The geoR package attains independent posterior samples at the
expense of discretizing the prior and posterior densities of two spatial parameters.

The starting point for our unified geostatistical model is the basic RAMPS algorithm
for point-source data only, described first in Yan et al. (2007). Consider geostatistical
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observations in a spatial domain D: {Y (si) : si ∈ D, i = 1, . . . , n}, and let Y =
{Y (s1), . . . , Y (sn)}>. A Gaussian geostatistical model for Y consists of spatial trend, spatial
correlation, and measurement error:

Y = Xβ + Z + ε,

Z ∼ N
(
0, σ2

zΩ(φ)
)
, ε ∼ N(0, σ2

eI),
(1)

where β is a p× 1 vector of coefficients for covariate matrix X = {X>(s1), . . . , X
>(sn)}>, Z

is a n× 1 vector capturing the spatial correlation, and ε is a n× 1 vector of independent and
identically distributed measurement errors. The distribution of Z is multivariate normal
with mean zero and covariance matrix σ2

zΩ(φ), where Ω(φ) is the correlation matrix as a
function of parameter vector φ.

The RAMPS algorithm of Yan et al. (2007) includes two steps — reparameterization and
marginalization — before drawing samples from the posterior density. The reparameteriza-
tion step rewrites the model as

Y ∼ N
(
Xβ, σ2[(1− κ)Ω(φ) + κI]

)
where σ2 = σ2

z +σ2
e and κ = σ2

e/σ
2. Letting θ = (φ, κ, σ2, β), the marginalization step factors

the posterior density p(θ|Y ) as

p(θ|Y ) = p(φ, κ|Y )p(σ2|φ, κ, Y )p(β|φ, κ, σ2, Y ).

With appropriate prior distributions for elements in θ, the second and third distributions on
the right hand side can be shown to be inverse gamma and Gaussian, respectively, which
makes sampling from them very easy. The first distribution is very difficult to sample from,
and Yan et al. (2007) used slice sampling for this critical step.

Cowles et al. (2007) subsequently generalized the basic RAMPS algorithm to accom-
modate the following data complexities and research needs: 1) Fusion of areal data and
point-referenced data in a single model. Such data fusion combines data from different
sources and resolutions to make more precise statistical inferences, which oftentimes is in
terms of narrower credible sets for parameter estimation and prediction. 2) Multiple vari-
ances for each variation source. In fact, data fusion naturally demands multiple variances
in the measurement error process for different data sources. The general model framework
not only meets this demands but also allows the underlying spatial process to have different
variances at different locations; that is, spatial heteroskedasticity. 3) Non-spatial random
effects. An example of such non-spatial random effects is the radon data analysis of Smith
and Cowles (2007), where many sites have multiple measurements and a site-specific random
effect is needed. 4) Prediction at arbitrary sites, measured or unmeasured. The RAMPS
algorithm can be carried out with very little change in formulation using the method of
structured hierarchical models (Hodges, 1998; Sargent, Hodges, and Carlin, 2000). All these
capabilities are implemented in the ramps package.

The ramps package offers a comprehensive set of tools for the conduct of Bayesian geosta-
tistical analysis of large, complex spatial datasets using the RAMPS algorithm. Its unique
features are summarized in Table 1 from the aspects of modeling, computing, correlation
structures, and user-interface. Note that some of the correlation structures in Table 1 are
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Table 1: Features of the ramps package.

Modeling
1 Joint modeling of data from multiple sources (point-source, areal, or both).
2 Non-spatial random effects as in a linear mixed model.
3 Multiple variances for each variation source (measurement error, spatial, and ran-

dom effects).
4 Prediction at measured or unmeasured sites.

Computing
1 Efficient MCMC sampling with the RAMPS algorithm.
2 Sparse matrix operation exploited for large datasets.

Correlation Structures
1 Parametric spatial and spatio-temporal correlation structures, including Gaussian,

exponential, powered exponential, spherical, linear, Matérn, rational quadratic, and
sine wave.

2 Spatial distance calculated as euclidean, great-circle (haversine formula), maximum,
or absolute distance.

User-interface
1 Easy-to-use model specification.
2 Object-oriented interface for correlation structures.
3 User-extensible spatial correlation structures.
4 Three-dimensional spatial plotting of results.

available in nlme (Pinheiro and Bates, 2000); but the difference is that the ramps package
supplies great-circle distance as an option for the distance metric.

This article is organized as follows. Section 2 presents a unified geostatistical model
framework that incorporates the aforementioned generalizations; see Cowles et al. (2007)
for more details about the algorithms. Section 3 discusses some implementational details of
the ramps package as well as its user interface. Section 4 illustrates the use of the package
through a working example. Section 5 reports a performance evaluation of the package in
comparison with packages spBayes and geoR in the context of fitting a simple geostatistical
model. A discussion concludes in Section 6.

2 Unified Geostatistical Model

Let Y = (Ya, Yp)
> be a concatenated vector of areal observations Ya = {Ya,1, . . . , Ya,na}> and

point-referenced observations Yp = {Yp,1, . . . , Yp,np}>, where na + np = n is the total number
of observations. The unified Gaussian geostatistical model is

Y = Xβ + Wγ + KZ + ε

γ ∼ N (0, Σγ) , Z ∼ N(0, ΣZ), ε ∼ N (0, Σε) ,
(2)
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where X, W , and K are design matrices for fixed effects β (p×1), non-spatial random effects
γ (q × 1), and spatial random effects Z (S × 1), respectively. The matrix K is defined by

Kij =

{
1

Ni
, site j is one of Ni measurement sites contributing to Yi,

0, otherwise.

In the case of a point-referenced observation, one measurement site contributes to Yi, and
thus Ni = 1. Conversely, multiple measurement sites contribute to an areal observation
Yi. The model defines such an observation as the average over Ni > 1 sites. If the actual
numbers or locations of contributing sites are unknown, then a uniform grid of spatial sites
may be used as an approximation. Accordingly, the Ni will be roughly proportional to the
area of the region over which Yi is an average. The finer the grid of sites; the closer the
proportionality will be. In summary, the model formulation 2 accomodate point-referenced
data, areal data, multiple measurements, and non-spatial random effects.

Data fusion is made possible in model (2) through the allowance of both areal and point-
referenced data. When both types are included simultaneously, a common underlying spatial
process Z(s) is assumed and the design matrix K maps Z contributions to the observed data.
For point-referenced data at site s, the contribution from Z is simply Z(s). For data averaged
over an area A, the contributions are from {Z(s) : s ∈ G, s ∈ A}, where G is a grid of sites
defined over the region from which the data are collected. In practice, the spatial random
effects Z in model (2) contain realizations of the spatial process Z(s) at all unique point-
referenced and grid sites. The fineness of the grid can be tuned, depending on the scientific
question and computational resources available. Note that Z can also contain realizations
at sites that do not contribute to any observed data but at which prediction is of scientific
interest, in which case, the corresponding rows in K will consist of zeros; a formulation for
this purpose will be presented at the end of this section.

Heteroskedasticity is accomodated by allowing variances to differ across the non-spatial
random effects, spatial measurement sites, and individual measurement types. Suppose that
there are Lγ different variances for the non-spatial random effects σ2

γ,i, i = 1, . . . , Lγ; LZ

spatial variances σ2
Z,i, i = 1, . . . , LZ ; and Lε measurement error variances σ2

ε,i, i = 1, . . . , Lε.
Further, let rk, k = 1, . . . , q, be an integer between 1 and Lγ indicating the corresponding
random effects variance for γk. Likewise, let vj, j = 1, . . . , S, indicate the spatial variance for
observations from site j, and mi, i = 1, . . . , n the measurement error variance for observation
Yi. We construct vectors for componentwise variances of γ, Z, and ε, respectively, as Vγ =
{σ2

γ,r1
, . . . , σ2

γ,rq
}>, VZ = {σ2

Z,v1
, . . . , σ2

Z,vS
}>, and Vε = {σ2

ε,m1
/w1, . . . , σ

2
ε,mn

/wn}>, where wi,
i = 1, . . . , n, is a weight associated with observation i. In the ramps package, users may
specify the weighting values or accept the default values of 1 for point-source and Ni for
areal observations. Assuming exchangeability of random effects, we have Ωγ = diag(Vγ),

ΩZ = diag(V
1/2
Z )R(φ)diag(V

1/2
Z ), and Ωε = diag(Vε), where R(φ) is a spatial correlation

matrix with parameter vector φ. This setup is general and allows modeling for spatio-
temporal data.

The variance parameters are reparameterized to facilitate the marginalization of the
posterior density in the RAMPS algorithm. Concatenate the vectors of measurement error
variances, spatial variances, and random effects variances for a total of F = Lγ + LZ + Lε

variance parameters, σ2
1, . . . , σ

2
F . If there is one measurement-error variance, one spatial

4



variance, and no random effects variances, then σ2
1 ≡ σ2

e and σ2
2 ≡ σ2

z as in the special case of
Yan et al. (2007). Our reparameterization is in terms of κ = {κ1, . . . , κF}> and σ2

tot, where

σ2
tot =

F∑
j=1

σ2
j , and κj =

σ2
j

σ2
tot

, j = 1, 2, . . . , F.

Note that κF ≡ 1−
∑F−1

j=1 κj and is not a free parameter to be estimated. Let κγ = Vγ/σ
2
tot,

κZ = VZ/σ2
tot, and κε = Vε/σ

2
tot. Then the likelihood can be specified as

Y ∼ N
(
Xβ, σ2

totΩ
)

(3)

where Ω = Wdiag(κγ)W
> + Kdiag(

√
κZ)R(φ)diag(

√
κZ)K> + diag(κε).

Cowles et al. (2007) derived the factors of the posterior density p(φ, κ|Y ), p(σ2
tot|φ, κ, Y ),

and p(β|φ, κ, σ2
tot, Y ). The prior distributions are inverse gamma on σ2

j , j = 1, . . . , F , mul-
tivariate normal on β, and uniform for φ with appropriately chosen bounds. A challenge
presented in sampling from p(φ, κ|Y ) is the constraint that κ has support on the standard
(F − 1)-simplex

∆F−1 =
{
(t1, · · · , tF ) ∈ RF | Σiti = 1 and ti ≥ 0 for all i

}
.

Cowles et al. (2007) developed a SIMPLICE algorithm, which performs the shrinking step
of slice sampling (Neal, 2003) on a simplex. A combination of SIMPLICE for κ and Neal’s
shrinking hyperrectangle slice algorithm for φ is implemented in the ramps package; see
Cowles et al. (2007) for details.

The RAMPS procedure can be modified to accommodate prediction at arbitrary sites.
Partition Z as (Z>p , Z>u )>, where Zp is a vector spatial random effects at sites for which
prediction is desired, and Zu is a vector of spatial random effects at sites for which no
prediction is desired. Sampling of β and Zp can be done in a batch by partitioning and
rearranging the matrix K such that KZ = (Kp, Ku)(Z

>
p , Z>u )>. Similar to Sargent et al.

(2000), a stacked linear model can be obtained as(
Y
0

)
=

(
X Kp

0 −I

) (
β
Zp

)
+

(
Wγ + KuZu + ε

εzp

)
(4)

or
Y = XB + E, (5)

where εzp ∼ N(0, ΩZ;p,p), and E ∼ N(0, σ2
totΩ) with

Ω =

(
WΩγW

> + KuΩZ;u,uK
>
u + Ωε KuΩZ;u,p

ΩZ;p,uK
>
u ΩZ;p,p

)
. (6)

This extension simply revises the likelihood expression in equation (3) as

Y ∼ N(XB, σ2
totΩ), (7)

and the RAMPS algorithm can be applied to sample B = (β>, Z>p )>. The structural for-
mulation (4), in which matrices K, W , X and Ω tend to be be very sparse, suggests the
use of sparse matrix libraries as one way to accelerate computations. Recent versions of the
Matrix package (Bates and Maechler, 2007) provide interfaces to the sparse matrix libraries
of Davis (2006) and are used in the implementation of our ramps package. As sample size
increases, the advantage of using the Matrix package for sparse matrix operations is well
worth the implementation effort.
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3 Some Implementation Details

3.1 Correlation Structures

Characteristic of geostatistical models is the specification of correlation as a function of the
distance between, and possibly orientation of, geographic points in the spatial domain. Our
model as implemented in the ramps package allows spatial correlation of the general form

(Ω (φ))i,i′ = c (si, si′ ; φ) ,

where c (si, si′ ; φ) is a function of the distance between sites si and si′ and the parameter
vector φ. We provide metrics for the calculation of spatial distance as great-circle distance,
Euclidean distance, maximum distance, and sum of absolute differences. Available paramet-
ric correlation functions are summarized in Table 2. Usage is consistent across the correlation
functions, and spatial covariates, such as longitude and latitude, are allowed in the formula
specification; see Section 4 for illustration. These are extensions of the nlme spatial correla-
tion structures and offer users a consistent interface for geostatistical model specification in
the ramps package. The spatial correlation structures in nlme are not directly used because
they do not allow great circle distance, which is very commonly needed for spatial data.

Table 2: Spatial correlation functions included in the ramps package.

Spatial Correlation
corRExp exponential corRMatern Matérn
corRExpwr powered exponential corRRatio rational quadratic
corRGaus Gaussian corRSpher spherical
corRGneit Gneiting corRWave sine wave
corRLin linear

Spatio-Temporal Correlation
corRExp2 exponential corRExpwr2 powered exponential
corRExpwr2Dt temporally-integrated powered exponential

In addition to the supplied functions, users can create their own correlation structures for
use with the package by defining a new corSpatial class and accompanying constructor,
corMatrix, and coef method functions. Examples can be found in the source code.

3.2 Model Fitting Inferface

The main user-level function for geostatistical model fitting in the ramps package is geo-

ramps. This function implements the RAMPS algorithm for generating samples from the pos-
terior distribution of the model parameters in geostatistical model (2). Model specification
of the fixed effects (fixed), random effects (random), and spatial correlation (correlation)
arguments mirrors those in package nlme. Data fusion and heteroskedasticity are specified
by two separate arguments described as follows.
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The argument aggregate is designed to collect information on what sources of data (areal,
point-referenced, or both) are to be analyzed. It is fed by an optional list of elements: grid
— a data frame of coordinates to use for Monte Carlo integration over geographic blocks
at which areal measurements are available; and blockid — a character string specifying
the column by which to merge the areal measurements in the data (data) with the grid
coordinates in grid. Merging is performed only for blockid values that are common to both
datasets. All observations in data are treated as point-source measurements by default.

The argument variance specifies the types of the multiple variances for each variation
source. It is fed by an optional list of one-sided formulas, each of the form g where g

defines a grouping factor for the following elements: fixed for measurement error variances
Vε; random for random effects error variances Vγ; and spatial for spatial variances VZ . A
single variance is assumed in each case by default.

Another important argument is control, which controls the fitting process through initial
values and prior distributions on the parameters. It is fed by a ramps.control object
generated from the ramps.control function described next.

3.3 Fitting Control

The ramps.control function collects from the user the number of desired MCMC iterations
(iter), the prior distribution for model parameters (see below), optional sites at which
prediction is needed (z.monitor), and optional file names (file) for outputing the monitored
sample values.

Prior distributions need to be specified for all model parameters: fixed effects beta,
spatial correlation parameter phi, variance parameters for measurement errors sigma2.e,
spatial random effects sigma2.z, and non-spatial random effects sigma2.re). For each
group of these parameters, the param function takes inputs of initial values (init) and prior
density names (prior). Four prior distributions are available in the current version: "flat",
"invgamma", "normal", or "uniform". Hyperparameters of the prior distributions are passed
through the ... mechanism.

Tuning of the initial sizes of hypercubes/simplexes for slice sampling is specified by the
tuning argument in the param function. This argument takes a value between 0 and 1, which
defines the size of the initial hyperrectangle in each MCMC interation for spatial correlation
parameters φ and the size of the initial simplex for κ. Smaller values of tuning parameters
produce faster sampling at the expense of higher autocorrelation in sampler output. Only
the first tuning parameter in sigma2.e is used for tuning κ. Tuning parameter values are
ignored in sampling algorithms for the remaining model parameters.

4 Working Example

To illustrate the use of ramps for the joint analysis of areal and point-source observations,
a synthetic dataset was generated from model (2) using the county structure in the state
of Iowa, USA. There are na = 99 counties in Iowa. Areal observations are county averages
generated from a uniform grid of 391 sites — approximately 4 sites per county. Point-
source observations were generated such that sites may have more than one measurement,
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Figure 1: Grid (dots) and point-source (circles) sites included in the synthetic Iowa dataset.

which allows for site-specific non-spatial random effects. There are np = 600 point-source
observations from ns = 300 unique sites. The ns unique sites were generated from a uniform
distribution in Iowa. In Figure 1 the grid of 391 sites is depicted with circles and the 300
point-source measurement sites with dots.

An underlying spatial process was generated from a multivariate normal distribution using
an exponential correlation structure with φ = 10 and variance σ2

z = 0.36. The parameter
φ = 10 implies that the correlation between two sites drops to 0.05 at a distance of about 30
miles. Measurement errors were generated with variances σ2

ε,0 = 0.25 for point-source data
and σ2

ε,1 = 0.09 for areal data. Site-specific non-spatial random effects were generated with
variance σ2

γ = 0.16. One fixed effects covariate areal is included as an indicator for areal
observations. Its β coefficient was set equal to 0.5.

Simulated data are stored in the data frame simIowa, with columns y for the areal and
point-source observations, areal, lon and lat giving the longitude and latitude coordinates,
siteId as a unique site identifier, and weight containing weighting values for measurement
error variances. In order to combine the two types of observations in one dataset, lon,
lat, and siteId are assigned missing NA values for areal observations. A separate grid of
measurements sites for areal observations must be supplied to the georamps function. The
latitude and longitude coordinates of the 391 uniform grid sites in our example are stored
in the data frame simGrid as variables lon and lat. An additional indexing variable id

is included in both simGrid and simIowa for the purpose of matching grid sites to their
respective areal observations.
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R> print(simIowa)

areal y id siteId lon lat weights

1 1 0.580629645 1 NA NA NA 3

2 1 0.780788823 2 NA NA NA 3

3 1 0.568235784 3 NA NA NA 5

...

99 1 0.601925872 99 NA NA NA 2

100 0 1.291742056 100 1 -93.59640 41.22882 1

101 0 -0.056169094 101 2 -94.93968 41.35889 1

102 0 -0.015427496 102 3 -93.26138 42.63638 1

103 0 -0.307796412 103 4 -92.97224 42.65893 1

...

699 0 -1.540805765 699 87 -90.91782 42.44155 1

R> print(simGrid)

lon lat id county

1 -94.64620 41.35573 1 iowa,adair

2 -94.45018 41.35573 1 iowa,adair

3 -94.25416 41.35573 1 iowa,adair

4 -94.84222 40.96397 2 iowa,adams

5 -94.64620 40.96397 2 iowa,adams

6 -94.64620 41.15985 2 iowa,adams

7 -91.50987 43.11865 3 iowa,allamakee

8 -91.31384 43.11865 3 iowa,allamakee

9 -91.50987 43.31453 3 iowa,allamakee

10 -91.31384 43.31453 3 iowa,allamakee

11 -91.11782 43.31453 3 iowa,allamakee

...

390 -93.94283 42.72689 99 iowa,wright

391 -93.75258 42.72689 99 iowa,wright

The code below creates a control object of model fitting parameters that must be supplied
to the georamps function. Prior distributions on θ are: Unif(1, 60) for φ, IG(0.01, 0.01) for
σ2

ε,1, σ2
ε,2, σ2

z , and σ2
γ, and flat for β. Also specified are the number of MCMC iterations

(iter), coordinates of sites at which prediction is desired (z.monitor), and optional names
of external files to which to save MCMC output for model parameters and spatial random
effects (file).

control.fusion <- ramps.control(iter = 1100,

phi = param(NA, "uniform", min = 1, max = 60, tuning = 0.5),

sigma2.e = param(rep(NA, 2), "invgamma", shape = 0.01, scale = 0.01),

sigma2.z = param(NA, "invgamma", shape = 0.01, scale = 0.01),

sigma2.re = param(NA, "invgamma", shape = 0.01, scale = 0.01),

beta = param(rep(0, 2), "flat"),
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z.monitor = simGrid[, c("lon", "lat")],

file = c("params.txt", "z.txt"))

The initial values of all parameters except beta are specified as NA and, hence, will be
generated from the prior distributions. The tuning parameter for φ is specified as 0.5,
meaning that, in the slice sampling process, the edge width of the initial hyperrectangle for
φ is one half of the prior range 59.

The joint analysis of areal and point referenced data can now be performed with a call
to georamps:

fit.fusion <- georamps(fixed = y ~ areal,

random = ~ 1 | siteId,

correlation = corRExp(form = ~ lon + lat, metric = "haversine"),

variance = list(fixed = ~ areal),

data = simIowa, weights = weights,

aggregate = list(grid = simGrid, blockid = "id"),

control = control.fusion)

The model has one covariate (areal) as a fixed effect and a site-specific (siteId) random
effect. The spatial correlation structure is exponential, corRExp, with spatial distance com-
puted as great-circle distance (haversine). Of note is that, when the haversine metric is
used, the order of variables must be such that longitude is first and latitude is second. The
argument variance specifies grouping factors for each variance component associted with
the measurement errors (fixed), non-spatial random effects (random), and spatial random
effects (spatial). The argument aggregate is simply a list which gives the grid from which
the areal data are assumed to be obtained and the name of the variable with which the grid
and observed data can be merged. The aggregate argument is not used when analyzing
point-source-only data.

For comparison, we also performed analyses separately for the point-source data and for
the areal data. The code can be written by modifying that given previously for the fused
data analysis and is illustrated in the package help files. We ran 1100 MCMC iterations and
discarded the first 100. The remaining 1000 iterations were used for posterior inference. For
instance, posterior summaries for the joint analysis were obtained with the code given below.

fit.fusion1000 <- window(fit.fusion, iter = 101:1100)

summary(fit.fusion1000)

Table 3 summarizes the percentiles of the posterior samples from the three analyses.
Results in Table 3 indicate that the joint analysis gives narrower 95% credible intervals for
parameters common to all analyses; e.g., φ and σ2

Z .
Mapping of the spatial distribution is often of particular interest. There are two ways to

get MCMC samples of spatial random effects. The first way is set z.monitor in function
ramps.control equal to "TRUE" or a data frame of coordinates at which prediction is needed.
This way is designed for sites that contribute to the observed data. The second way is to use
the predict method on the ramps object returned by georamps. This way is designed for
sites that do not contributed to the observed data and is particularly useful when prediction
on a grid of sites is needed to draw maps after analyses of point-source data. For example,
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Table 3: Posterior parameter percentiles from the joint and separate analyses of simulated
areal and point-source observations

True Joint Analysis Point Data Analysis Areal Data Analysis

Parameter Values 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

φ 10.00 6.57 10.29 20.47 4.50 9.72 31.02 6.65 14.03 54.82
σ2

ε,1 0.25 0.22 0.26 0.30 0.22 0.26 0.31
σ2

ε,2 0.09 0.01 0.09 0.24 0.01 0.17 0.63
σ2

z 0.36 0.21 0.32 0.47 0.10 0.30 0.53 0.03 0.26 0.47
σ2

γ 0.16 0.03 0.17 0.30 0.01 0.20 0.40
Intercept 0.00 −0.11 0.04 0.19 −0.10 0.03 0.18
β 0.50 0.41 0.50 0.59 0.37 0.53 0.69

fit.fusion is the object returned from the joint analysis of areal and point-source data,
and thus prediction at a new grid of sites can be obtained via:

## Construct a new grid of spatial sites at which to do prediction

ia <- map("state", "iowa", plot = FALSE)

lon <- seq(min(ia$x, na.rm = TRUE), max(ia$x, na.rm = TRUE), length = 31)

lat <- seq(min(ia$y, na.rm = TRUE), max(ia$y, na.rm = TRUE), length = 20)

grid <- expand.grid(lon, lat)

## Create a data frame for in the predict method function

simPred <- data.frame(lon = grid[,1], lat = grid[,2])

## Obtain prediction for the point-source process

simPred$areal <- 0

pred.fusion0 <- predict(fit.fusion1000, simPred)

## Obtain prediction for the areal process

simPred$areal <- 1

pred.fusion1 <- predict(fit.fusion1000, simPred)

Bayesian output analysis (Smith, 2007) can be carried out to obtain posterior point
estimates and credible intervals, which can then be used to produce spatial maps. Figure 2
displays posterior medians and credible interval widths of the predictive distributions from
the three analyses, produced with calls to the plotting method in ramps of the form:

plot(pred.fusion0, func = median,

database = "state", regions = "iowa",

resolution = c(155, 100), bw = 0.5,

main = "Joint Analysis, Posterior Median",

xlab = "longitude", ylab = "latitude")

11



−96 −95 −94 −93 −92 −91 −90

40
.5

41
.5

42
.5

43
.5

Point−Only Analysis, Posterior Median

longitude

la
tit

ud
e

−0.4

−0.2

0.0

0.2

0.4

−96 −95 −94 −93 −92 −91 −90

40
.5

41
.5

42
.5

43
.5

Point−Only Analysis, 95% Credible Interval Width

longitude

la
tit

ud
e

1.6

1.8

2.0

2.2

2.4

−96 −95 −94 −93 −92 −91 −90

40
.5

41
.5

42
.5

43
.5

Joint Analysis, Posterior Median

longitude

la
tit

ud
e

−0.4

−0.2

0.0

0.2

0.4

−96 −95 −94 −93 −92 −91 −90

40
.5

41
.5

42
.5

43
.5

Joint Analysis, 95% Credible Interval Width

longitude

la
tit

ud
e

1.6

1.8

2.0

2.2

2.4

(a) Posterior spatial distributions of point-source observations.
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(b) Posterior spatial distributions of areal observations.

Figure 2: Comparison of joint analysis and separate analysis.
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plot(pred.fusion0, func = function(x) diff(quantile(x, c(0.025, 0.975))),

database = "state", regions = "iowa",

resolution = c(155, 100), bw = 0.5,

main = "Joint Analysis, 95% Credible Interval Width",

xlab = "longitude", ylab = "latitude")

Illustrated in the areal-only data analysis plots is the general tendency of aggregate data to
yield overly smooth prediction surfaces. By incorporating the point-source data in the joint
analysis, spatial detail is recovered. Furthermore, the combination of both sources of data
lead to more precise (narrower credible intervals) prediction.

In addition to color image maps of the spatial distribution, the plot function provides a
type argument that allows for the construction of wireframe ("w") and contour ("c") maps,
as shown in the code below and corresponding Figure 3.

## Wireframe plot of the posterior predictive median

plot(pred.fusion0, type = "w", col = rev(heat.colors(64)), add.legend = F,

func = function(x) median(x),

database = "state", regions = "iowa",

resolution = c(45, 30), bw = 0.5, theta = 330, phi = 30,

main = "Joint Analysis, Posterior Median",

xlab = "longitude", ylab = "latitude", zlab = "y")

## Contour plots of the posterior predictive median and interval width

plot(pred.fusion0, type = "c", col = rev(heat.colors(64)), labcex = 1,

func = function(x) median(x),

database = "state", regions = "iowa",

resolution = c(155, 100), bw = 0.5,

main = "Posterior Median",

xlab="longitude", ylab="latitude")

plot(pred.areal, type = "c", col = rev(heat.colors(64)), labcex = 1,

func = function(x) diff(quantile(x, c(0.025, 0.975))),

database = "state", regions = "iowa",

resolution = c(155, 100), bw = 0.5,

main = "95% Credible Interval Width",

xlab="longitude", ylab="latitude")

5 Performance Evaluation

Two other R packages, spBayes and geoR, include functions to perform Bayesian geosta-
tistical analysis to fit the simple model 1, which we use as a platform for performance
comparison with ramps. In the spBayes package, the ggt.sp function uses the Metropolis-
Hastings-within-Gibbs algorithm to draw samples from the joint posterior density of the
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Figure 3: Example wireframe and contour plots available in the ramps package.
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model parameters. In the geoR package, the krige.bayes function uses a reparametrized
model and two parameters are discretized. Specifically, the likelihood is reparameterized as

Y |β, σ2
z , τ

2
rel ∼ N

(
Xβ, σ2

z(Σ(φ) + τ 2
relI)

)
(8)

where τ 2
rel = σ2

e

σ2
z
. The joint posterior density is marginalized and factored into

p(φ, τ 2
rel|y)p(σ2

z |φ, τ 2
rel, y)p(β|σ2

z , φ, τ 2
rel, y).

Then the domains of φ and τ 2
rel are discretized, and the joint posterior marginal den-

sity p(φ, τ 2
rel|y) is evaluated on the resulting two-dimensional grid of values. MCMC sam-

pling then is conducted through the following steps at each iteration, say k: (1) draw the

(φ(k), τ
2,(k)
rel ) pair from the discretized p(φ, τ 2

rel|y); (2) draw σ
2,(k)
z from p(σ2

z |φ(k), τ
2,(k)
rel , y); (3)

draw β(k) from p(β|σ2,(k)
z , φ(k), τ

2,(k)
rel , y). The result is independent sampling from the dis-

cretized joint posterior density.
The grf function in geoR was used to simulate a dataset of size 800 at sites sampled

randomly on [0, 3]× [0, 3] with a spherical spatial correlation structure with range parameter
φ = 1, spatial variance σ2

z = 1, measurement-error variance σ2
e = 0.5, and overall mean

β = 0.
For the purpose of comparing the performance of the three packages, prior specifications

were selected to enable matching the prior densities for the parameterizations in the three
packages as closely as possible. Specifically, the prior densities for ramps and spBayes were
chosen as: σ2

e ∼ IG(αe = 3, βe = 3), σ2
z ∼ IG(αz = 3, βz = 3), and φ ∼ Unif(1/3, 3). Because

the definition of the correlation parameter φ in spBayes is the inverse of that in ramps and
geoR, the endpoints of the uniform prior on φ were chosen to ameliorate that difference.

In geoR, scaled inverse Chi-square is one choice of prior density for σ2
z ; specifying the

degrees of freedom as 6 and the variance as 2.25 matched the inverse gamma prior used for σ2
z

for the other two packages. The parameter φ was given a discrete uniform prior on 26 equally-
spaced points from 1/3 to 3. Finally, we note that if αe = βe and αz = βz in inverse gamma
prior densities for σ2

e and σ2
z , then the prior induced on τ 2

rel is F (2αz, 2αe). Consequently,
the prior used for τ 2

rel was discrete on 51 points spanning the 0.005 to 0.99 quantiles of the
F (6, 6) density, and with probability mass on each point proportional to the F (6, 6) density
evaluated there. Because the posterior density plots for φ and σ2

e produced from the resulting
posterior samples were very jagged due to the coarse grid used for the discretization, a second
run was done using 51 prior mass points for φ and 101 for τ 2

rel. These choices resulted in 5151
combinations of values of φ and τ 2

rel at which the joint posterior marginal density of these
two parameters had to be evaluated. Results from this finer grid are used for comparison.

MCMC samplers were run for 1000 iterations using each package, starting from the same
initial values of all parameters. All three packages give very similar quantiles of the MCMC
samples. The autocorrelation, however, are quite different, which is reflected in terms of
“effective sample size” (ESS) (Kass, Carlin, Gelman, and Neal, 1998), an established metric
for comparing performance of MCMC algorithms. ESS is the number of independent samples
that would carry the same amount of information as the available correlated samples. For a
given number of MCMC sampler iterations, the higher the autocorrelation in sampler output
for a particular parameter, the smaller the resulting effective sample size. Speed of sampling
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Table 4: Comparison results of effective sample size.

ramps: 73.4 min spBayes: 52.8 min geoR: 124.3 min

Parameter ESS ESS/min ESS ESS/min ESS ESS/min

β 1000.0 13.62 929.2 17.60 1000 8.06
φ 440.5 6.00 45.9 0.87 1000 8.06
σ2

e 553.9 7.55 37.5 0.71 1000 8.06
σ2

z 272.8 3.72 36.1 0.68 1000 8.06

algorithms can be compared fairly in terms of the effective samples per unit run time. The
effectiveSize function in the R package coda (Plummer, Best, Cowles, and Vines, 2006)
was used to calculate the effective sample size for each parameter from the output of 1000
MCMC iterations generated with each package.

The ESS and ESS per minute for the 1000 MCMC samples using the three packages are
summarized in Table 4. For the regression coefficient β, all three packages do well, giving
1000 (or 929 for spBayes) independent draws. For the spatial variance σ2

z , the most difficult
parameter to estimate, the ramps packages produces a sample worth 272.8 independent
draws, about 8 times as many as the spBayes package gives (36.1). When time is taken into
consideration, the ramps package takes 73.4 minutes while the spBayes packages takes 52.8
minutes. The ramps package gets 5.5 times as mant ESS per minute as the spBayes package
does. The geoR package produces higher ESS and ESS/min than the ramps package, but
recall that the posterior samples are obtained on a grid. The distribution is discrete and the
posterior density is jagged.

6 Discussion

The ramps package enables Bayesian geostatistical analysis with the very general class of
models described by (2). As exemplified in the performance evaluation, its implementation
of the RAMPS algorithm provides the advantage of low autocorrelation in MCMC output
and therefore more effective samples per unit time than competing methods. The SIMPLICE
algorithm which performs slice sampling based on simplexes can be generally useful for cases
where multiple variances are present (He, Hodges, and Carlin, 2007). As a geostatistical
tool, the package also provides smooth maps for either point-source or areal observations.
Furthermore, users have full control over specification of the grid from which areal observation
are assumed to be drawn.

In our experiments, the spatial correlation parameter φ has usually been hardest to
estimate and its posterior sample autocorrelation highest among all parameters. Conversely,
the fixed effects are easiest to estimate and their posterior samples almost independent. This
observation shows the importance of tuning the size of the initial hyperrectangle for φ and
simplex for κ in the slice sampling by setting tuning in param when defining the control
object with ramps.control. For large datasets, one may wish to choose a larger tuning
parameter for φ and a smaller tuning parameter for κ such that sampling of φ traverses the
sample space more quickly.
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The efficiency of the RAMPS algorithm is determined by the autocorrelation in sampling
the marginalized density p(φ, κ|Y ). For lower dimensional (φ, κ), it is possible to evaluate the
density on a grid first, which can then be used to produce close-to-independent samples. For
higher dimensional (φ, κ), however, such grid evaluation may not be feasible. An adaptive
procedure which takes advantage of the existing evaluations is worth future investigation.
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