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Abstract 
 
 

Geocoding a study population as completely as possible is an important data assimilation 

component of many spatial epidemiologic studies.  Unfortunately, complete geocoding is rare in 

practice.  The failure of a substantial proportion of study subjects' addresses to geocode has 

consequences for spatial analyses, some of which are not yet fully understood.  This article 

explicitly demonstrates that the failure to geocode can be spatially clustered, and it investigates 

the implications of this for the detection of disease clustering.  A dataset of more than 9,000 

ground-truthed addresses from Carroll County, Iowa, which is geocoded via a standard address 

matching and street interpolation algorithm, is used for this purpose.  Through simulation of 

disease processes at these addresses, the authors show that spatial clustering of geocoding failure 

has no effect on power to detect spatial disease clustering if the likelihood of disease is 

independent of the failure to geocode, but that power is substantially reduced if disease 

likelihood and geocoding failure are positively associated. 
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1. Introduction 

Geocoding, i.e. the process of ascertaining and assigning geographic coordinates to the 

residential addresses of subjects, is an important data assimilation component of many spatial 

epidemiologic studies.  Typically, geocoding is performed in an automated, batch mode using 

geographic information system software.  The software attempts to match address records in the 

study subjects' database to a reference geographic base file, such as a U.S. Census Bureau 

Topologically Integrated Geographic Encoding and Referencing (TIGER) file containing 

address-ranged street segments.  If a match (of sufficiently high degree) to a street segment is 

obtained, the software then interpolates linearly along the segment to estimate the actual 

coordinates of the address. 

 
Ascertaining geocodes as completely as possible is important because the failure of some 

subjects' addresses to geocode adversely affects the validity and strength of conclusions that can 

be drawn from the study.  Unfortunately, it is rare in practice for every address to geocode 

successfully, even when subjects' address records are complete and accurate.  Commonly, 10-30 

percent of addresses fail to geocode using standard software and street files [1-2].  This problem 

can be even more acute in particular subgroups of the study population.  For example, in a study 

involving households participating in the National Health Interview Survey from 1995-2001, 56 

percent of addresses failed to geocode in counties with a population under 2,500 people, despite 

an overall failure rate of only 11 percent [3]. 

 
There are many reasons why an address may not geocode.  Three of the leading causes of 

geocoding failure in the context of standard address matching/interpolation methodology are: (a) 

incorrect addresses in the subject record file, due to such things as misspelled or improperly 

abbreviated street names; (b) the use of rural route and post office box numbers, rather than 
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street addresses, in the subject record file; (c) missing street segments in the reference file [4].  

These causes tend to yield three different spatial patterns in the addresses that fail to geocode.  

Geocoding failures by the first cause might reasonably be expected to occur more or less at 

random spatially.  Geocoding failures by the second cause occur more often in rural areas, of 

course, and thus in most portions of the U.S. would be expected to result in rather small areas of 

relatively low failure (towns and cities) scattered within much larger areas of higher failure.  

Finally, it would seem that if an address fails to geocode for the third reason, then other 

addresses in close proximity to it would be more prone to geocoding failure also.  In other words, 

if the third cause was dominant we would expect the failure to geocode to be spatially clustered. 

 
Whatever its cause, geocoding failure has consequences on spatial analyses, some of which are 

not yet fully understood.  At best, the failure of some addresses to geocode can be expected to 

reduce the power of spatial analyses [5-7].  At worst, when geocoding failure is not spatially 

random it may lead not only to reduced power but also to a selection bias known, in this context, 

as geographic bias [2, 8].  Geographic bias could, for example, favor the detection of disease 

clusters in particular subgroups of the study population at the expense of power to detect clusters 

in other subgroups.  A case in point was provided in [2], which showed that prostate cancer 

incidence clusters at the county level within Virginia from 1990-1999 differed substantially 

depending on whether all cases or only those cases that geocoded to a census tract were used. 

 
The purposes of this article are to explicitly demonstrate that the failure to geocode can be 

spatially clustered at small scales and to investigate the implications of this for the detection of 

disease clustering from geocoded data.  For these purposes we use a relatively large dataset of 

geocoded addresses from Carroll County, Iowa, upon which we simulate disease processes of 

varying levels of prevalence and spatial clustering. 
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Of course, tests for spatial clustering of disease may be affected not only by incompleteness of 

geocoding, but also by the positional inaccuracy of those addresses that do geocode.  Numerous 

studies of positional errors incurred by geocoding have been published [9-13], and several other 

studies have considered the effects of such errors on the power to detect disease clustering [5-7, 

14, 15].  In contrast, the effects of spatially clustered geocoding failure on the detection of 

disease clustering have not yet been investigated. 

 
 
2.  Carroll County Data 
 
The data examined herein for spatially clustered geocoding failure consist of 9,298 addresses 

from Carroll County, Iowa, which were obtained in conjunction with a comprehensive study of 

rural health by the Iowa Department of Public Health and researchers at the University of Iowa.  

The data consist of a near-complete enumeration (as of December 31, 2005) of all residential 

addresses (house/apartment number, street name, and five-digit zip code -- no rural route or post 

office box numbers) in the county.  The location of each address was ground-truthed by locating 

the center of the corresponding residence on 24 inch/pixel grayscale and color infrared aerial 

orthophotos covering the county, which were obtained from the Natural Resources Geographic 

Information Systems Library of the Iowa Department of Natural Resources [16].  If the address 

fell outside incorporated township boundaries, it was classified as rural.  If, on the other hand, 

the address fell inside incorporated township boundaries, it was classified as non-rural and its 

true location was taken to be its associated “E-911 geocode,” obtained from the Carroll County 

GIS Coordinator.  (The E-911 geocode of a Carroll County residence is the location where 

emergency services personnel would leave the public road and enter the private road leading to 

the residence from which an E-911 call was made.)  E-911 geocodes for Carroll County 

addresses within towns are very accurate, but are much less so for rural addresses [13], hence our 
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ground-truthing via orthophotos for rural addresses.  Of the 9,298 addresses, 2,342 (25 percent) 

were rural and 6,956 (75 percent) were non-rural. 

 
Each address was also submitted to a standard automated address matching and interpolation 

procedure for geocoding.  Specifically, we matched our Carroll County addresses to the U.S. 

Census Bureau's Topically Integrated Geographic Encoding and Referencing (TIGER) street 

centerline file for the county using ArcGIS 9.1 [17], with minimum match-score (a measure of 

the similarity of an address in the dataset to an address in the TIGER file) set at 60 percent.  For 

each address whose match score equalled or exceeded this threshold, the geocode was 

determined by linearly interpolating the address number to a point on the matched street segment 

between the two points that defined the limits of that segment's address range.  Those addresses 

with match scores below 60 percent were said to fail to geocode. 

   
Overall, geocodes could be obtained in this manner for 7,443 (80.0 percent) of the addresses.  

Among rural addresses, however, this proportion was only 64.3 percent (85.4 percent among 

non-rural addresses), indicating that rural addresses were under-represented.  A higher geocoding 

failure rate in rural areas compared to suburban and urban areas has been observed in many 

previous studies also [3, 10, 12, 18].  

 
 
 
3. Spatial Clustering of the Failure to Geocode 
 
We now investigate whether the failure of Carroll County addresses to geocode  is spatially 

clustered.  Figure 1 displays the ground-truthed locations of all Carroll County addresses.  At the 

scale used for this figure, visually discerning any clusters among the latter set of addresses 

proves difficult; therefore, we examine displays of smaller subregions of the county.  Figure 2 

displays addresses within an exclusively rural 10 km by 10 km subregion in the southeast 
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quadrant of the county, and Figure 3 displays addresses within Carroll, the largest municipality 

in the county, with addresses that geocoded distinguished from those that failed to geocode.  In 

both figures, there appears to be some evidence that the addresses that failed to geocode are 

clustered.  Indeed, the clustering within Carroll is extreme, due primarily to the apparent 

omission of entire street segments from the reference file. 

 
In order to quantify the evidence for clustering of geocoding failure, we perform a formal 

statistical test of the null hypothesis of no spatial clustering.  The notion of no spatial clustering 

can be formulated mathematically in several ways [19].  Here, it is formulated as the random 

labelling hypothesis, which in this context asserts that each address is equally likely to geocode.  

A powerful and easy-to-implement test of the random labelling hypothesis is the Cuzick-

Edwards test [20].  This test is applicable when events in a spatial point pattern have been 

classified either as cases (usually, but not necessarily, disease cases) or controls, the latter being 

randomly sampled from the at-risk population.  The test statistic, Tj, counts, for each case, the 

number of other cases among its j nearest neighbors and sums these counts across cases.  

Statistical significance may be assessed by comparing the value of Tj for the observed case-

control locations to the relative frequency distribution of Tj-values computed from a large 

number of random permutations of case labels among the observed cases and controls. 

 
Cuzick and Edwards' test was applied to the Carroll County data, with “cases” and “controls” 

identified as addresses that failed to geocode and addresses that geocoded successfully, 

respectively.  No sampling of controls was performed; all addresses that geocoded successfully 

were taken as controls.  The testing approach was applied initially to the entire dataset and then 

separately to the rural and non-rural subsets, in each case using 1,000 random permutations for 

assessing statistical significance.  Results are listed in Table 1.  These show that the values of T1, 
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T2, …, T5 for the observed Carroll County addresses are respectively much larger than the 

maximum values of these statistics among the 1,000 random permutations.  Thus, the evidence 

here for spatial clustering of the failure to geocode is overwhelming.  This is true for both rural 

and non-rural addresses, though the clustering is more pronounced for the latter; for example, the 

observed T1 for rural addresses is approximately equal to twice its expectation under the random 

labelling hypothesis, while the observed T1 for non-rural addresses is more than five times larger 

than its expectation.  Similarly, the smallest value of j for which Tj+1-Tj for the data is no larger 

than the 95th percentile of Tj+1-Tj – a measure of cluster size – is 13 for the rural addresses but 99 

for the non-rural addresses. 

 

Having found strong evidence for spatial clustering of geocoding failure among the Carroll 

County addresses, we turn our attention to cluster detection, i.e. the identification of a specific 

subset (or several such subsets) of cases that are inconsistent with the no-clustering hypothesis.  

For this purpose we use spatial scan statistics [21], as implemented by the SaTScan software 

package [22].  To begin, we considered potential circular clusters centered on all case locations, 

with radii ranging from the minimum distance between addresses to a radius that would enclose 

half of the county's addresses.   With these prespecifications, six significant clusters were 

detected.  The two largest clusters (labeled as 1 and 2 in Figure 4) are located in the south central 

and northeast portions of the county, respectively, and have similar elevations in relative risk of 

geocoding failure (approximately 2.5 and 2.9, respectively, with two-sided p values of 0.001 

based on 999 simulations for both).   These two clusters and Cluster 5 (relative risk 2.1, p<0.001) 

encompass entirely rural subregions, and as such probably can be best explained by the overall 

lower geocoding rate among rural addresses in Carroll County.  It is interesting, and consistent 

with this explanation, that the perimeters of these three clusters abut the most proximate outskirts 
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of one or more municipalities.  The remaining clusters, labeled as 3, 4, and 6 in Figure 4, are 

much smaller and lie within or very close to Carroll.  These clusters have relatively higher 

relative risk (4.1, 2.8, and 4.8 respectively, with p values <0.001, <0.001, and 0.014).  Close 

comparison with Figure 3 reveals that these clusters include localized subsets of addresses that 

failed to geocode along respectively the east, west, and southwest periphery of Carroll.  Thus, 

these clusters are most likely due to missing street segments in the TIGER file, perhaps 

corresponding to newly constructed neighborhoods on Carroll's periphery. 

 
Finally, we repeated the analysis of spatial scan statistics, but this time using elliptical, rather 

than circular, clusters.  The ellipses, like the circles, were centered on case locations, with 

varying orientations and ratios of major to minor axes lengths, and with minor axis half-length 

ranging from the minimum distance between addresses to one that would enclose half of the 

county's addresses.  Two significant clusters were detected, as shown in Figure 5.  Cluster 1 

(relative risk 2.462, p<0.001) occupies a large portion of southwest Carroll County and includes 

the southwesternmost environs of Carroll itself.  Cluster 2 (relative risk 3.495, p<0.001) is rather 

more elongated and runs from the eastern periphery of Carroll to the county's northeast corner.  

Interestingly, elliptical Cluster 1 roughly coincides with circular Clusters 1 and 4, while elliptical 

Cluster 2 includes much of circular Clusters 2 and 3.  This is not surprising, as the greater 

geometric flexibility of the elliptic analysis allows elliptical clusters to ``consume" circular 

clusters in close proximity to each other. 

 
 
4. Impact of Spatially Clustered Geocoding Failure on Detection of Disease Clustering 
 
In the previous section we established that the failure to geocode was strongly spatially clustered 

in Carroll County.  Next we present a simulation study that investigates the effects, if any, that 

this may have on the power to detect spatial clustering of disease. 
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Our study simulated realizations of a spatially clustered binary (cases and controls) disease 

process at those Carroll County addresses that lie within the rectangular box shown in Figure 1.  

(The set of all Carroll County addresses was too large for our simulation study to be feasible 

computationally.)  There are 998 such addresses, of which 592 geocoded and 406 did not.  For 

each realization, either 10 or 40 of the addresses (representing address proportions of 

approximately π=0.01 or π=0.04) were designated as disease cases, the remainder being 

designated as controls.  Spatial clustering in these designations was induced via the use of a 

Gaussian random field threshold model [23].  Under this model, an address at location (u,v) is 

designated as a case if Z(u,v) is among the largest 100π percent of the 998 values of Z(·) over all 

locations, where {Z(s,t)} is a Gaussian random field with mean zero, variance 1.0, and 

exponential spatial correlation function ρ(d)=exp(-d/θ); otherwise, the address is designated as a 

control.  Here d is Euclidean distance and θ is the range parameter of the spatial correlation 

function. Two values of the range parameter were considered: θ=1,000m and θ=3,333m.   For 

both range parameters, the occurrence of a case at a given address is positively correlated with 

the occurrence of a case at nearby addresses, but the correlation is stronger and more persistent 

for the larger of the two range parameters. 

 
1,000 simulated disease realizations were generated in the manner just described for each 

combination of π and θ.  For each realization, the Cuzick-Edwards statistic T1  was computed and 

a test for spatial disease clustering was carried out by comparing this statistic to the relative 

frequency distribution of T1-values computed from 9,999 random perturbations of disease case 

labels among the 998 addresses.  The empirical power of this test at the 0.05 significance level, 

i.e., the proportion of times that T1 exceeded the 95th percentile of its null distribution (the 

9,500th largest value among the 9,999 random perturbations), is given in the row of Table 2 
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corresponding to the “Complete” dataset.  As expected, the power to detect spatial disease 

clustering is higher at the larger of the two prevalences and at the larger of the two correlation 

ranges. 

 
In addition, we estimated the power of the test based on T1 from two subsets of the complete set 

of 998 addresses (but using the same 1,000 simulated disease realizations used for the complete 

set).  The first subset was simply the 592 addresses that geocoded.  The second subset also 

consisted of 592 addresses, but these were obtained from the complete set by randomly 

relabeling the original geocoding indicators, i.e. choosing a new subset by random sampling 

without replacement.  The failure to geocode is highly spatially clustered in the first subset, but 

by construction is not so in the second subset.  Empirical powers when the test is applied to the 

subsets are given in the remaining rows labeled k=1 in Table 2.  These results indicate that the 

power to detect spatial disease clustering for the subsets is reduced substantially from what it is 

for the complete dataset, due to the loss of information caused by geocoding failure. The results 

for the two subsets are very similar to each other, however.  Thus, for the disease and geocoding 

processes considered to this point, it appears that while geocoding failure substantially reduces 

the power to detect spatial clustering of disease, spatial clustering of geocoding failure has little 

effect on this power. 

 
Note that the disease and geocoding processes described above operate independently, hence the 

test for spatial disease clustering is not geographically biased.  What might happen if disease 

clusters were more likely to occur among those addresses that fail to geocode?  Such an 

association is entirely plausible; it could occur, for example, if the disease was more prevalent in 

the rural population than in the non-rural population, given the higher (typically) geocoding 

failure rate for rural addresses.  To study this issue, we repeated the simulation study for the 



 11

same two data subsets (“geocoded” and “randomly labeled”) described previously, using disease 

and geocoding failure processes that were positively associated in a manner we now describe.  

For an arbitrary address, define the events D={address is a disease case} and G={address 

geocodes successfully}, and let Dc and Gc denote their complements.  For k=2 and k=3, we 

specified that P(D|Gc)=kP(D|G), i.e. that an address be k times as likely to be a case if it fails to 

geocode than if it successfully geocodes, while maintaining the marginal disease rate 

(prevalence), π=P(D), at either 0.01 or 0.04, and maintaining the marginal geocoding success 

rate, P(G), at 592/998≈0.593.  Using the elementary probability relation 

P(D)=P(D|G)P(G)+P(D|Gc)P(Gc), one can solve for the desired conditional probabilities; for 

example, when k=2 and π=0.01 we obtain P(D|G)=0.0071083 and P(D|Gc)=0.0142165.  These 

conditional disease rates can then be applied to the realizations of the Gaussian random field 

threshold model by designating the uppermost 100·P(D|G) percent of the addresses that geocode 

and the uppermost 100·P(D|Gc) percent of addresses that fail to geocode as disease cases.  

Empirical powers for the size-0.05 Cuzick-Edwards test applied to the data subsets are given in 

the rows of Table 2 labeled k=2 and k=3.  Upon comparing these results to those corresponding 

to no association between geocoding failure and disease (k=1), we see that the positive 

association between geocoding failure and disease leads to a further deterioration in power to 

detect disease clustering beyond that attributable to geocoding failure alone.  Indeed, the power 

loss increases as k increases.  Once again, however, the extent of power loss seems to be roughly 

the same for the randomly labeled and geocoded subsets. 

 
 
5. Discussion 
 
The major question motivating this investigation was whether spatial clustering of geocoding 

failure affects the power to detect spatial clustering of disease.  Our results indicate that spatial 
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clustering of geocoding failure does not necessarily lead to a reduction in power beyond that 

attributable to geocoding failure itself, but it does lead to such a further reduction if the 

likelihood of disease occurrence is positively associated with the failure to geocode.  Since a 

positive association between disease occurrence and geocoding failure seems most plausible 

when geocoding failure is spatially clustered, the power to detect disease clustering has the 

potential to be most adversely affected when geocoding failure likewise is spatially clustered.  

To the extent, therefore, that geocoding failure is spatially clustered and associated with disease 

occurrence, investigators will find, in practice, weaker evidence for disease clustering than they 

would otherwise. 

 
Our investigation has assumed that those addresses that fail to geocode are simply omitted when 

performing the test for disease clustering.  Alternatively, if, as is usually the case, concomitant 

geographic information (e.g. a zip code) or demographic information (e.g. race and gender of the 

resident) is available for each address, this information might be used to impute address locations 

or otherwise adjust the disease clustering test.  Methods utilizing imputation or other adjustments 

for incomplete geocoding have been developed for some spatial epidemiologic problems [24-26], 

but not yet for tests for disease clustering. 
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Figure Titles and Legends 

 

Figure 1.  Ground-truthed locations (in Iowa State Plane system) of residential addresses in 

Carroll County, Iowa.  Dashed line, boundary of the subregion used for the simulation study. 

 

Figure 2.  Ground-truthed locations of a subset of rural addresses that lie in a 10 km by 10 km 

subregion in the southeast quadrant of Carroll County.  Closed circle, addresses that geocoded; 

open circle, addresses that failed to geocode. 

 

Figure 3.  Ground-truthed locations of a subset of non-rural addresses tha lie in the municipality 

of Carroll, Iowa.  Closed circle, addresses that geocoded; open circle, addresses that failed to 

geocode. 

 

Figure 4.  The six statistically significant, most likely clusters of Carroll County addresses that 

failed to geocode, as determined by SaTScan. 

 

Figure 5.  The two statistically significant, most likely clusters of Carroll County addresses that 

failed to geocode, as determined by SaTScan.
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TABLE 1. Cuzick-Edwards test statistics for spatial clustering of geocoding failure among 

Carroll County addresses, and five-number summary of the empirical distributions of same over 

1,000 random perturbations. 

Test Statistic Observed Minimum 1st Quartile Median 3rd Quartile Maximum 

All addresses 

T1 1,360   309   352   365   380   431 

T2 2,585   650   715   735   754   837 

T3 3,711   985 1,081 1,106  1,130 1,255 

T4 4,785 1,339 1,448 1,477 1,506 1,637 

T5 5,818 1,702 1,816 1,849 1,878 2,021 

Rural addresses 

T1   534   238   273   284   294   334 

T2 1,017   510   567   583   598   651 

T3 1,440   780   863   881    900   955 

T4 1,875 1,072 1,160 1,179 1,199 1,272 

T5 2,302 1,338 1,456 1,480 1,500 1,583 

Non-rural addresses 

T1   825     108   140   148   157   190 

T2 1,565   239   284   297   310   354 

T3 2,261   382   429   446    462   533 

T4 2,906   521   577   596   613   696 

T5 3,506   658   722   744   765   841 
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TABLE 2.  Empirical powers* of the size-0.05 Cuzick-Edwards test for spatial clustering of 

geocoding failure for various datasets, prevalence parameters π, spatial correlation range 

parameters, and values of k. 

π = 0.01 π = 0.04 
Data set 

Range=1,000 Range=3,333 Range=1,000 Range=3,333 

Complete 

k = 1 0.786 0.961 0.999 1.000 

Geocoded 

k = 1 0.593 0.856 0.932 0.980 

k = 2 0.408 0.600 0.868 0.979 

k = 3 0.266 0.408 0.668 0.873 

Randomly labeled† 

k = 1 0.617 0.810 0.965 0.999 

k = 2 0.405 0.635 0.850 0.984 

k = 3 0.270 0.452 0.647 0.911 

 
*Empirical power is the proportion of 1,000 simulated process realizations for which the size-
0.05 Cuzick-Edwards test rejected the hypothesis of no spatial clustering.  Standard errors for all 
empirical powers are less than 0.016. 
 

†Empirical powers for the randomly labeled data are the median powers for 30 distinct random 
labelings. 
 


