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Abstract

We consider a class of Langevin diffusions with state-dependent volatility. The volatility of

the diffusion is chosen so as to make the stationary distribution of the diffusion with respect

to its natural clock, a heated version of the stationary density of interest. The motivation

behind this construction is the desire to construct uniformly ergodic diffusions with required

stationary densities. Discrete time algorithms constructed by Hastings accept reject mechanisms

are constructed from discretisations of the algorithms, and the properties of these algorithms

are investigated.

KEYWORDS: Markov chain Monte Carlo, Langevin models, tempered diffusions, exponential

ergodicity, Ozaki discretisation

1 Introduction

Recent interest in Langevin diffusions and their discretely simulated counterparts has

been generated largely by their use as Markov chain Monte Carlo (MCMC) techniques

(see for example [1, 20, 23, 24]). Since the main motivation for this work is in

MCMC, interest focuses largely of the stability of the stationary distribution of the

processes concerned and robustness properties (such as geometric ergodicity) of their

convergence properties to stationarity.

This paper will investigate the theoretical properties of three types of stochastic pro-

cesses related to Langevin diffusions. Firstly we shall consider the properties of the

diffusions themselves. As noted first in Roberts and Tweedie (1996) and later in
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Stramer and Tweedie (1999), properties of discrete approximations to these continu-

ous time diffusions can be radically different from those of the original diffusion. The

properties of these discretisations are investigated here.

One way of ensuring that at least the stationary distribution is stable to discretisation

is to introduce a Metropolis-Hastings accept/reject step. We also investigate the

properties of these algorithms.

In Section 2, we discuss the convergence behaviour of the general diffusions, and in

Section 3, the more specific tempered diffusions are analysed. Section 4 analyses

the discretised diffusions obtained without using accept reject mechanisms, and in

Section 5, we introduce the corresponding Metropolis-Hastings algorithms. Section 6

considers the behaviour of the various algorithms introduced in a multimodal context,

and in Section 7 a Bayesian analysis of a multinomial logit model is carried out using

the methods we introduce. Throughout, we give simulations to illustrate aspects of

our methods’ performance.

2 Diffusions: general results

2.1 Definitions

We assume that π is a continuous density function on IRn, which we know only up to

a constant of proportionality. More precisely, we shall assume either that we know a

function πu(x) = kπ(x) for some unknown constant k > 0, or that we have available

∇ log π = ∇ log πu, where ∇ is the usual differential operator (∇f(x))i = df/dxi. We

also assume that π has locally uniformly Holder continuous second partial deriva-

tives. We consider a broad class of diffusions on IRn which have a given stationary

distribution with density π. Such a diffusion is defined as a solution to the stochastic

differential equation

dX(t) = b(X(t))dt + σ(X(t))dB(t), X(0) = x ∈ IRn, (1)
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where B is an n dimensional Brownian motion, a(x) = σ(x)σ′(x) is an n × n sym-

metric positive definite matrix with entries
∂2aij

∂xk∂xl
which are locally uniformly Holder

continuous on IRn, and

bi(x) =
1

2

∑n

j=1
aij(x)∂ log π(x)/∂xj + δ

1

2 (x)
n
∑

j=1

∂

∂xj

(aij(x)δ−
1

2 (x)),

where δ(x) = det a(x). It is well known that X has π as its unique invariant measure

(see [9]) so long as X is non-explosive. Criteria for non-explosion of diffusions are

given in [25].

We call X satisfying (1) a L diffusion (Langevin diffusion) for π, with scaling σ. The

LC diffusion (Langevin diffusion with constant variance coefficient) takes σ to be cI,

where c > 0 is a constant and I is the n × n identity matrix.

Another important special case of L diffusions for π, is obtained by choosing the

diffusion matrix a(x) = σ(x)σ′(x) as a(x) = π−2d
u (x)I, where 0 ≤ d ≤ 1

2
. From (1),

b(x) =
1 − 2d

2
a(x)∇ log πu(x). (2)

We call these processes LT diffusions (Langevin tempered algorithms). In Section 3 we

shall motivate this special case and the reason for calling these diffusions ‘tempered’.

2.2 General convergence results

As in [12, 3], we formally define V -uniform ergodicity, when V ≥ 1 is a measurable

function on IRn, by requiring that for all x ∈ IRn

‖P t
X(x, ·) − π‖V ≤ V (x)Rρt, t ≥ 0, (3)

for some R < ∞, ρ < 1, where P t
X(x, A) = P (Xt ∈ A|X0 = x), t ≥ 0. We call X(t)

exponentially ergodic if it is V -uniformly ergodic for some such V .

We now give sufficient conditions for the diffusion Xt defined as in (1) to be V -

exponentially ergodic.
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Theorem 2.1 Let X(t) be defined as a solution to (1). If there exists S > 0 such

that |π(x)| is bounded for |x| ≥ S, then X(t) is V -uniformly ergodic for a V ≥ 1 that

is twice continuously differentiable if

LV ≤ −cV + b1lC (4)

for some constants b, c > 0, and some compact non-empty set C, where

LV (x) :=
∑

bi(x)
∂V (x)

∂xi
+

1

2

∑

i,j

ai,j(x)
∂2V (x)

∂xi∂xj
(5)

is the mean velocity of V (X(t)) at X(t) = x.

Proof The proof follows directly from [13] and using a similar argument to the proof

of Theorem 2.1 in [19]. ut

3 Langevin Tempered (LT) Diffusions

3.1 Motivation

We now motivate the choice of a(x) = π−2d
u (x)I as a diffusion matrix. The diffusion

X can be thought of as a time change of a tempered diffusion Z, defined by

dZt =
1 − 2d

2
∇ log πu(Zt)dt + dBt (6)

which is the simple Langevin diffusion for the tempered (heated) density πd(x) ∝

π1−2d(x). It can be shown (see [21] p. 175) that Xt ≡ Zτ(t) where τ(t) = inf{s > 0 :

ϕs > t} and ϕs =
∫ s
0 πd

u(Zs)ds.

Thus X is the diffusion process satisfying the SDE

dXt =
1 − 2d

2
π−2d

u (Xt)∇ log πu(Xt) + π−d
u (Xt)dBt . (7)

Continuing the analogy with annealing or tempering, (1 − 2d)−1 plays the role of a

temperature, since Z from (6) has stationary distribution π(z)(1−2d). Heated Markov

chains typically have better convergence properties than the ordinary unheated chains,
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for instance reducing the worst affects of multimodality. Thus X compensates for the

higher temperature, and therefore the correspondingly disproportionately large time

spent in areas of low density, by speeding up in these areas, (see [5], [11] and [15]).

Certain special cases are worth noting. The case d = 0 is of course the simple Langevin

diffusion. The other extreme is the case d = 1/2. This is the infinite temperature

case, so that Z is just Brownian motion, with no invariant probability measure. X

satisfies

dXt = cπ− 1

2 (Xt)dBt (8)

for some c > 0, so is actually a local martingale.

For the one-dimensional case, we can justify our choice of a(x) in a different way.

Suppose we are interested in constructing a family of diffusions which are all non-

explosive and uniformly ergodic, at least for as large a class of target densities as

possible. It is more straightforward to construct diffusions which are uniformly ergodic

on bounded domains. Therefore consider the following class of transformations. Let

gd(x) =
∫ x

−∞
πd(z)dz (9)

and denote the inverse of gd by hd. Let d > 0 so that for a large family of target

densities, gd(∞) < ∞ at least for a suitable collection of possible values for d. In the

sequel we make this assumption.

If X is a random variable with density π then Y = gd(X) has density

π̃(y) = π1−2d(hd(y)), y ∈ (gd(−∞), gd(∞)). (10)

Consider the simple Langevin diffusion for Y , which satisfies the following SDE (at

least on gd(−∞) < y < gd(∞)):

dYt = b(Yt)dt + dBt (11)

where

b(y) =
1

2

d(log π̃(y))

dy
=

(1 − 2d)

2
∇ log π(hd(y)).
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Now, letting Xt = hd(Yt), {Xt} is the LT diffusion defined as in (1) with a(x) =

π−2d(x), and b(x) is defined as in (2).

For concreteness, we shall make the following assumption for the one-dimensional case

which is not strictly necessary in general, though simplifies the exposition. When this

assumption is weakened, correspondingly weaker versions of the results that follow

are available but are not pursued here.

∫

IR
πs

u(x)dx < ∞ for s > 0 (12)

Lemma 3.1 Let X(t) be a one-dimensional LT diffusion. Assuming (12), X(t) is

non-explosive if and only if 0 ≤ d ≤ 1/2.

Proof The question of non-explosivity is explored using the time-changed diffusion

with unit volatility (a diffusion viewed through its natural clock). Assume also that

τ(t) = inf{u > 0 : ϕu > t}, where ϕu =
∫ u
0 π−2d

u (s)ds. Then, Zt ≡ Xτ(t) satisfies the

SDE

dZt =

(

1 − 2d

2
∇ log πu(Zt)

)

dt + dBs (13)

which is non-explosive if and only if

∫ ∞

y
π2d−1

u (x)dx = ∞ and
∫ y

−∞
π2d−1

u (x)dx = ∞ (14)

for some (and hence for all) y (see for example [8] or [21]). Hence, by (12), (14) holds

if d ≤ 1/2 and does not hold if d > 1/2. ut

This result is hardly surprising on reference to the sign of the drift in (2), since for

d > 1/2, the process actually drifts away from the modes of the distribution.

Lemma 3.2 Let X be defined as in Lemma 3.1 and let Y = gd(X), where gd is defined

as in (9). Then, under the assumption that (12) holds, X and Y are uniformly ergodic

if 0 < d ≤ 1/2.
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Proof For a one-dimensional diffusion on a finite domain, Y , uniform ergodicity

corresponds to showing that 0 and gd(∞) are entrance boundaries. However this is

clear by basic properties of the one-dimensional diffusions, see for example [21].

ut

3.2 Exponential rates of convergence for LT diffusions

We now give sufficient conditions for LT diffusions to be V -exponentially ergodic.

Theorem 3.3 Let X(t) be a LT diffusion for a given unnormalised density πu.

A. If there exists S > 0 such that |πu(x)| is bounded for |x| ≥ S and 0 < r < 1 − 2d

such that

lim inf |x|→∞πu
−2d(x)[((1 − 2d) − r)|∇ log πu(x)|2 + ∇2 log πu(x)] > 0, (15)

then the process is exponentially ergodic with V = π−r. (For f : IRn → IR,

∇2f =
∑n

i=1
∂2

∂x2

i

f).

B. If there exists a positive definite matrix B such that for some D > 0 and R > 0

π−2d(x)[2(Bx, 1
2
∇ log π(x)(1− 2d))+ tr(B)] ≤ −D(Bx, x) for ‖x‖ > R, (16)

then the process is exponentially ergodic with V = (Bx, x) + 1.

Proof If we choose the test function V = π−r, 0 < r < 1 − 2d, then from the

definition of LV (x), (5) we have that

2LV (x) ∝ πu
−2d(x)V (x)[(r2 − r(1 − 2d))|∇ log πu(x)|2 − r∇2 log πu(x)].

(4) follows now directly from (15) so that by Theorem 6.1 of [13] the diffusion is

exponentially ergodic.

If we choose the test function V (x) = (Bx, x) + 1, then (4) follows now directly from

(16).

The proof follows now directly from Theorem 2.1. ut
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Example 1 The Multidimensional Exponential Class Pm: We consider the

exponential family Pm introduced and studied in [20, 19], and consisting of sufficiently

smooth densities with the form (at least for large |x|)

π(x) ∝ e−p(x) (17)

where p is a polynomial of degree m of the following type. Decompose p as p =

pm + qm−1 where qm−1 is a polynomial of degree ≤ m− 1, and pm consists of only the

full degree terms in p. Then we say that π ∈ Pm if p(x) → ∞ as |x| → ∞: this is a

positive definiteness condition, and we note that this condition requires that m ≥ 2.

We now show that if X(t) is the LT diffusion with 0 < d < 1
2

for π ∈ Pm, then X(t)

is exponentially ergodic. As noted in [20], by the positive definiteness condition

lim inf |x|→∞
|∇ log π(x)|2

|∇2 log π(x)|
= ∞

and

lim inf |x|→∞(1 − 2d) − r)|∇ log π(x)|2 > 0,

for all 0 < d < 1
2
, 0 < r < 1 − 2d. We also note that lim|x|→∞ πu

−2d(x) = ∞. Thus

condition A of Theorem 3.3 holds and X(t) is exponentially ergodic.

Example 2 Multivariate t distribution: Suppose that π ∼ tν(µ, Σ), the multi-

variate t distribution with ν > 2 degrees of freedom, location µ = (µ1, . . . , µn) and

symmetric positive definite n × n scale matrix Σ that is,

π(x) ∝ (ν + (x − µ)T Σ−1(x − µ))−(ν+n)/2, x ∈ IRn. (18)

From Theorem 2.4 of [19] we have that the LC diffusion is not exponentially ergodic

since |∇ log(x)| → 0 when |x| → ∞.

For LT diffusions with a(x) = ν + (x − µ)TΣ−1(x − µ) ∝ π−2d, and b(x) = −ν+n
2

(1 −

2
ν+n

)Σ−1(x−µ) we can easily show that the LT diffusion is exponentially ergodic when

ν + n > 2, (16) holds with B = I. Thus, with d = 1
ν+n

> 0, we obtain exponential

convergence to the density π.
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4 Discretisations

In practice, in simulating the diffusion sample path we cannot follow the dynamic

defined by equation (1) exactly, but must instead discretise equation (1). Our in-

terest in this section is to consider the effects of this discretisation on the ergodicity

properties of the resulting discrete Markov chain.

4.1 Euler discretisation

The natural discretisation of a L diffusion for π, with scaling σ is the Euler approxi-

mation {En}, defined as follows:

En+1 = En + b(En)h + σ(En)h1/2Zn+1 (19)

where h > 0 is a suitably small constant, and {Zi, i ∈ ZZ+} are independent N(0, I)

random variables. We call {En} satisfying (19) a LE discretisation for a L diffusion.

The LEC (LET) discretisation is the Euler discretisation for the LC (LT) diffusion.

4.2 Ozaki discretisation

Stramer and Tweedie ([23]) propose the use of discretisation schemes as proposed by

Ozaki and Shoji ([16, 22]). For the drift term, the Ozaki approximation represents a

higher order approximation than the Euler scheme.

The Ozaki algorithm described in [22] represents a linear approximation of the diffu-

sion drift b, together with a constant approximation of the volatility σ over each small

time interval kh ≤ t < (k +1)h, k = 0, 1, . . .. Taylor expansion over the time interval

[kh, (k + 1)h) is used to obtain that b(X(t)) ≈ b(X(kh)) + J(X(kh))(X(t) − X(kh))

where J(x) = ∂(b1,···,bn)
∂(x1,...,xn)

is the Jacobian of b(x). It is assumed that J(·) is not zero,

and that it is continuous through the remainder of the paper.

Thus on a small time interval,

b(X(t)) ≈ J(X(kh))Xt + c(X(kh)); σ(X(t)) ≈ σ(X(kh)), (20)

9



where c(X(kh)) = b(X(kh)) − J(X(kh))X(kh). Let {Ot} be a solution to the linear

stochastic differential equation,

d(O(t)) = (J(O(kh))O(t)+ c(O(kh)))dt+σ(O(kh))dW (t) kh ≤ t < (k +1)h. (21)

This can be solved explicitly, leading to a time-homogeneous diffusion approximation

in continuous time, or a Markov chain if we consider the process {On}
∞
n=1 which is

defined as On = O(nh). It is easy to check that the transition distribution Qh(x, ·)

of On+1 given On = x, x ∈ IRn, is normal with mean µx,h and covariance matrix ax,h

defined as follows:

µx,h = x + J−1(x)[exp(J(x)h) − I]b(x),

ax,h =
∫ h
0 exp{J(x)u}a(x) exp{J ′(x)u}du.

(22)

It is shown in [22] that if J(x) has no pair of reverse-sign eigenvalues, (i.e. if λ is

an eigenvalue of J(x), then −λ is not an eigenvalue of J(x)) then ax,h is the unique

solution to the linear matrix equation

J(x)ax,h + ax,hJ
′(x) = exp{J(x)h}a(x) exp{J ′(x)h} − a(x), (23)

which simplifies to

ax,h = 1
2
a(x)J−1(x)[exp(2J(x)h) − I], (24)

under the condition that

(J(x)ax,h)
′ = ax,hJ(x). (25)

We call LO, LOC, and LOT discretisations the Ozaki discretisations for L, LC, and

LT diffusions respectively.

4.3 Geometric Convergence of Discretisations

We now consider convergence properties of LO discretisations. We will need the

following notations: if x =
[

x1 · · · xn

]

and y =
[

y1 · · · yn

]

then we use the

inner product notation (x, y) =
∑n

i=1 xi yi. Our standard methodology will be to use

drift function techniques as described in [12].
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Theorem 4.1 Let {Ot} be the Ozaki discretisation as in (21). Assume that

1. the eigenvalues of J(x) + J ′(x) are all less than or equal to −λ < 0 for |x| > M ,

M > 0.

2. |c(x)| = |b(x) − J(x)x| is bounded.

3. tr(σ(x)σ′(x)) is bounded.

Then the LO discretisation is geometrically ergodic with V (x) = |x|2+1, for all h > 0.

Proof It is easy to check that {On} is µLeb-irreducible and from Proposition 6.1.2

of [12] it is weak Feller. Hence, from Theorem 15.0.1 of [12] it suffices for geometric

ergodicity to find a test function V ≥ 1 such that for some compact set C and some

α < 1, b < ∞
∫

Qh(x, dy)V (y) ≤ αV (x) + b1lC(x); (26)

Although the transition distribution of {Ok, k = 0, 1, 2, . . .} = {O(kh), k = 0, 1, 2, . . .}

is explicitly available from (22), it turns out to be more convenient to work directly

with (21) in trying to derive a statement such as (26).

Now we shall write LV,x(y) for the continuous time generator of the linear SDE given

by (21) on the time interval kh < t < (k + 1)h, conditional on Ok = x, applied to the

function V at the point y. We shall use the drift function V (y) = |y|2 + 1. From (21)

it is easy to check that

LV,x(y) = (2y, J(x)y + c(x)) + tr(σ(x)σ′(x)).

Next note that for all y ∈ IRn,

(2y, J(x)y + c(x)) = y′(J(x) + J ′(x))y + 2y′c(x) ≤ −2λ|y|2 + 2y′c(x)
≤ −2λ|y|2 + d|y|,

for some constant d > 0. Thus

LV,x(y) ≤ −λ0‖y‖
2 + K (27)
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for some K > 0, and λ0 > 0. Moreover, this statement can be made uniformly in x

for x outside a suitably large compact set. By the continuity of J , we can assume in

fact that (27) holds uniformly for all x and y (with a possibly inflated value for K).

Standard martingale arguments now apply to (27) (as in [13]) to give a statement of

the form (26) with α = e−hλ0 and b = K/λ0.

ut

In the next example we show that geometric ergodicity for the LE discretisations

depends more on h than for the LO discretisations.

Example 3 Gaussian tails: We consider a special case of the exponential family

Pm introduced in Example 1. We assume that π has Gaussian tails and compare

the LEC discretisation with the LOC discretisation. From Theorem 4.1, LOC is

exponentially ergodic for all h > 0 while LEC is not always exponentially ergodic

as is illustrated by the following simple example. Let π be the density of bivariate

normal distribution, defined as,

π(x) ∝ exp
(

−xT Σ−1x/2
)

, x ∈ IR2 (28)

where

Σ =

[

0.001 0
0 9

]

.

Then,

En+1|En = x ∼ N(x − Σ−1xh/2, hI) (29)

where {En} is the LEC discretisation and

On+1|On = x ∼ N(µx,h, ax,h) (30)

where

µx,h = x + Σ(exp(−Σ−1h/2) − I)Σ−1x, ax,h = −Σ(exp(−Σ−1h) − I)

and {On} is the LOC discretisation.
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From Theorem 3.1 (b) in [19] we have that the LEC discretisation is transient when

h ≥ 0.002.

In contrast, from Theorem 4.1 the LEC discretisation is geometric ergodic for all

h > 0. In addition, the variance of the step size for the two components of the

algorithm is different. If we choose h to be big enough, then as desired, the variance

is “small” for the first component of the LOC discretisation and bigger for the second

component.

Note that the problems that Euler schemes encounter in sampling from target densi-

ties with very heterogenous scales can be examined theoretically, see [18].

5 Algorithms: definitions and results

In practice, the behaviour of the discrete approximations to (1) may be very different

from that of the diffusion, (see for example [20] for the Euler approximations). Thus

we use the discrete approximation as a candidate Markov chain for the Metropolis-

Hastings algorithm, to compensate for the discretisation, and ensure that π retains

its status as the correct stationary distribution.

We denote the transition kernel of the discrete approximation to the diffusion by

Q(x, · ), x ∈ IRn. A “candidate transition” to y, generated according to the density

q(x, y), is then accepted with probability α(x, y), given by

α(x, y) =

{

min{πu(y)
πu(x)

q(y,x)
q(x,y)

, 1} πu(x)q(x, y) > 0

1 πu(x)q(x, y) = 0
(31)

Thus actual transitions of the M-H chain take place according to a law P (x, · ) with

transition densities p(x, y) = q(x, y)α(x, y), y 6= x and with probability of remaining

at the same point given by

r(x) = P (x, {x}) =
∫

q(x, y)[1 − α(x, y)]dy. (32)

The crucial property of the M-H algorithm is that, with this choice of α, the target π

is invariant for the operator P : that is, π(A) =
∫

π(x)P (x, A)dx for all x ∈ X, A ∈ B.
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We will call the Metropolised version of a LEC discretisation HLEC (named MALA

in [19]) and the Metropolised version of a LO discretisation HLO (named MADA in

[24]).

Two key results that link the convergence properties of discretisations and Metropolised

discretisations chains are brought together in the following result, see [24], and [20].

Theorem 5.1 (a) Suppose π(x) is positive and continuous, and the transition den-

sity q(x, y) is positive and continuous in both variables. Let P be the transition

law of the Metropolised chain formed from Q. If α(x, y) is such that

r(x) = P (x, {x}) → 0, |x| → ∞ (33)

then If Q is geometrically ergodic then P is geometrically ergodic.

(b.) Suppose that ess sup r(x) = 1 (where the essential supremum is taken with

respect to π), then the algorithm is not geometrically ergodic.

Example 3 (Gaussian tails): continuation

We again assumed that π has Gaussian tails described by (28) and compared the

HLEC algorithm with the HLOC algorithm. From Theorem 4.1 and Theorem 5.1

(a), HLOC is geometrically ergodic for all h > 0 and from Theorem 3.1 (b) in [19]

and Theorem 5.1 (a), HLEC is geometrically ergodic for all h < 0.0002.

We assumed that π is defined as in (28). Figure 1 (a) gives trace plots for the first

(left) and second (right) components of the HLEC algorithm with h = 0.0019 and

a starting point (100, 100)′. It shows that convergence rate is very slow since h is

“too small” for the second component. Figure 1 (b) give trace plots for the HLEC

algorithm with h = 0.005 and a starting point (0, 0)′. It shows that convergence rate

is slow since h = 0.005 is still not “big enough” for the second component. Figure 1

(c) give trace plots for the HLEC algorithm with h = 0.01 and a starting point (0, 0)′.

It shows poor convergence since h = 0.01 is now “too big” for the first component

and hence rejection rate is big.
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Figure 1 (d) gives trace plots for the HLOC algorithm with h = 10 and a starting

point (100, 100). It shows that, in this case, when using the HLOC algorithm with

h = 10, the sampler appears to settle down rapidly to approximate stationarity.

Example 2 (Multivariate t distribution): continuation

Consider the multivariate t distribution (22) with ν = 5, n = 3, µ = (0, 0, 10)′ and

Σ = I.

We now consider the following two algorithms:

1) the HLEC algorithm with a(x) ≡ I and b(x) = − ν+n
2

(1 − 2
ν+n

)Σ−1(x − µ).

2) the HLOT algorithm with a(x) = [5+ (x−µ)T Σ−1(x−µ)]I and b(x) = − 5+2
2

(1−

2
5+2

)Σ−1(x − µ).

5000 steps were simulated of the third component of both algorithms with initial

point (−10, 20,−30). Trace plots and auto-correlation plots of HLEC algorithms and

of HLOT algorithms with h = 0.1, 0.5, 2.0 are in Figure 2.

It is clear that the performance of the HLEC algorithm depends more on h and the

starting point of the algorithm than does the HLOT algorithm.

The computing time taken to run 5000 iterations of the chains was 5 seconds for

the HLEC algorithm and 8 seconds for the HLOT algorithm, using the language Ox

developed by [2] on a 400 MHz 64-bit RISC processor, HP workstation. For the

HLOT algorithm we need to compute the exponent of a matrix. For more economical

ways of computing a matrix exponential see [14, 10].

Remark 5.2 In the one-dimensional case (see [24]), the use of heavy tailed proposal

distributions for algorithms has distinct theoretical advantages (see [24, 7]). It is

reasonable to expect similar advantages in the multivariate setting. Here we might

use multivariate t distribution with mean µx,h and variance ax,h defined in (22) as a

candidate for the Metropolis-Hastings algorithm. The t distribution, having heavier

tails than the normal distribution, is more appropriate as a proposal distribution for
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(b) HLEC with h=0.005 and a starting point (0,0)’
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(c) HLEC with h=0.01 and a starting point (0,0)’
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Figure 1: Bivariate Normal density: Example 3 (continuation). Trace plots of the steps taken by
the HLEC algorithms and the HLOC algorithm. Left: trace plots of the first component of the
algorithm. Right: trace plots of the second component of the algorithm.
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target densities with heavier tails. However very little is known rigorously about

the behaviour of these algorithms apart from the one-dimensional case (which is

investigated in [24]).

6 Sampling from multimodal distributions

In practice the use of HLEC algorithms and HLOC algorithms to sample from multi-

modal distributions may cause problems since both algorithms will often pull the

Markov chain to the closest mode and thus might converge only locally to the distri-

bution, in the vicinity of a single mode. Thus, there is a need for other algorithms

for estimating multi-modal distributions.

We consider the use of HLET algorithms, with d = 1
2

; the drift of the LT diffusion is

zero and the diffusion matrix is π−1
u (x)I. Thus the algorithm performs like a random

walk with a heterogenous increment distribution with covariance matrix π−1
u (x)hI.

The proposal variances are therefore “small” when the chain is “close” to one of the

modes and larger when the chain is further away from the modes. However, while

these algorithms increase the mobility of the chain, from Theorem 5.1 (b) they are

not geometrically ergodic (at least on unbounded domains).

To improve convergence, we use hybrid MCMC algorithms which consist on the HLOC

algorithms and HLET algorithms with d = 1/2.

Related methods of sampling from multimodal distributions include “simulated tem-

pering” (see [11]) and the “tempered transition” methods (see [15]).

Example 4 We studied the performance of diffusion algorithms on the following

mixture of bivariate normal distributions,

π(x) ∝ exp

[

−(x − µ1)
′Σ−1(x − µ1)

2

]

+ exp

[

−(x − µ2)
′Σ−1(x − µ2)

2

]

, x ∈ IR2

where Σ = I, µ1 = (6, −5)′ and µ2 = (−2, 3)′.
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Figure 2: Trace plots and auto-correlation plots of the HLEC algorithm and the HLOT algorithm
for the multidimensional t distribution. Example 2: continuation
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To assess the behaviour of these algorithms, we carried out the H-M algorithm with

five choices of candidate.

1. The HLEC algorithm with h = 6, 7, 8, 9 and starting point (0, 0) (first row in

Figure 3).

2. The HLEC algorithm with multivariate t5(0,
3
5
I)-distribution, h = 5, 6, 7, 8 and

starting point (0, 0) (second row in Figure 3).

3. The HLOC algorithm with h = 6, 7, 8, 9 and starting point (−100,−100) (third

row in Figure 3).

4. The HLET algorithm with d = 1
2
, h = 4, 5, 6, 7 and starting point (0, 0) (fourth

row in Figure 3).

5. The hybrid algorithm defined as follows: with probability 0.1 use the HLOC with

h = 7 and with probability 0.9 use the HLOT algorithm with d = 1
2

and h = 4, 5, 6, 7

(fifth row in Figure 3).

The HLOC algorithm found the neighborhood of one mode started from (−100, 100)

very rapidly. However, it became stuck in the vicinity of one mode for a long period

of time. The same results were obtained for other values of the parameter h. The

HLEC algorithm with a starting point (0, 0) and “large” h performed better than the

HLOC algorithm though it still tended to “stick” in the vicinity of one mode for long

periods of time. Worse results were obtained for other values of the parameter h.

In contrast, the HLOT algorithm with d = 1
2

and the hybrid algorithm appeared to

find both modes quite easily. The hybrid algorithm performed better than the HLOT

algorithm.

7 Multinomial logit model

We now illustrate our results for a Bayesian analysis of a multinomial logit model.

We assume that a set C which includes all potential choices for some population can
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Figure 3: Langevin algorithms for the mixture of bivariate normal distribution. Trace plots of 15000
steps of the first component of the HLEC algorithm with h = 6, 7, 8, 9 (first row), HLEC algorithm
with t-distribution with h = 5, 6, 7, 8 (second row), HLOC algorithm with h = 6, 7, 8, 9 (third row),
HLOT algorithm with h = 4, 5, 6, 7 (fourth row), and hybrid algorithm (fifth row).
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be defined and that all choices are distinct. Let N denotes the sample size and A the

number of choices and define, for i = 1, · · · , A and n = 1, · · · , N

Yin =











1 if observation n choose alternative i,

0 otherwise.

We assume that

(Y1n, . . . , YAn) ∼ multinomial((pn(1), . . . , pn(A)), 1),

where for a specific individual the ratio of the choice probabilities of any two alter-

natives is given by
pn(i)

pn(j)
= exp(b′(xin − xjn)),

and xin = (x1
in, . . . , xm

in) is a set of covariates associated with each alternative i and

observation n. This implies that the likelihood function for a general multinomial

choice model is

L(b|y) = ΠN
n=1Π

A
i=1Pn(i)yin ,

where

Pn(i) = P (Yn(i) = 1) =
exp(b′xin)

∑A
j=1 exp(b′xjn)

.

We assume that the prior for b is non-informative. Thus the posterior distribution

P (b|y) ∝ L(b|y). We suggest the use of the HLOC chain obtained from the Ozaki

approximation with multivariate t(3) distribution increment distributions. It is easy

to check that
∂ log(P (b|y))

∂b
=

N
∑

n=1

A
∑

i=1

yin(xin −
A
∑

i=1

Pn(j)xin)

and the Jacobian matrix J(b) is

J(b) = −
N
∑

n=1

A
∑

i=1

Pn(i)[xin −
A
∑

j=1

xjnPn(j)]′[xin −
A
∑

j=1

xjnPn(j)]/2.

We note that under the assumption that the (NA) × m matrices whose rows are

xin −
∑A

j=1 xjnPn(j) for i = 1, . . . , A and n = 1, . . . , N is of rank m, J is the negative

of a weighted moment matrix of the independent variables and hence is negative

definite. Thus, from Theorem 4.1 and Theorem 5.1 is geometrically ergodic.
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We simulated 1000 observations from multinomial logit model as follows. Let b =

[0.00,−0.95, 3.28,−5.62, 1.28, 2.68, 2.19, 1.73, 0.12, 2.03]T, where b is a random draw

from MV N(µ, Σ), with µ = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T , and Σ = 9I. We also as-

sumed that A = 6, and generated (yn1, . . . , yn6), n = 1, . . . , 1000 from multinomial

((Pn(1), . . . , Pn(6)), 1).

To draw values from the posterior distribution of b, we used the HLOC algorithm and

the HLEC algorithm with a starting point (20, 20, 20, 20, 20, 20, 20, 20, 20, 20). For the

HLEC algorithm, we tuned h to be 0.01 to obtain acceptance rate close to 0.57. (see

[17] for the optimal scaling of HLEC algorithms). For the HLOC algorithm we chose

h to be 0.1 and the acceptance rate was around 0.86. Figure 4 is a trace plots of the

steps taken by the algorithms HLEC(i) and HLOC(i) for i = 1, . . . , 10 at times kh,

k = 0, . . . , 1550 for each i, where i denotes the i’th component of the chain. Figure

5 is a trace plots of the steps taken by the algorithms HLEC(i) and HLOC(i) for

i = 1, . . . , 10 at times kh, k = 1050, . . . , 1550 for each i, where i denotes the i’th

component of the chain.

The computing time taken to run 1550 iterations of the chains was 4.4 hours for the

HLEC algorithm and 5.3 hours for the HLOT algorithm, using Matlab on a 400 MHz

64-bit RISC processor, HP workstation.

HLOC performs better than HLEC here, but the advantage it gives is not large in

this example.

8 Conclusions

We have considered Langevin diffusions and their associated discretisations for a given

target density π. Interest has largely been focused on the ergodicity and stability

properties of the various processes due to the motivation from MCMC.

The Ozaki discretisation provides a more stable alternative to the Euler method.

This is shown in the context of a highly non-homogeneous target distribution (where

it is able to adapt to different scales for different components) and also for MCMC
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algorithms as we show in our Logit example. The problem with the Ozaki method

is its computational cost, since the matrix exponential its requires can often be pro-

hibitively expensive to calculate. Therefore, Langevin methods based on the simpler

Euler scheme still have value.

We also introduced the tempered Langevin diffusion and algorithm. Though intro-

duced using a theoretical construction, its potential appeal lies in the exploration of

multi-modal target densities and initial experimentation of the tempered algorithm

in Section 4 gives extremely promising results.

Many of the theoretical results given in this paper can be improved, for instance by

choosing different drift functions or by being more precise in the inequalities used.

Further work is required to investigate these results further.
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Figure 4: Trace plots of the HLEC algorithm and the HLOC algorithm. Bayesian analysis of the
Multinomial logit model. The bracketed number refers to the parameter being plotted, so that for
instance HLOC(i) gives a trace plot for the parameter b(i) under the experiment using HLOC.
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Figure 5: Trace plots of the HLEC algorithm and the HLOC algorithm for the last 500 steps.
Bayesian analysis of the Multinomial logit model.
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