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SUMMARY

We study the autocorrelation structure and the spectral density function of

aggregates from a discrete-time process. The underlying discrete-time process

is assumed to be a stationary AutoRegressive Fractionally Integrated Moving-

Average (ARFIMA) process, after suitable number of differencing if necessary.

We derive closed-form expressions for the limiting autocorrelation function and

the normalized spectral density of the aggregates, as the extent of aggregation

increases to infinity. These results are then used to assess the loss of forecasting

efficiency due to aggregation.

Some key words: Asymptotic efficiency of prediction, Autocorrelation, ARFIMA

models, Long memory, Spectral density.
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1 Introduction

Time series data are often (temporally) aggregated before analysis. Thus, a fun-

damental problem is to characterize what features of the basic series are inherited

by the aggregates. For a short-memory time series, the aggregate data approach

white noises with increasing aggregation, owing to the Central Limit Theorem.

However, Tiao (1972) obtained the interesting result that if the basic series is

nonstationary and follows an IMA(d, q) process with d ≥ 1, then, with increasing

aggregation, the model of the (appropriately re-scaled) aggregate data becomes

an IMA(d, d) model with the MA part uniquely determined by the differencing

order. Tiao (1972) made use of the limiting structure of the aggregates to as-

sess the loss of forecasting efficiency due to aggregation. Recently, there are some

works examining this problem assuming that the basic series is fractionally inte-

grated. Specifically, the basic series is assumed to be some autoregressive frac-

tionally integrated moving average (ARFIMA) process. Man & Tiao (working

paper, 2001a,b) found that temporal aggregation preserves the long-memory pa-

rameter of the basic series. They showed that the limiting structure of the tem-

poral aggregates is an ARFIMA(0, d,∞) model that can be approximated (and

is exact when d is an integer) by some ARFIMA(0, d, d̄) model, where d̄ is the

greatest integer strictly less than d + 1. They gave for the d-differenced aggre-

gates their limiting autocorrelation function with lag up to and including d̄ in

magnitude. They also investigated the approximate loss of 1-step forecasting ef-

ficiency due to aggregation. Ohanissian, Russell & Tsay (working paper, 2002,

available at www.crde.umontreal.ca/crde-cirano/russell.pdf) made use of the fact

that temporal aggregation of an ARFIMA model preserves the long-memory pa-

rameter to devise a test for spurious long-memory. Beran & Ocker (working paper,

2000, available at http : //netec.mcc.aac.uk/WoPEc/data/knzcofedp.html) de-

rived explicit formulas for the limiting autocorrelation function of the aggregates

of an ARFIMA(p, d, 0) model for the case −1/2 < d < 3/2 and d /∈ {0, 1/2, 1}.
Both Man & Tiao (working paper, 2001a,b) and Beran & Ocker (working

paper, 2000) used time domain methods in their investigations. Now, a long-

memory process can be usefully characterized in terms of the asymptotic behaviour

of its spectral density function around the origin. Here, we consider the second

moment structure of the temporally aggregated data, by using frequency-domain
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methods. The basic series is assumed to be an ARFIMA(p, d, q) process where d is

any real number that is greater than −1/2 and is not a half-integer. In particular,

we derive below the exact form of the spectral density function of the aggregate

data and its limiting normalized form with increasing aggregation. Interestingly,

the limiting normalized spectral density function are the same as that of temporal

aggregates of a Continuous-time Autoregressive Fractionally Integrated Moving-

average (CARFIMA(p, r + d− 1/2, q)) process; see Tsai & Chan (working paper,

2003) for details. Moreover, we derive the exact limiting autocorrelation function

of the aggregate data, which is identical to that of Beran & Ocker (2000) for

−1/2 < d < 3/2 and d /∈ {0, 1/2, 1}.
This paper is organized as follows. In § 2, we briefly review the ARFIMA

models. The main results on the limiting (normalized) spectral density and the

autocorrelation function are given in § 3. Finally, in § 4, we consider the fore-

casting of aggregates. If the the basic series is available, the future aggregates

can be forecasted more accurately than just using past aggregates. However, it

is often expensive to measure the basic series while the aggregates may be more

readily available. A natural question arises as to how much forecasting efficiency

can be gained by using the basic series relative to that based on aggregated data.

For one-step prediction, we show that, for the stationary case, the loss of fore-

casting efficiency due to aggregation is generally less than 10% and at most 20%.

However, the loss of forecasting efficiency increases drastically with the (fractional)

integration order, in the non-stationary case. All proofs are placed in an appendix.

2 ARFIMA(p, d, q) processes

The time series {Yt, t = 0,±1,±2, · · ·} is said to be a stationary ARFIMA(p, d, q)

process with d ∈ (−1/2, 1/2) if {Yt} is stationary and satisfies the difference equa-

tions,

φ(B)(1−B)dYt = θ(B)εt, (1)

where {εt} is white noise with mean 0 and variance σ2, φ(z) = 1−φ1z−· · ·−φpz
p,

θ(z) = 1+θ1z+ · · ·+θqz
q and B is the backward shift operator, (1−B)d is defined
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by the binomial series

(1−B)d =
∞∑

k=0

Γ(k − d)

Γ(k + 1)Γ(−d)
Bk;

see Granger and Joyeux (1980), Hosking (1981) and Brockwell & Davis (1991, p.

520). The roots of φ(B) = 0 and those of θ(B) = 0 are assumed to lie outside the

unit circle. The spectral density of {Yt} is given by

f(λ) =
σ2

2π

|θ(e−iλ))|2

|φ(e−iλ)|2
|1− e−iλ|−2d; (2)

Brockwell & Davis (1991, p. 525).

For a unified framework for studying non-stationary and/or long-memory

discrete-time process {Yt}, see Beran (1995), Ling & Li (1997) and Beran et al.

(1998). Throughout this paper, {Yt} is assumed to be an ARFIMA(p, r+d, q) pro-

cess, which means that the r-th difference of {Yt} is a stationary ARFIMA(p, d, q)

process. The sum r + d is referred to as its (fractional) integration order. The

process is stationary if and only if the integration order is between −1/2 and 1/2.

In the stationary case, i.e., r = 0, the process is of long-memory for 0 < d < 1/2,

of short memory if d = 0, and anti-persistent for −1/2 < d < 0.

3 Aggregates of discrete-time processes

Let r be a non-negative integer, −1/2 < d < 1/2, and {Yt, t = 0,±1,±2, · · ·} an

ARFIMA(p, r + d, q) process:

φ(B)(1−B)r+dYt = θ(B)εt, (3)

That is, after rth differencing, the process is a stationary ARFIMA(p, d, q) process

defined by equation (1). Let m ≥ 2 be an integer and

Xm
T =

mT∑
k=m(T−1)+1

Yk

be the non-overlapping m-temporal aggregates of {Yt}. Let ∇ = (1 − B) be the

differencing operator. Below are the main results on the spectral density of the

aggregates.
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THEOREM 1 Assume that {Yt} is an ARFIMA(p, r+d, q) model defined by (3).

(a) For r ≥ 0 and m = 2h + 1, the spectral density function of {∇rXm
T } is given

by

fr,m(w) = m−1{2(1− cosw)}r+1

×
h∑

k=−h

∣∣∣∣∣2 sin

(
w + 2kπ

2m

)∣∣∣∣∣
−2r−2d−2

g

(
w + 2kπ

2m

)
, (4)

where −π < w < π, and g(λ) = σ2(2π)−1|θ(e−iλ)|2|φ(e−iλ)|−2.

If m = 2h, the spectral density is given by equation (4) with the summation ranging

from −h+ 1 to h for −π < w < 0 and from −h to h− 1 for 0 < w < π.

(b) As m→ 0, the normalized spectral density function of {∇rXm
T } converges to

fr(w) = K{2(1− cosw)}r+1
∞∑

k=−∞
|w + 2kπ|−2r−2d−2, (5)

where K is the normalization constant ensuring that
∫ π
−π fr(w)dw = 1.

Note (i) both fr,m and fr are of O(w−2d) for |w| −→ 0, so that the aggregates and

their limits preserve the long-memory parameter of the underlying ARFIMA pro-

cess, and (ii) the limiting normalized spectral density function is independent of the

short-memory parameter, confirming the central limit effect. It can be seen from

the proof of Theorem 1 that part (b) of Theorem 1 actually holds for any discrete-

time process whose spectral density function is of the form w−2dg(w), where g is a

bounded, integrable function that is continuous at w = 0, with g(0) > 0. The con-

vergence of the normalized spectral density functions of the m-aggregates ensures

the convergence of the corresponding autocorrelation functions, and hence if the

basic series is Gaussian then after suitable re-scaling the m-aggregates converge to

some limiting Gaussian process, in finite-dimensional distributions; the re-scaling

is a function of m and is proportional to m−r−d−1/2, as can be seen from the proofs

of the theorem.

Tsai & Chan (working paper, 2003) considered the analogous problem for a

continuous-time process {Yt, t ∈ R}, where temporal aggregation is defined by in-

tegration, i.e., the aggregate series {Y ∆
n , n ∈ Z} is defined by Y ∆

n =
∫ n∆
(n−1)∆ Yudu.

They showed that for a continuous-time autoregressive fractionally integrated

moving-average (CARFIMA(p, r +H, q)) process, the normalized spectral density

function of {∇rY ∆
n } converges to the function fr(w) given by equation (5) with the
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fractional differencing parameter d replaced by H − 1/2. Moreover, Tsai & Chan

(working paper, 2003) derived a closed-form expression for the limiting autocorrela-

tion function of {∇rY ∆
n } as the extent of aggregation increases to infinity. Because

the rth difference process of the aggregates of the CARFIMA(p1, r + d + 1/2, q1)

and the ARFIMA(p2, r+ d, q2) model have the same expressions for their limiting

normalized spectral densities, they must share the same limiting autocorrelation

functions. Thus the following result follows directly from Theorem 2 of Tsai &

Chan (working paper, 2003).

THEOREM 2 Assume −1/2 < d < 1/2.

(a) As m→∞, the limiting autocorrelation function of {∇rXm
T } is given by

ρ∞(h) = K
r+1∑

k=−r−1

(−1)r+k+1

(
2r + 2

k + r + 1

)
|h+ k|2d+2r+1

= K
2r+2∑
k=0

(−1)k

(
2r + 2

k

)
|r + 1− h− k|2d+2r+1, (6)

where K is a normalization constant ensuring that ρ∞(0) = 1.

(b) For d = 0, the limiting model for {∇rXm
T , T ∈ Z} is an ARIMA(0,r,r) model.

The corresponding limiting autocorrelation function given by (6) can be simplified

to

ρ∞(h) = K
r−h∑
k=0

(−1)k

(
2r + 2

k

)
(r + 1− h− k)2r+1, if |h| ≤ r, (7)

and 0 otherwise, where K is a normalization constant ensuring that ρ∞(0) = 1.

Equation (7) is a special case of equation (6), by equation (0.154.6) of Gradshteyn

& Ryzhik (1994); namely, for any integers N , p, real number α and N ≥ p ≥ 1,

N∑
k=0

(−1)k

(
N

k

)
(α+ k)p−1 = 0. (8)

Using the self-similarity property of the fractional Brownian motion, Tsai & Chan

(working paper, 2003) showed that the limiting autocorrelation structure can be

realized by some functional of the standard fractional Brownian motion with the

fractional integration order equal to H = d+ r+ 1/2. Note also that equation (7)

is essentially the same as equation (2.8) of Tiao (1972). Below, we give some

examples illustrating the preceding theorem.

Example: For −1/2 < d < 1/2, the limiting autocorrelation function of the
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aggregates takes the form ρ∞(h) = K{|h−1|2d+1−2|h|2d+1+ |h+1|2d+1}, for r = 0.

For r = 1, ρ∞(h) = K{|h−2|2d+3−4|h−1|2d+3+6|h|2d+3−4|h+1|2d+3+|h+2|2d+3}.
For r=2, ρ∞(h) = K{|h− 3|2d+5− 6|h− 2|2d+5 + 15|h− 1|2d+5− 20|h|2d+5 + 15|h+

1|2d+5 − 6|h+ 2|2d+5 + |h+ 3|2d+5}.
Note that for r = 0 and r = 1, we recover the results of Beran & Ocker

(working paper, 2000).

4 Forecasting efficiency of aggregate series

Suppose we are interested in doing one step ahead prediction of the future aggregate

observation Xm
T+1. This can be done by using the aggregate series {Xm

s , s ≤ T}.
In principle, more accurate prediction can be obtained from the basic discrete-

time process {Yk, k ≤ Tm} if it is available. This raises the issue of what is the

possible gain one may obtain in the prediction using the basic series as compared

to just using past and current aggregates. Let σ2
1,r,d(m) be the one-step prediction

variance of Xm
T+1 by using the aggregate series {Xm

s , s ≤ T} and σ2
2,r,d(m) be the

corresponding prediction variance obtained by using the basic series. Following

Tiao (1972), we define the limiting efficiency of one-step ahead prediction using

the basic series as compared to that of using the temporally aggregated series to

be the limiting variance ratio ξ1(r, d) = limm→∞{σ2
1,r,d(m)/σ2

2,r,d(m)}.

THEOREM 3 For model (3) with a non-negative integer r and −1/2 < d < 1/2,

the limiting prediction variance ratio is given by

ξ1(r, d) = 2r+1(2r + 2d+ 1)Γ2(r + d+ 1)

× exp

r + 1

2π

∫ π

−π
log(1− cosλ)dλ+

1

2π

∫ π

−π
log

∞∑
k=−∞

|w + 2kπ|−2r−2d−2dw

 .
The computation of ξ1(r, d) requires evaluating the sum

∑∞
k=−∞ |w+2kπ|−2r−2d−2.

If d + r are integers, it is possible to evaluate this infinite sum using well-known

methods, see Chambers (1996). For example, by equations (822) and (824) of

Jolley (1961), we have the following two simplifications:

ξ1(0, 0) = 1; ξ1(1, 0) = exp
{

1

2π

∫ π

−π
log

{
3− 2 sin2

(
w

2

)}
dw
}
.

But with non-integer values of the exponent, some approximation method is re-

quired to compute the series. Here we adopt the method of Chambers (1996) as
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follows. First note that

1

2π

∫ π

−π
log

∞∑
k=−∞

|w + 2kπ|−2r−2d−2dw

= (−2r − 2H − 1) log(2π) + 2
∫ 1/2

0
log

∞∑
k=−∞

|y + k|−2r−2d−2dy.

The series
∑∞

k=−∞ |y + k|−2r−2d−2 can be approximated by
∑M

j=1(j − y)−2r−2d−2 +∑M
j=0(j+y)−2r−2d−2 +(2r+2d+1)−1{(M−y)−2r−2d−1 +(M+y)−2r−2d−1} for some

large M . The results summarized in Table 1 are based on M = 10, 000. Indeed,

the results based on M = 100 are essentially the same, suggesting that setting

M = 10, 000 provides an adequate approximation to the series.

Table 1 displays the variance ratio ξ1(r, d) for various r and d. For the pur-

pose of comparison, some of the corresponding values computed by Man & Tiao

(working paper, 2001) are included and enclosed in parentheses in the Table. It

is interesting to note that for r + d = 0, 1, 2, 3, 4, our results are identical to those

of Man & Tiao (working paper, 2001) up to four significant digits. Theorem 3

for computing ξ1(r, d) is not applicable for r + d = 0.5, 1.5, 2.5, 3.5, so the values

of ξ1(r, d) for r + d = 0.4999, 1.4999, 2.4999 and 3.4999 are computed. Note that

these values are close to but larger than those for r+d = 0.5, 1.5, 2.5, 3.5 of Man &

Tiao (working paper, 2001), respectively. However, because the ARFIMA model is

undefined when the fractional integration order r+d is a half-integer, the meaning

of ξ1(r, d) is unclear for such cases.

Table 1 indicates that for the stationary case, i.e., −1/2 < d + r < 1/2, the

gain of forecasting efficiency by using the basic series as compared to just using the

aggregates is at most 20% and generally less than 10% for −0.5 < d + r <= 0.3.

However, the efficiency gain increases rapidly with d+r for nonstationary processes.
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Table 1: Values of the one-step prediction variance ratio

ξ1(r, d) for various r and d (values of ξ1(r, d) produced by

Man & Tiao (working paper, 2001b)).

d\r 0 1 2 3 4

-0.4999 1.001 1.181 3.721 25.508 307.970

-0.4000 1.087 1.267 4.374 31.974 405.347

-0.3000 1.058 1.375 5.182 40.306 535.958

-0.2000 1.027 1.507 6.182 51.080 711.646

-0.1000 1.007 1.669 7.427 65.070 948.832

0.0000 1.000 1.866 8.982 83.311 1270.197

0.0000 (1.000) (1.866) (8.982) (83.312) (1270.260)

0.1000 1.007 2.106 10.932 107.190 1707.161

0.2000 1.028 2.398 13.390 138.580 2303.387

0.3000 1.063 2.753 16.501 180.005 3119.724

0.4000 1.114 3.188 20.455 234.888 4241.231

0.4999 1.181 3.718 25.490 307.717 5783.730

0.5000 (1.144) (3.457) (23.355) (279.086)
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Appendix 1

Proof of Theorem 1

Proof of (a) Note that ∇rYt admits the following spectral representation (equation

(4.11.19) of Priestley, 1981): ∇rYt =
∫ π
−π e

itwdZ(w) with E|dZ(w)|2 = f(w)dw

where f() is given by equation (2). Routine calculus shows that, for r ≥ 1

and k ≥ 1, Yk = p(k) +
∑k

i=1

∏r−1
j=1(k − i + j)∇rYi/(r − 1)!, where p(k) = Y0 +∑r−1

s=1

∑k
i=1

∏s−1
j=1(k − i + j)∇sY0/(s − 1)!,

∑0
j=1 is defined to be zero and

∏0
j=1 is

defined to be one. Because p(k) vanishes upon r-th differencing, we can assume

∇sY0 = 0 for all 0 ≤ s ≤ r − 1 without loss of generality. Thus, for T ≥ 2 and

r ≥ 1,

Xm
T =

mT∑
k=m(T−1)+1

Yk

=
mT∑

k=m(T−1)+1

1

(r − 1)!

k∑
t=1

r−1∏
j=1

(k − t+ j)∇rYt

=
1

(r − 1)!

m(T−1)+1∑
t=1

mT∑
k=m(T−1)+1

r−1∏
j=1

(k − t− j)∇rYt

+
1

(r − 1)!

mT∑
t=m(T−1)+2

mT∑
k=t

r−1∏
j=1

(k − t+ j)∇rYt.

Using the fact that
∑mT

k=t

∏r−1
j=1(k−t+j)=

∑mT−t
i=0

∏r−1
j=1(i+j) = r−1∑mT−t

i=0 {∏r
j=1(i+

j)−∏r
j=1(i + j − 1)} = r−1∑mT−t+1

i=1

∏r
j=1(i + j − 1)−r−1∑mT−t

i=1

∏r
j=1(i + j − 1)

= r−1∏r
j=1(mT − t+ j), we have, for T ≥ 2,

Xm
T =

1

(r − 1)!

m(T−1)+1∑
t=1

1

r

r∏
j=1

(mT − t+ j)− 1

r

r∏
j=1

(m(T − 1)− t+ j)

∇rYt

+
1

(r − 1)!

mT∑
t=m(T−1)+2

1

r

r∏
j=1

(mT − t+ j)∇rYt

= QT −QT−1,

where

QT =
1

r!

mT∑
t=1

r∏
j=1

(mT − t+ j)∇rYt

=
1

r!

mT∑
t=1

r∏
j=1

(mT − t+ j)
∫ π

−π
eitwdZ(w)

=
∫ π

−π
ξT,rdZ(w),
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and

ξT,r =
1

r!

mT∑
k=1

r∏
j=1

(mT − k + j)eiwk

= −
r∑

k=1

(1− e−iw)−k

(r − k + 1)!

r−k∏
s=0

(mT + s)− (1− e−iw)−r−1(1− eimTw),

the last equality following from routine computation and the fact that ξT,r+1 =

(1− e−iw)−1{ξT,r −
∏r

k=0(mT + k)/(r + 1)!}. Therefore, for T ≥ r + 2,

∇rXm
T = ∇r+1QT

=
r+1∑
i=0

(
r + 1

i

)
(−1)iQT−i

=
∫ π

−π

r+1∑
j=0

(
r + 1

j

)
(−1)jξT−j,rdZ(w)

=
∫ π

−π
ηTdZ(w),

where

ηT = −
r+1∑
j=0

(
r + 1

j

)
(−1)j

r∑
k=1

(1− e−iw)−k

(r − k + 1)!

r−k∏
s=0

{m(T − j) + s}

−
r+1∑
j=0

(
r + 1

j

)
(−1)j(1− e−iw)−r−1

(
1− eim(T−j)w

)
= I + II.

Note that for each k, the coefficient of (1−e−iw)−k/(r−k+1)! in I is
∑r+1

j=0

(
r+1

j

)
(−1)j∏r−k

s=0 {m(T − j) + s} =
∑r+1

j=0

(
r+1

j

)
(−1)j ∑r−k+1

i=1 aim
i(T − j)i = 0, where the ai’s

represent some constants and the last equality follows from equation (8). There-

fore, I = 0, and the fact that
∑r+1

j=0

(
r+1

j

)
(−1)j = 0 can be used to simplify ηT as

follows,

ηT =
r+1∑
j=0

(
r + 1

j

)
(−1)j(1− e−iw)−r−1eim(T−j)w

= (1− e−iw)−r−1eim(T−r−1)w(eimw − 1)r+1

= (1− eiw)−r−1eiw{mT−(m−1)(r+1)}(1− eimw)r+1,

which implies that, for r ≥ 0, T ≥ r + 2 and m = 2h+ 1,

∇rXm
T

=
∫ π

−π
(1− eiw)−r−1eiw{mT−(m−1)(r+1)}(1− eimw)r+1dZ(w)
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=
∫ (2h+1)π

−(2h+1)π
(1− eiy/m)−r−1eiy{mT−(m−1)(r+1)}/m(1− eiy)r+1dZ

(
y

m

)

=
h∑

s=−h

∫ π

−π

(
1− ei(w+2sπ)/m

)−r−1
eiwT ei(1−m)(r+1)(w+2sπ)/m(1− eiw)r+1dZ

(
w + 2sπ

m

)

=
∫ π

−π
eiwTdZm(w),

where

dZm(w) =
h∑

s=−h

(
1− ei(w+2sπ)/m

)−r−1
ei(1−m)(r+1)(w+2sπ)/m(1− eiw)r+1dZ

(
w + 2sπ

m

)
,

−π < w < π. Validity of the above equalities for all integer T follows from

stationarity. Therefore, by (4.11.19) of Priestley (1981),

fr,m(w)dw = E
(
|dZm(w)|2

)
=

1

m

h∑
k=−h

∣∣∣1− ei(w+2kπ)/m
∣∣∣−2r−2d−2 ∣∣∣1− eiw

∣∣∣2r+2
g

(
w + 2kπ

m

)
dw

=
1

m
{2(1− cosw)}r+1

h∑
k=−h

∣∣∣∣∣2 sin

(
w + 2kπ

2m

)∣∣∣∣∣
−2r−2d−2

g

(
w + 2kπ

m

)
dw,

−π < w < π. This proves the result for m = 2q + 1. The proof for the case of

m = 2q is similar and hence omitted.

Proof of (b) Without loss of generality, consider m = 2q + 1, then

m−2r−2d−1fr,m(w) = {2(1− cos(w)}r+1
q∑

k=−q

∣∣∣∣∣2m sin

(
w + 2kπ

2m

)∣∣∣∣∣
−2r−2d−2

g

(
w + 2kπ

2m

)
,

which tends to {2(1 − cos(w)}r+1∑q
k=−q |w + 2kπ|−2r−2d−2g(0) by the dominated

convergence theorem, owing to (i) the inequality | sin(w)| ≤ |w|, (ii) the bounded-

ness of g and its continuity at 0, and (iii) the fact that
∑∞

k=−∞ |w+2kπ|−2r−2d−2 <

∞ for r ≥ 0 and −1/2 < d < 1/2. The convergence of the normalization constants

of fr,m to K follows along similar arguments.

Proof of Theorem 3

The theorem follows readily from the expressions of σ2
i,r,d(m), i = 1, 2, to be

derived below. Routine algebra shows that, for r ≥ 1, the one-step prediction error

of ∇rXm
T+1 equals that of Xm

T+1. Hence, the one-step prediction variance of Xm
T+1

by using the aggregate series {Xm
s , s ≤ T} can be computed by Kolmogorov’s
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formula (Theorem 5.8.1. of Brockwell & Davis, 1991):

σ2
1,r,d(m) = 2π exp

{
1

2π

∫ π

−π
log fr,m(λ)dλ

}
= m−12r+2π exp

{
r + 1

2π

∫ π

−π
log(1− cosλ)dλ+

1

2π

∫ π

−π
logψm(λ)dλ

}
,

where

ψm(w) =
q∑

k=−q

∣∣∣∣∣2 sin

(
w + 2kπ

2m

)∣∣∣∣∣
−2r−2d−2

g

(
w + 2kπ

2m

)
.

Consequently,

σ2
1,r,d(m) = m2r+2d+12r+1σ2|θ(1)|2|φ(1)|−2

× exp

r + 1

2π

∫ π

−π
log(1− cosλ)dλ+

1

2π

∫ π

−π
log

∞∑
k=−∞

|w + 2kπ|−2r−2d−2dw


+o(m2r+2d+1).

Now, we follow the technique of Man & Tiao (working paper, 2001) to compute

σ2
2,r,d(m). For simplicity, write d1 for d + r, and

(
d1+k−1

k

)
for Γ(d1 + k)/{Γ(k +

1)Γ(d1)}. First, consider the case that r = 0 and−1/2 < d < 1/2. Let
∑∞

j=0 χjz
j =

θ(z)/φ(z) and t ∧ s = min(t, s). Clearly, χj → 0 exponentially fast. Then

Xm
T =

m−1∑
i=0

Bi(1−B)−d1θ(B)φ−1(B)εTm

=
m−1∑
i=0

Bi
∞∑

j=0

(
d1 + j − 1

j

)
Bj

∞∑
s=0

χsB
sεTm

=
∞∑

k=0

k∑
s=0

(k−s)∧(m−1)∑
i=0

χs

(
d1 + k − s− i− 1

k − s− i

)
BkεTm.

Let

ψk =
k∑

s=0

(k−s)∧(m−1)∑
i=0

χs

(
d1 + k − s− i− 1

k − s− i

)
.

Then

Xm
T+1 =

(
m−1∑
k=0

+
∞∑

k=m

)
ψkB

kε(T+1)m,

and σ2
2,r,d(m) = σ2∑m−1

k=0 ψ
2
k. Note that the preceding formula continues to hold

even for the nonstationary case when d1 ≥ 1/2 (Brockwell & Davis, 1991, p. 318).
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Using the equality that
∑k

j=0

(
g+j−1

j

)
=
(

k+g
k

)
, we have, for k ≤ m− 1,

ψk =
k∑

s=0

k−s∑
i=0

χs

(
d1 + k − i− s− 1

k − i− s

)

=
k∑

s=0

k−s∑
j=0

χs

(
d1 + j − 1

j

)

=
k∑

s=0

χs

(
d1 + k − s

k − s

)
.

For large k and fixed g, Stirling’s formula (Feller 1968, p.52) implies that
(

g+k
k

)
≈

kg/Γ(g + 1), i.e. the ratio of the two expressions is bounded and equals 1 + o(1).

Hence,

ψk = kd1

k∑
s=0

χs
(1− s/k)d1

Γ(d1 + 1)
(1 + o(1)) = (1 + o(1))

kd1

Γ(d1 + 1)

k∑
s=0

χs.

Therefore, for large m,

σ2
2,r,d(m) = σ2

m−1∑
k=0

ψ2
k

=
σ2

Γ2(d1 + 1)

m−1∑
k=0


(

k∑
s=0

χs

)2

k2d1(1 + o(1))


=

σ2m2d1+1

Γ2(d1 + 1)

(
m−1∑
s=0

χs

)2 m−1∑
k=0


( ∑k

s=0 χs∑m−1
s=0 χs

)2 (
k

m

)2d1 1

m
(1 + o(1))


=

σ2
(∑m−1

s=0 χs

)2
m2d1+1

Γ2(d1 + 1)

(∫ 1

0
x2d1dx

)
(1 + o(1))

=
σ2 (

∑∞
s=0 χs)

2m2d1+1

(2d1 + 1)Γ2(d1 + 1)
(1 + o(1)).

But
∑∞

s=0 χs = |θ(1)|/|φ(1)|. This proves the desired result.
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