
The Sparse Laplacian Shrinkage Estimator for

High-Dimensional Regression

1Jian Huang, 2Shuangge Ma, 3Hongzhe Li and 4Cun-Hui Zhang

1University of Iowa, 2Yale University, 3University of Pennsylvania and 4Rutgers University

May 2010

The University of Iowa

Department of Statistics and Actuarial Science

Technical Report No. 403

1



The Sparse Laplacian Shrinkage Estimator for

High-Dimensional Regression

1Jian Huang, 2Shuangge Ma, 3Hongzhe Li and 4Cun-Hui Zhang

1University of Iowa, 2Yale University, 3University of Pennsylvania and 4Rutgers University

Abstract We propose a new penalized method for variable selection and estimation that

explicitly incorporates the correlation patterns among predictors. This method is based on

a combination of the minimax concave penalty and Laplacian quadratic associated with a

graph as the penalty function. We call it the sparse Laplacian shrinkage (SLS) method. The

SLS uses the minimax concave penalty for encouraging sparsity and Laplacian quadratic

penalty for promoting smoothness among coefficients associated with the correlated predic-

tors. The SLS has a generalized grouping property with respect to the graph represented

by the Laplacian quadratic. In a special case, it has a similar grouping property as the

elastic net method. We show that the SLS possesses an oracle property in the sense that

it is selection consistent and equal to the oracle Laplacian shrinkage estimator with high

probability. This result holds in sparse, high-dimensional settings with p� n under reason-

able conditions. We derive a coordinate descent algorithm for computing the SLS estimates.

Simulation studies are conducted to evaluate the performance of the SLS method and a data

example is used to illustrate its application.
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1 Introduction

Consider the linear regression model

y =

p∑
j=1

xjβj + ε (1.1)
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with n observations and p potential predictors, where y = (y1, . . . , yn)′ is the vector of n

response variables, xj = (x1j, . . . , xnj)
′ is the jth predictor, βj is the j regression coefficient

and ε = (ε1, . . . , εn)′ is the vector of random errors. We consider the problem of variable

selection and estimation in (1.1) in sparse, high-dimensional settings when the predictors

have certain correlation patterns.

Our motivation comes from genomic applications where an important and ubiquitous

problem is to identify genetic determinants affecting a certain phenotype or clinical outcome.

For example, in microarray gene expression profiling studies, genes in the same pathway or

functional group tend to have highly correlated expressions. Co-regulated genes have similar

or compensating effects on the outcome variable. It is important to take into account the

correlation pattern in gene expressions when selecting genes and pathways that are related

to the clinical outcome. In genome wide association studies using dense genetic markers, it is

useful to consider correlation patterns among genetic markers due to linkage disequilibrium

in identifying regions that may harbor disease related mutations.

There has been much work on penalized methods for variable selection and estimation

in high-dimensional regression models. Several important methods have been proposed.

Examples include estimators based on the bridge penalty (Frank and Friedman 1993), the

`1 penalty or the least absolute shrinkage and selection operator (LASSO), Tibshirani 1996;

Chen, Donoho and Saunders 1998), the smoothly clipped absolute deviation (SCAD) penalty

(Fan 1997; Fan and Li 2001), and the minimum concave penalty (MCP, Zhang 2010). These

methods are able to do estimation and automatic variable selection simultaneously and

provide a computationally feasible way for variable selection in high-dimensional settings.

Much progress has been made in understanding the theoretical properties of these methods.

Efficient algorithms have also been developed for implementing these methods.

However, these methods do not take into account correlations among predictors. This

can lead to unsatisfactory selection results in p � n settings. For example, as pointed out

by Zou and Hastie (2005), the LASSO tends to only select one variable among a group of

highly correlated variables; and its prediction performance may not be as good as the ridge

regression if there exists high correlation among predictors. To overcome these limitations,

Zou and Hastie (2005) proposed the elastic net (Enet) method, which uses a combination of
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the `1 and `2 penalties. Selection properties of the Enet and adaptive Enet have also been

studied by Jia and Yu 2009 and Zou and Zhang (2009). Bondell and Reich (2008) proposed

the OSCAR (octagonal shrinkage and clustering algorithm for regression) approach, which

uses a combination of the `1 norm and a pairwise `∞ norm for the coefficients. Huang et

al. (2010) proposed the Mnet method, which uses a combination of the MCP and `2 penal-

ties. The Mnet method is equal to the oracle ridge estimator with high probability under

certain conditions. These methods are effective in dealing with certain types of colinearity

among predictors and has the useful grouping property of selecting and dropping highly cor-

related predictors together. However, they do not use any specific information on correlation

patterns among the predictors.

Li and Li (2008) proposed a network-constrained regularization procedure for variable

selection and estimation in linear regression models, where the predictors are genomic data

measured on genetic networks. Li and Li (2009) considered the general problem of regression

analysis when predictors are measured on an undirected graph, which is assumed to be known

a priori. They called their method a graph-constrained estimation procedure, or GRACE.

The GRACE penalty is a combination of the `1 penalty and a penalty that is the Laplacian

quadratic associated with the graph. Because the GRACE uses the `1 penalty for selection

and sparsity, it has the same drawbacks as the Enet discussed above. In addition, the full

knowledge of the graphical structure for the predictors is usually not available, especially in

high-dimensional problems. Daye and Jeng (2009) proposed the the weighted fusion method,

which also uses a combination of the `1 penalty and a quadratic form that can incorporate

information among correlated variables for estimation and variable selection. Tutz and

Ulbricht (2009) studied a form of correlation based penalty, which can be considered a special

case of the general quadratic penalty. But this approach does not do variable selection.

The authors proposed a blockwise boosting procedure in combination with the correlation

based penalty for variable selection. Hebiri and van de Geer (2010) studied the theoretical

properties of the smoothed-Lasso and other `1 + `2-penalized methods in p � n models.

Pan, Xie and Shen (2009) studied a grouped penalty based on the Lγ-norm for γ > 1 that

smoothes the regression coefficients over a network. In particular, when γ = 2 and after

appropriate rescaling of the regression coefficients, this group Lγ penalty simplifies to the
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group Lasso (Yuan and Lin 2005) with the nodes in the network as groups. This method

is capable of grouped variable selection recognizing grouping effects, but it does not provide

individual variable selection. Also, because the group Lγ penalty is convex for γ > 1, it does

not lead to consistent variable selection, even at the group level.

We propose a new penalized method for variable selection and estimation that uses a

combination of the MCP and Laplacian quadratic as the penalty. We call the proposed

approach the sparse Laplacian shrinkage (SLS) method. The SLS uses the MCP to promote

sparsity and Laplacian quadratic penalty to encourage smoothness among coefficients associ-

ated with the correlated predictors. An important advantage of the MCP over the `1 penalty

is that it leads to estimators that are nearly unbiased and achieve selection consistency under

weaker conditions (Zhang 2010).

The contributions of this paper are as follows.

• First, unlike the existing methods that use an `1 penalty for selection and a ridge

penalty or a general `2 penalty for dealing with correlated predictors, we use the MCP

to achieve nearly unbiased selection and proposed a concrete class of quadratics, the

Laplacians, for incorporating correlation patterns among predictors in a local fashion.

In particular, we suggest to employ the approaches for network analysis for specifying

the Laplacians. This provides an implementable strategy for incorporating correlation

structures in high-dimensional data analysis.

• Second, we prove that the SLS estimator is sign consistent and equal to the oracle

Laplacian shrinkage estimator under reasonable conditions. This result holds for a

large class of Laplacian quadratics. An important aspect of this result is that it allows

the number of predictors to be larger than the sample size. In contrast, the works

of Daye and Jeng (2009) and Tutz and Ulbricht (2009) do not contain such results

in p � n models. The selection consistency result of Hebiri and Geer (2010) requires

certain strong assumptions on the magnitude of the smallest regression coefficient (their

Assumption C) and on the correlation between important and unimportant predictors

(their Assumption D). In comparison, our assumption involving the magnitude of the

regression coefficients is weaker and we use a sparse Riese condition instead of imposing
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restriction on the correlations among predictors. In addition, our selection result is

stronger in that the SLS estimator is not only sign consistent, but also equal to the

oracle Laplacian shrinkage estimator with high probability. In general, similar results

are not available with the use of an `1 penalty.

• Third, we show that the SLS method is potentially capable of incorporating correlation

structure in the analysis without incurring extra bias. The Enet and the more general

`1 + `2 methods in general introduces extra bias due to the quadratic penalty, in

addition to the bias resulting from the `1 penalty. To the best of our knowledge, this

point has not been discussed in the existing literature. We also demonstrate that the

SLS has certain local smoothing property with respect to the graphical structure of

the predictors.

• Fourth, unlike in the GRACE method, the SLS does not assume that the graphical

structure for the predictors is known a priori. The SLS uses the existing data to

construct the graph Laplacian or to augment partial knowledge of the graph structure.

• Finally, our simulation studies demonstrate that the SLS method outperforms the `1

penalty plus a quadratic penalty approach as studied in Daye and Jeng (2009) and

Hebri and Geer (2010). In our simulation examples, the SLS in general has smaller

empirical false discovery rates with comparable false negative rates. It also has smaller

prediction errors.

This paper is organized as follows. In Section 2 we define the SLS estimator. In Section

3 we discuss ways to construct graph Laplacian, or equivalently, its corresponding adjacency

matrix. In Section 4 we study the selection properties of the SLS estimators. In Section

5 we investigate the properties of Laplacian shrinkage. In Section 6 we describe a coordi-

nate descent algorithm for computing the SLS estimators, present simulation results and an

application of the SLS method to a microarry gene expression dataset. Discussions of the

proposed method and results are given in Section 7. Proofs for the oracle properties of the

SLS and other technical details are provided in the Appendix.
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2 The sparse Laplacian shrinkage estimator

Let X = (x1, . . . ,xp) be the n× p design matrix. Throughout, we assume that the response

and predictors are centered and the predictors are standardized so that
∑n

i=1 x
2
ij = n, j =

1, . . . , p. For λ = (λ1, λ2) with λ1 ≥ 0 and λ2 ≥ 0, we propose the penalized least squares

criterion

M(b;λ, γ) =
1

2n
‖y −Xb‖2 +

p∑
j=1

ρ(|bj|;λ1, γ) +
1

2
λ2

∑
1≤j<k≤p

|ajk|(bj − sjkbk)2, (2.1)

where ‖ · ‖ denotes the `2 norm, ρ is the MCP with penalty parameter λ1 and regularization

parameter γ, ajk measures the strength of connection between xj and xk, and sjk = sgn(ajk)

is the sign of ajk, i.e., sjk = −1, 0, or 1 if ajk < 0,= 0, or > 0. The two penalty terms

in (2.1) play different roles. The first term promotes sparsity in the estimated model. The

second term encourages smoothness of the estimated coefficients of the connected predictors.

We can associate the quadratic form in this term with the Laplacian for a suitably defined

undirected weighted graph for the predictors. See the description below. For any given

(λ, γ), the SLS estimator is β̂(λ, γ) = argminbM(b;λ, γ).

2.1 The rational for using the MCP

Although other penalties can be used as ρ in the SLS criterion (2.1), we proposed to use the

MCP defined as

ρ(t;λ1, γ) = λ1

∫ |t|
0

(1− x/(γλ1))+dx, (2.2)

where for any a ∈ R, a+ is the nonnegative part of a, i.e., a+ = a1{a≥0}. The MCP can be

easily understood by considering its derivative,

ρ̇(t;λ1, γ) = λ1(1− |t|/(γλ1))+sgn(t). (2.3)

We can see that the MCP begins by applying the same rate of penalization as the `1 penalty,

but continuously reduces that penalization until, when |t| > γλ, the rate of penalization

drops to 0. The regularization parameter γ controls the degree of concavity. Larger values

of γ make ρ less concave. By sliding the value of γ from 1 to ∞, the MCP provides a
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continuum of penalties with the the hard-thresholding penalty as γ → 1+ and the convex

`1 penalty at γ =∞.

As discussed in Zhang (2010), the MCP belongs to the family of quadratic spline penalties

satisfying the requirements that they have the sparsity and continuity properties discussed

in Fan and Li (2001). This family also includes the `1 and SCAD penalties. The `1 penalty

is the only member in this family that is convex, but it yields biased estimates. The MCP

minimizes the maximum concavity measure defined in Zhang (2010). It has the simplest form

in this family that results in an estimator that is nearly unbiased, sparse and continuous.

Further discussions on the advantages of the MCP over other popular penalties can be found

in Mazumder, Friedman and Hastie (2009).

2.2 The Laplacian and signed adjacency matrices

We express the nonnegative quadratic form in the second penalty term in (2.1) using a

positive semi-definite matrix L, which satisfies

b′Lb =
∑

1≤j<k≤p

|ajk|(bj − sjkbk)2, ∀b ∈ IRp .

Define akj = ajk, 1 ≤ j < k ≤ p. The diagonal elements ajj’s do not appear in the quadratic

form. We can define them any way that is most convenient for a specific situation. For

now, we simply assume their values are given. Let A = (ajk, 1 ≤ j, k ≤ p) and D =

diag(d1, . . . , dp), where dj =
∑p

k=1|ajk|. We have
∑

1≤j<k≤p |ajk|(bj − sjkbk)2 = b′(D − A)b.

Therefore, L = D−A. This matrix is associated with a labeled weighted graph G = (V, E , w)

with vertex set V = {1, . . . , p} and edge set E = {(j, k) : (j, k) ∈ V × V }. Here |ajk| is the

weight of edge (j, k) and dj the degree of vertex j. Here dj is also called the connectivity of

vertex j. The matrix L is called the Laplacian of G and A its signed adjacency matrix (Chung

1997). The edge (j, k) is labeled with the “+” or “−” sign, but its weight |ajk| is always

nonnegative. We use a labeled graph to accommodate the case where two predictors can have

a nonzero adjacent coefficient but are negatively correlated. Note that the usual adjacency

matrix can be considered a special case of signed adjacency matrix when all ajk ≥ 0. For

simplicity, we will use the term adjacency matrix below.
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We usually require that the adjacency matrix to be sparse in the sense that many of its

entries are zero or nearly zero. With a sparse adjacency matrix, the main characteristic of

the shrinkage induced by the Laplacian penalty is that it occurs locally for the coefficients

associated with the predictors connected in the graph. Intuitively, this can be seen by writing

λ2

∑
1≤j<k≤p

|ajk|(bj − sjkbk)2 =
1

2
λ2

∑
(j,k):ajk 6=0

|ajk|(bj − sjkbk)2.

Thus for λ2 > 0, the Laplacian penalty shrinks bj − sjkbk towards zero for ajk 6= 0. This can

also be considered a type of local smoothing on the graph G associated with the adjacency

matrix A. In comparison, the shrinkage induced by the ridge penalty used in the Enet

is global in that it shrinks all the coefficients towards zero, regardless of the correlation

structure among the predictors. We will discuss the Laplacian shrinkage in more detail in

Section 5.

Using the matrix notation, the SLS criterion (2.1) can be written as

M(b;λ, γ) =
1

2n
‖y −Xb‖2 +

p∑
j=1

ρ(|bj|;λ1, γ) +
1

2
λ2b

′(D − A)b. (2.4)

Here the Laplacian is not normalized, meaning that the weight dj is not standardized to 1.

This criterion favors the predictors with a larger weight. To see this, make the transformation

b∗ = D1/2b, X∗ = XD−1/2 and define A∗ = D−1/2AD−1/2. We have

M(b∗;λ, γ) =
1

2n
‖y −X∗b∗‖2 +

p∑
j=1

ρ(|b∗j |/
√
dj;λ1, γ) +

1

2
λ2b

∗′(Ip − A∗)b∗.

The penalty in ρ for the jth predictor is proportional to 1/
√
dj. Therefore, predictors with

larger dj will be more likely to be selected. Because dj measures the connectivity of xj,

this is desirable in certain applications. For example, in network analysis of gene expression

data, genes with large connectivity also tend to have important biological functions (Zhang

and Horvath 2005). Therefore, it is prudent to provide more protection for such genes in the

selection process.

However, in problems where predictors should be treated without preference with respect

to connectivity, we can first normalized the Laplacian L∗ = Ip − A∗ and use the criterion

M∗(b;λ, γ) =
1

2n
‖y −Xb‖2 +

p∑
j=1

ρ(|bj|;λ1, γ) +
1

2
λ2b

′(Ip − A∗)b.
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Technically, a normalized Laplacian L∗ can be considered a special case of a general L. We

only consider the SLS estimator based on the criterion (2.4) when studying its properties.

3 Construction of adjacency matrix

In this section, we describe several simple forms of adjacency measures proposed by Zhang

and Horvath (2005), which have have been successfully used in network analysis of gene

expression data. The adjacency measure is often defined based on the notion of dissimilarity

or similarity.

(i) A basic and widely used dissimilarity measure is the Euclidean distance. Based on

this distance, we can define adjacency coefficient as ajk = φ(‖xj − xk‖/
√
n), where

φ : [0,∞) 7→ [0,∞). A simple adjacency function is the threshold function φ(x) =

1{x ≤ 2r}. Then

ajk =

 1 if ‖xj − xk‖/
√
n ≤ 2r

0 if ‖xj − xk‖/
√
n > 2r.

(3.1)

It is convenient to express ajk in terms of the Person’s correlation coefficient rjk between

xj and xk, where rjk = x′jxk/(‖xj‖ ‖xk‖). For predictors that are standardized with

‖xj‖2 = n, 1 ≤ j ≤ p, we have ‖xj − xk‖2/n = 2− 2rjk. Thus in terms of correlation

coefficients, we can write ajk = 1{rjk > r}. We determine the value of r based on

the Fisher transformation zjk = 0.5 log((1 + rjk)/(1− rjk)). If the correlation between

xj and xk is zero,
√
n− 3zjk is approximately distributed as N(0, 1). We can use

this to determine a threshold c for
√
n− 3zjk. The corresponding threshold for rjk is

r = (exp(2c/
√
n− 3)− 1)/(exp(2c/

√
n− 3) + 1).

We note that here we use the Fisher transformation to change the scale of the corre-

lation coefficients from [−1, 1] to the normal scale for determining the threshold value

r, so that the adjacency matrix is relatively sparse. We are not trying to test the

significance of correlation coefficients.

(ii) The adjacency coefficient in (3.1) is defined based on a dissimilarity measure. Adja-

cency coefficient can also defined based on similarity measures. An often used similar-
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ity measure is Pearson’s correlation coefficient rjk. Other correlation measures such as

Spearman’s correlation can also be used. Let

sjk = sgn(rjk) and ajk = sjk1{|rjk| > r}.

Here r can be determined using the Fisher transformation as above.

(iii) With the power adjacency function considered in Zhang and Horvath (2005),

ajk = max(0, rjk)
α and sjk = 1.

Here α > 0 and can be determined by, for example, the scale-free topology criterion.

(iv) A variation of the above power adjacency function is

ajk = |rjk|α and sjk = sgn(rjk).

For the adjacency matrices given above, (i) and (ii) use dichotomized measures, whereas

(iii) and (iv) use continuous measures. Under (i) and (iii), two covariates are either positively

or not connected/correlated. In contrast, under (ii) and (iv), two covariates are allowed to

be negatively connected/correlated.

There are many other ways for constructing an adjacency matrix. For example, a popular

adjacency measure in cluster analysis is ajk = exp(−‖xj−xk‖2/nτ 2) for τ > 0. The resulting

adjacency matrix A = [ajk] is the Gram matrix associated with the Gaussian kernel. Since

construction of adjacency matrix is not the focus of the present paper, we will only consider

the use of the four adjacency matrices described above in our numerical studies in Section 6.

4 Oracle properties

In this section, we study the theoretical properties of the SLS estimator. Let the true value

of the regression coefficient be βo = (βo1 , . . . , β
o
p)
′. Denote O = {j : βoj 6= 0}, which is the set

of indices of nonzero coefficients. Define

β̂
o
(λ2) = argmin

b
{ 1

2n
‖y −Xb‖2 +

1

2
λ2b

′Lb, bj = 0, j 6∈ O}. (4.1)
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This is the oracle Laplacian shrinkage estimator on the set O. Theorems 1 and 2 below

provide sufficient conditions under which P(sgn(β̂) 6= sgn(βo) or β̂ 6= β̂
o
)→ 0. Thus under

those conditions, the SLS estimator is sign consistent and equal to β̂
o

with high probability.

We need the following notation in stating our results. Let Σ = n−1X ′X. For any

A ∪B ⊆ {1, . . . , p}, vectors v, the design matrix X and V = (vij)p×p, define

vB = (vj, j ∈ B)′, XB = (xj, j ∈ B), VA,B = (vij, i ∈ A, j ∈ B)|A|×|B|, VB = VB,B.

For example, ΣB = X ′BXB/n and ΣO(λ2) = ΣO + λ2LO. Let |B| denotes the cardinality of

B. Let cmin(λ2) be the smallest eigenvalue of Σ + λ2L. We use the following constants to

bound the bias of the Laplacian:

C1 = ‖Σ−1
O (λ2)LOβ

o
O‖∞, C2 = ‖{ΣOc,O(λ2)Σ

−1
O (λ2)LO − LOc,O}βoO‖∞. (4.2)

We make the following sub-Gausian assumption on the error terms in (1.1).

Condition (A): For a certain constant ε ∈ (0, 1/3),

sup
‖u‖=1

P{u′ε > σt} ≤ e−t
2/2, 0 < t ≤

√
2 log(p/ε).

4.1 Convex penalized loss

We first consider the case when Σ(λ2) = Σ + λ2L is positive definite. Since (4.1) is the

minimizer of the Laplacian restricted to the support O, it can be explicitly written as

β̂
o

O = (ΣO + λ2LO)−1X ′Oy/n, β̂
o

Oc = 0, (4.3)

provided that ΣO(λ2) is invertible. Its expectation β∗ = Eβ̂
o
, considered as a target of the

SLS estimator, must satisfy

β∗O = (ΣO + λ2LO)−1ΣOβ
o, β∗Oc = 0. (4.4)

Condition (B): (i) cmin(λ2) > 1/γ with ρ(t;λ1, γ) in (2.1). (ii) The penalty levels satisfy

λ1 ≥ λ2C2 + σ
√

2 log((p− |O|)/ε) max
j≤p
‖xj‖/n

with C2 in (4.2). (iii) With {vj, j ∈ O} being the diagonal elements of Σ−1
O (λ2)ΣO{Σ−1

O (λ2)},

min
j∈O
{|β∗j |(n/vj)1/2} ≥ σ

√
2 log(|O|/ε).
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Define β∗ = min{|βj|, j ∈ O}. If O is an empty set, that is, when all the regression

coefficients are zero, we set β∗ =∞.

Theorem 1 Suppose Conditions (A) and (B) hold. Then,

P
(
{j : β̂j 6= 0} 6= O or β̂ 6= β̂

o
)
≤ 3ε. (4.5)

If β∗ ≥ λ2C1 + maxj
√

(2vj/n) log(|O|/ε) instead of Condition (B) (iii), then

P
(

sgn(β̂) 6= sgn(βo) or β̂ 6= β̂
o
)
≤ 3ε. (4.6)

The probability bound on the selection error in Theorem 1 is nonasymptotic. If the

conditions of Theorem 1 hold with ε → 0, then (4.5) implies selection consistency of the

SLS estimator and (4.6) implies sign consistency. The conditions are mild. Condition (A)

concerns the tail probabilities of the error distribution and is satisfied if the errors are

normally distributed. Condition (B) (i) ensures that the SLS criterion is strictly convex so

that the solution is unique. Condition (B) (ii) requires that λ2 is at most a multiple of λ1.

This is to ensure the bias introduced by the Laplacian shrinkage does not interfere with

selection. Condition (B) (iii) requires that the nonzero coefficients not be too small in order

for the SLS estimator to be able to distinguish nonzero from zero coefficients.

In Theorem 1, we only require cmin(λ2) > 0, or equivalently, Σ + λ2L to be positive

definite. The matrix Σ can be singular. This can be seen as follows. The adjacency matrix

partitions the graph into disconnected cliques Vg, 1 ≤ g ≤ J for some J ≥ 1. Nodes j and k

belong to the same clique if ajk1ak1k2 · · · akmk 6= 0 through a certain chain j → k1 → k2 →

· · · → km → k. Let x̄g =
∑

j∈Vg
xj/|Vg|, where |Vg| is the cardinality of Vg. The matrix

Σ + λ2L is positive definite if and only if b′Σb = b′Lb = 0 implies b = 0, which is true if

and only if the vectors x̄g are linearly independent. This does not require n ≥ p. In other

words, Theorem 1 is applicable to p > n problems as long as the vectors x̄g are linearly

independent.
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4.2 The nonconvex case

When Σ(λ2) = Σ + λ2L is singular, Theorem 1 is not applicable. In this case, further

conditions are required for the oracle property to hold. The key condition needed is the

sparse Reisz condition, or SRC (Zhang and Huang 2008), in (4.9) below. It restricts the

spectrum of diagonal subblocks of Σ(λ2) up to a certain dimension.

Let X̃ = X̃(λ2) be a matrix satisfying X̃ ′X̃/n = Σ(λ2) = X ′X/n+λ2L and ỹ = ỹ(λ2) =

(X̃ ′)†X ′y, where (X̃ ′)† is the Moore-Penrose inverse of X̃ ′. Define

M̃(b;λ, γ) =
1

2n
‖ỹ − X̃b‖2 +

p∑
j=1

ρ(|bj|;λ1, γ). (4.7)

Since b′Σ(λ2)b = 0 implies b′X ′y = 0, we have X̃ ′ỹ = X ′y. It follows that M(b;λ, γ) −

M̃(b;λ, γ) = (‖y‖2−‖ỹ‖2)/(2n). Thus, the two penalized loss functions have the same set of

local minimizers. Since (4.7) is the penalized loss with data (X̃, ỹ), we define the estimator

β̂(λ) = δ
(
X̃(λ2), ỹ(λ2), λ1

)
, (4.8)

where the map δ(X,y, λ1) ∈ IRp defines the MC+ estimator (Zhang, 2010) with data (X,y)

and penalty level λ1. For the computation of β̂(λ), ỹ can be any solution of X̃ ′ỹ = X ′y.

Condition (C): (i) For an integer d∗ and spectrum bounds 0 < c∗(λ2) ≤ c∗(λ2) <∞,

0 < c∗(λ2) ≤ u′BΣB(λ2)uB ≤ c∗(λ2) <∞, ∀B with |B| ≤ d∗, ‖uB‖ = 1, (4.9)

with d∗ ≥ do(K∗+1) and γ ≥ c−1
∗ (λ2)

√
4 + c∗(λ2)/c∗(λ2) in (2.1), where K∗ = c∗(λ2)/c∗(λ2)−

(1/2). (ii) With C2 = ‖{ΣB,O(λ2)Σ
−1
O (λ2)LO − LB,O}βoO‖∞,

max{1,
√
c∗(λ2)K∗/(K∗ + 1)}λ1 ≥ λ2C2 + σ

√
2 log(p/ε) max

j≤p
‖xj‖/n.

(iii) With {vj, j ∈ O} being the diagonal elements of Σ−1
O (λ2)ΣO{Σ−1

O (λ2)},

min
j∈O
{|β∗j | − γ(2

√
c∗λ1)}(n/vj)1/2 ≥ σ

√
2 log(|O|/ε).

Theorem 2 Suppose Conditions (A) and (C) hold. Let β̂(λ) be as in (4.8). Then,

P
(
{j : β̂j 6= 0} 6= O or β̂ 6= β̂

o
)
≤ 3ε. (4.10)

If β∗ ≥ λ2C1 + γ(2
√
c∗λ1) + maxj

√
(2vj/n) log(|O|/ε) instead of Condition (C) (iii), then

P
(

sgn(β̂) 6= sgn(βo) or β̂ 6= β̂
o
)
≤ 3ε. (4.11)
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If the conditions of Theorem 2 hold with ε→ 0, then (4.10) implies selection consistency

of the SLS estimator and (4.11) implies sign consistency.

Condition (C) is a stronger version of Condition (B) designed to handle the noncovexity

of the penalized loss. If X satisfies the SRC (4.9), so does X̃. Thus a stronger and perhaps

more natural condition is to assume that X satisfies the SRC. However, (4.9) is used here

for more generality. The SRC is required to ensure that the model is identifiable in a lower

d∗-dimensional space.

When p > n, the smallest singular value of X is always zero. However, the requirement

c∗(λ2) > 0 only concerns d∗ × d∗ diagonal submatrices of the regularized Gram matrix

Σ(λ2) = Σ + λ2L, not the Gram matrix Σ of the design matrix X. We can have p � n

but still require do ≤ d∗/(1 + K∗) as in (4.9). Note that d∗ and K∗ can depend on n. Thus

here we allow p � n but require that the model is spares, in the sense that the number of

nonzero coefficients is smaller than d∗/(1 + K∗). Furthermore, we note that the results in

Theorem 2 hold for a local minimizer defined as in (4.8).

Theorem 2 shows that the SLS estimator automatically adapts to the sparseness and

denseness of the model. From the original sparse p-dimensional model, it correctly selects

the true underlying model. This underlying model is a dense model in the sense that all

its coefficients are nonzero. In this dense model, the SLS estimator behaves like the oracle

Laplacian shrinkage estimator in (4.1). Also, as in the convex penalized loss setting, here the

results do not require that the underlying correlation structure of the predictors is correctly

specified.

4.3 Unbiased Laplacian and variance reduction

There are two natural questions concerning the SLS. First, what are the benefits from intro-

ducing the Laplacian penalty? Second, what kind of Laplacian L constitutes a reasonable

choice? Since the SLS estimator is equal to the oracle Laplacian estimator with high proba-

bility by Theorem 1 or 2, these questions can be answered by examining the oracle Laplacian

shrinkage estimator (4.1), whose nonzero part is

β̂
o

O(λ2) = Σ−1
O (λ2)X

′
Oy/n.
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Without the Laplacian, i.e., when λ2 = 0, it becomes the least squares (LS) estimator,

β̂
o

O(0) = Σ−1
O X

′
Oy/n.

If some of the predictors in {xj, j ∈ O} are highly correlated or |O| ≥ n, the LS estimator

β̂
o

O(0) is not be stable or unique. In comparison, as discussed below Theorem 1, ΣO(λ2) =

ΣO + λ2LO can be a full rank matrix under a reasonable condition, even if the predictors in

{xj, j ∈ O} are highly correlated or |O| ≥ n.

For the second question, we examine the bias of β̂
o

O(λ2). Since the bias of the target

vector (4.4) is βoO−β∗O(λ2) = λ2Σ
−1
O (λ2)LOβ

o
O, β̂

o

O(λ2) is unbiased if and only if LOβ
o
O = 0.

Therefore, in terms of bias reduction, a Laplacian L is most appropriate if the condition

LOβ
o
O = 0 is satisfied. We shall say that a Laplacian L is unbiased if LOβ

o
O = 0.

With an unbiased Laplacian, the mean square error of β̂
o

O(λ2) is

E‖β̂
o

O(λ2)− βoO‖2 = σ2trace(Σ−1
O (λ2)ΣOΣ−1

O (λ2)).

The mean square error of β̂O(0) is

E‖β̂
o

O(0)− βoO‖2 = σ2trace(Σ−1
O ).

We always have E‖β̂
o

O(λ2) − βoO‖2 < E‖β̂
o

O(0) − βoO‖2 for λ2 > 0. Therefore, an unbiased

Laplacian reduces variance without incurring any bias on the estimator.

5 Laplacian shrinkage

The results in Section 4 show that the SLS estimator is equal to the oracle Laplacian shrinkage

estimator with probability tending to one under certain conditions. In addition, an unbiased

Laplacian reduces variance but does not increase bias. Therefore, to study the shrinkage

effect of the Laplacian penalty on β̂, we can consider the oracle estimator β̂
o

O. To simplify the

notation and without causing confusion, in this section, we study some other basic properties

of the Laplacian shrinkage and compare it with the ridge shrinkage. The Laplacian shrinkage

estimator is defined as

β̃(λ2) = argmin
b
{G(b;λ2) ≡

1

2n
‖y −Xb‖2 +

1

2
λ2b

′Lb, b ∈ IRq}. (5.1)
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The following proposition shows that the Laplacian penalty shrinks a coefficient towards

the center of all the coefficients connected to it.

Proposition 1 Let r̃ = y −Xβ̃.

(i)

λ2 max
1≤j≤q

dj|β̃j − a′jβ̃/dj| ≤ ‖r̃‖ ≤ ‖y‖.

(ii)

λ2|djβ̃j − a′jβ̃ − (dkβ̃k − a′kβ̃)| ≤ 1

n
‖xj − xk‖‖y‖.

Note that a′jβ̃/dj =
∑q

k=1 ajkβ̃k/dj is a weighted average of the β̃k’s connected to β̂j,

since dj =
∑

k |ajk|. Part (i) of Proposition 1 provides an upper bound on the difference

between β̃j and the center of all the coefficients connected to it. When λ2 → ∞, this

difference converges to zero. Part (ii) implies that the difference between the centered β̃j

and β̃k converges to zero if ‖xj − xk‖ → 0.

When there are certain local structures in the adjacency matrix A, shrinkage occurs at

the local level. As an example, we consider the adjacency matrix based on partition of the

predictors into 2r-balls defined in (3.1). Correspondingly, the index set {1, . . . , q} is divided

into disjoint sets V1, . . . , VJ . We consider the normalized Laplacian L = Iq−A, where Iq is a

q×q identity matrix and A = diag(A1, . . . , AJ) with Ag = v−1
g 1′g1. Here vg = |Vg|, 1 ≤ g ≤ J .

Let bg = (bj, j ∈ Vg)′. We can write the objective function as

G(b;λ2) =
1

2n
‖y −Xb‖2 +

1

2
λ2

J∑
g=1

b′g(Ig − v−1
g 1′g1g)bg. (5.2)

For the Laplacian shrinkage estimator based on this criterion, we have the following grouping

properties.

Proposition 2 (i) For any j, k ∈ Vg, 1 ≤ g ≤ J ,

λ2|β̃j − β̃k| ≤
1

n
‖xj − xk‖ · ‖y‖, j, k ∈ Vg.

(ii) Let β̄g be the average of the estimates in Vg. For any j ∈ Vg and k ∈ Vh, g 6= h,

λ2|β̃j − β̄g − (β̃k − β̄h)| ≤
1

n
‖xj − xk‖ · ‖y‖, j ∈ Vg, k ∈ Vh.
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This proposition characterizes the smoothing effect and grouping property of the Laplacian

penalty in (5.2). Part (i) implies that, for j and k in the same neighborhood and λ2 > 0,

the difference β̃j − β̃k → 0 if ‖xj − xk‖ → 0. Part (ii) implies that, for j and k in different

neighborhoods and λ2 > 0, the difference between the centered β̃j and β̃k converges to zero

if ‖xj − xk‖ → 0.

We now compare the Laplacian shrinkage and ridge shrinkage. The discussion at the end

of Section 4 about the requirement for the unbiasedness of Laplacian can be put in a wider

context when a general positive definite or semidefinite matrix Q is used in the place of L.

This wider context includes the Laplacian shrinkage and ridge shrinkage as special cases.

Specifically, let

β̂Q(λ, γ) = argmin
b

1

2n
‖y −Xb‖2 +

p∑
j=1

ρ(|bj|;λ1, γ) +
1

2
λ2b

′Qb.

The Mnet estimator is also a special case of β̂Q for Q = Ip (Huang et al. 2010). With some

modifications on the conditions in Theorem 1 or Theorem 2, it can be shown that β̂Q is

equal to the oracle estimator defined as

β̂
o

Q(λ2) = argmin
b
{ 1

2n
‖y −Xb‖2 +

1

2
b′Qb, bj = 0, j 6∈ O}.

Then in a way similar to the discussion in Section 4, β̂Q is nearly unbiased if and only if

QOβ
o
O = 0. Therefore, for ‖βoO‖ 6= 0, QO must be a rank deficient matrix, which in turn

implies that Q must be rank deficient. Note that any Laplacian L is rank deficient. This

rank deficiency requirement excludes the ridge penalty with Q = Ip. For the ridge penalty

to lead to an unbiased estimator, it must hold that ‖βo‖ = 0 in the underlying model.

We now give a simple example that illustrates the basic characteristics of Laplacian

shrinkage and its differences from ridge shrinkage.

Example 5.1 Consider a linear regression model with two predictors. The Laplacian shrink-

age and ridge estimators are defined as

(b̂L1(λ2), b̂L2(λ2)) = argmin
b1,b2

1

2n

n∑
i=1

(yi − xi1b1 − xi2b2)2 +
1

2
λ2(b1 − b2)2,

and

(b̂R1(λ2), b̂R2(λ2)) = argmin
b1,b2

1

2n

n∑
i=1

(yi − xi1b1 − xi2b2)2 +
1

2
λ2(b

2
1 + b22).
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Denote r1 = cor(x1,y), r2 = cor(x2,y) and r12 = cor(x1,x2). The Laplacian shrinkage

estimates are

b̂L1(λ2) =
(1 + λ2)r1 − (r12 − λ2)r2
(1 + λ2)2 − (r12 − λ2)2

, b̂L2(λ2) =
(1 + λ2)r2 − (r12 − λ2)r1
(1 + λ2)2 − (r12 − λ2)2

.

Let

b̂ols1 =
r1 − r12r2

1− r2
12

, b̂ols2 =
r2 − r12r1

1− r2
12

, b̂L(∞) =
r1 + r2

2(1 + r12)
,

where (b̂ols1, b̂ols2) is the ordinary least squares (OLS) estimator for the bivariate regression,

b̂L(∞) is the OLS estimator that assumes the two coefficients are equal, that is, it minimizes∑n
i=1(yi− (xi1 +xi2)b)

2. Let wL = (2λ2)/(1− r12 + 2λ2). After some simple algebra, we have

b̂L1(λ2) = (1− wL)b̂ols1 + wLb̂L(∞) and b̂L2(λ2) = (1− wL)b̂ols2 + wLb̂L(∞).

Thus for any fixed λ2, b̂L(λ2) is a weighted average of b̂ols and b̂L(∞) with the weights

depending on λ2. When λ2 →∞, b̂L1 → b̂L(∞) and b̂L2 → b̂L(∞). Therefore, the Laplacian

penalty shrinks the OLS estimates towards a common value, which is the OLS estimate

assuming equal regression coefficients.

Now consider the ridge regression estimator. We have

b̂R1(λ2) =
(1 + λ2)r1 − r12r2

(1 + λ2)2 − r2
12

and b̂R2(λ2) =
(1 + λ2)r2 − r12r1

(1 + λ2)2 − r2
12

.

The ridge estimator converges to zero as λ2 →∞. For it to converge to a nontrivial solution,

we need to rescale it by a factor of 1+λ2. Let wR = λ/(1+λ−r2
12). Let b̂u1 = r1 and b̂u2 = r2.

Because n−1
∑n

i=1 x
2
i1 = 1 and n−1

∑n
i=1 x

2
i2 = 1, r1 and r2 are also the OLS estimators of

univariate regressions of y on x1 and y on x2, respectively. We can write

(1 + λ2)b̂R1(λ2) = cλ2(1− wR)b̂ols1 + cλwRb̂u1,

(1 + λ2)b̂R2(λ2) = cλ2(1− wR)b̂ols2 + cλwRb̂u2,

where cλ2 = {(1 +λ2)
2− (1 +λ)r2

12}/{(1 +λ2)
2− r2

12}. Note that cλ2 ≈ 1. Thus (1 +λ2)b̂R is

a weighted average of the OLS and the univariate regression estimators. The ridge penalty

shrinks the (rescaled) ridge estimates towards individual univariate regression estimates.
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6 Numerical Studies

6.1 Computational algorithm

For fixed (λ2, γ), the PLUS algorithm of Zhang (2010) can be used to compute a path of

(4.8) as a function of λ1. This can be done using (X̃, ỹ) as the input in the plus package

in R. However, for p � n, the dimension of X̃ is at least rank(Σ + λ2L) × p, so that X̃

could be much larger than X in dimension. The current plus package needs to be updated

to incorporate the computation of SLS with large rank(Σ + λ2L).

Here we adopt a coordinate descent algorithm to compute the SLS estimate. This algo-

rithm optimizes a target function with respect to a single parameter at a time and iteratively

cycles through all parameters until convergence. This algorithm was originally proposed for

criterions with convex penalties such as lasso (Fu 1998; Genkin et al. 2004; Friedman et al.

2007; Wu and Lange 2007). It has been proposed to calculate the MCP estimates (Breheny

and Huang 2009).

Suppose we have current values of β̃k for k 6= j and want to minimize (2.1) with respect

to βj to obtain its current value β̃j. Define

Mj(βj;λ) =
1

2n

n∑
i=1

(yi −
∑
k 6=j

xikβ̃k − xijβj)2 + ρ(|βj|;λ1, γ) +
1

2
λ2djβ

2
j −

1

2
(λ2

∑
k 6=j

ajkβ̃k)βj.

Let r̃ij = yi −
∑

k 6=j xikβ̃k, z̃j = n−1
∑n

i=1 xij r̃ij and ξ̃j = 2−1λ2

∑
k 6=j ajkβ̃k. Some algebra

shows that

β̃j ≡ argmin
βj

Mj(βj;λ) = argmin
βj

{1

2
(z̃j − ξ̃j − βj)2 +

1

2
λ2djβ

2
j + ρ(|βj|;λ1, γ)

}
.

This is an univariate MCP penalized estimation problem. When γ(1+λ2dj) > 1, its solution

is

β̃j =

sgn(z̃j − ξ̃j)γ(|z̃j−ξ̃j |−λ1)+
γ(1+λ2dj)−1

if |z̃j − ξ̃j| ≤ γλ1(1 + λ2dj),

z̃j−ξ̃j
1+λ2dj

if |z̃j − ξ̃j| > γλ1(1 + λ2dj).

(6.1)

Define ŷi =
∑n

j=1 xijβ̃j and r̂i = yi − ŷi, where ŷi is the current fitted value and r̂i is the

current residual. Denote r̂ = (r̂1, . . . , r̂n)′ and let β̃
(s)

= (β̃
(s)
1 , . . . , β̃

(s)
p )′ be the current

estimate. The coordinate descent algorithm consists of the following steps.
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(1) Calculate z̃j = n−1x′j r̂ + β̃
(s)
j and ξ̃j = 2−1λ2

∑
k 6=j ajkβ̃

(s)
k .

(2) Update β̃
(s+1)
j using (6.1).

(3) Update r̂ ← r̂ − (β̃
(s+1)
j − β̃(s)

j )xj.

The last step ensures that r̂ always holds the current values of the residuals. This algorithm

always converges to a local minimum (Mazumder et al. 2009). Therefore, in the case of

convex penalized loss in Section 4.1, the β̂ computed using this algorithm satisfies Theorem

1. For fixed {γ, λ2}, Theorem 2 holds when β̂ is defined as in (4.8). This is the case when

the PLUS algorithm is used. If we let the step size converge to zero, the path of a coordinate

descent algorithm will converge to the PLUS path if λ1 is adjusted in the iteration in a

fashion similar to that in the boosted Lasso (Zhao and Yu 2004).

6.2 Simulation studies

In simulation studies, we consider the following ways of defining the adjacency measure.

N.1 ajk = I(rjk > r) and sjk = 1. Here the cutoff r is determined as described in Section

3 with a p-value of 10−3;

N.2 ajk = I(|rjk| > r) and sjk = sgn(rjk). Here the cutoff r is determined as described in

Section 3 with a p-value of 10−3;

N.3 ajk = max(0, rjk)
α and sjk = 1. We set α = 6, which satisfies the scale-free topology

criteria (Zhang and Horvath 2005);

N.4 ajk = rαjk and sjk = sgn(rjk). We set α = 6.

Penalty parameters λ1, λ2 are selected using V-fold cross validation. To reduce compu-

tational cost, we search over the discrete grid of 2...−1,−0.5,0,0.5.... For comparison, we also

consider the MCP estimate and the approach proposed in Daye and Jeng (2009; referred to

as D-J hereafter). Both the SLS and MCP involve the regularization parameter γ. For γ in

MCP estimates, Zhang (2010) suggested using γ = 2/(1−maxj 6=k |x′jxk|/n) for standardized

covariates. The average γ value of this choice is 2.69 in his simulation studies. The simu-

lation studies in Breheny and Huang (2009) suggest that γ = 3 is a reasonable choice. We
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have experimented with different γ values and reached the same conclusion. Therefore, we

fix the value of γ at 3.

We set the sample size n = 100 and the number of covariates p = 500. Among the

500 covariates, there are 100 clusters, each with size 5. Covariates in different clusters are

independent, whereas covariates i and j within the same cluster have correlation coefficients

ρ|i−j|. Covariates have marginal normal distributions with mean zero and variance one. We

consider different levels of correlation with ρ = 0.1, 0.5, 0.9. Among the 500 covariates, the

first 25 (5 clusters) have nonzero regression coefficients. We consider the following scenarios

for nonzero coefficients: (a) all the nonzero coefficients are equal to 1; (b) all the nonzero

coefficients are equal to 0.5; (c) the nonzero coefficients are randomly generated from the

uniform distribution on [0.5, 1.5]; and (d) the nonzero coefficients are randomly generated

from the uniform distribution on [0.25, 0.75]. Scenarios (a) and (b) are the ideal cases where

correlated covariates have the same effects, whereas scenarios (c) and (d) represent the more

realistic scenario where nonzero coefficients have the same sign but are not equal. In (a) and

(b), the Laplacian matrices satisfy the unbiasedness property Lβo = 0 discussed in Section

4.

We examine the accuracy of identifying nonzero covariate effects and the prediction

performance. For this purpose, for each simulated dataset, we simulate an independent

testing dataset with sample size 100. We conduct cross validation (for tuning parameter

selection) and estimation using the training set only. We then make prediction for subjects

in the testing set and compute the PMSE (prediction mean squared error).

We simulate 500 replicates and present the summary statistics in Table 1. We can see that

the MCP performs satisfactorily when the correlation is small. However, when the correlation

is high, it may miss a considerable number of true positives and have large prediction errors.

The D-J approach, which can also accommodate the correlation structure, is able to identify

all the true positives. However, it also identifies a large number of false positives, causing

by the over-selection of the Lasso penalty. The proposed SLS approach outperforms the

MCP and D-J methods in the sense that it has smaller empirical false discovery rates with

comparable false negative rates. It also has smaller prediction errors.
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6.3 Application to a microarray study

In the study reported in Scheetz et al. (2006), F1 animals were intercrossed and 120 twelve-

week-old male offspring were selected for tissue harvesting from the eyes and microarray

analysis using the Affymetric GeneChip Rat Genome 230 2.0 Array. The intensity values

were normalized using the RMA (robust multi-chip averaging, Bolstad 2003, Irizzary 2003)

method to obtain summary expression values for each probe set. Gene expression levels were

analyzed on a logarithmic scale. For the probe sets on the array, we first excluded those that

were not expressed in the eye or that lacked sufficient variation. The definition of expressed

was based on the empirical distribution of RMA normalized values. For a probe set to be

considered expressed, the maximum expression value observed for that probe among the

120 F2 rats was required to be greater than the 25th percentile of the entire set of RMA

expression values. For a probe to be considered “sufficiently variable,” it had to exhibit at

least 2-fold variation in expression level among the 120 F2 animals.

We are interested in finding the genes whose expression are most variable and correlated

with that of gene TRIM32. This gene was recently found to cause Bardet-Biedl syndrome

(Chiang et al. 2006), which is a genetically heterogeneous disease of multiple organ systems

including the retina. One approach to find the genes related to TRIM32 is to use regression

analysis. Since it is expected that the number of genes associated with gene TRIM32 are

small and since that we mainly interested in genes whose expression values across samples

are most variable, we conduct the following initial screening. We compute the variances of

gene expressions and select the top 1000. We then standardize gene expressions to have zero

mean and unit variance.

In Table 2, we show the number of genes identified under different adjacency measures. It

is clear that different ways of accounting for the adjacency structure has a significant impact

on gene identification results. For comparison, we also consider the MCP and D-J approach.

The MCP identifies 23 genes, which have 9, 8, 6 and 6 overlapped genes with the proposed

approach under N.1–N.4. Under N.1–N.4 adjacency measures respectively, the D-J approach

identifies 31 (20), 41 (23), 34 (15) and 30 (14) genes, where the numbers in the “()” are the

number of overlapped genes with the proposed approach.
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Table 2: Data analysis: number of overlapped genes identified under different adjacency

measures.

N.1 N.2 N.3 N.4

N.1 25 18 11 12

N.2 23 13 14

N.3 16 16

N.4 17

With real data, we are unable to assess gene identification accuracy. Instead, we consider

the V-fold cross validation based prediction evaluation, which consists of the following steps:

(a) Randomly split data into V-subsets with equal sizes; (b) Remove one subset from data; (c)

Conduct cross validation and estimation using the rest V −1 subsets; (d) Make prediction for

the one removed subset; (e) Repeat Steps (b)-(d) over all subsets and compute the prediction

error. The sums of squared prediction errors are MCP: 1.876; D-J: 1.951 (N.1), 1.694 (N.2),

1.534 (N.3) and 1.528 (N.4); the proposed approach: 1.842 (N.1), 1.687 (N.2), 1.378 (N.3)

and 1.441 (N.4), respectively.

With this dataset, the SLS with adjacency measure N.3 outperforms the other approaches.

It identifies a smaller set of genes which correspond to a smaller model with a more focused

hypothesis to test. In addition, it has the smallest cross validated prediction error.

7 Discussion

In this article, we propose the SLS method for variable selection and estimation in high-

dimensional data analysis. The most important feature of the SLS is that it explicitly

incorporates the graph/network structure in predictors into the variable selection proce-

dure through the Laplacian quadratic. It provides a systematic framework for connecting

penalized methods for consistent variable selection and those for network and correlation

analysis. As can be seen from the methodological development, the application of the SLS

variable selection is relatively independent of the graph/network construction. Thus, al-

though graph/network construction is of significant importance, it is not the focus of this

25



study and not thoroughly pursued.

An important feature of the SLS method is that it incorporates the correlation patterns

of the predictors into variable selection through the Laplacian quadratic. We considered

two simple approaches for determining the Laplacian based on dissimilarity and similarity

measures. Our simulation studies demonstrate that incorporating correlation patterns im-

proves selection results and prediction performance. Our theoretical results on the selection

properties of the SLS are applicable to a general class of Laplacians and do not require the

underlying graph for the predictors to be correctly specified.

We provide sufficient conditions under which the SLS estimator possesses an oracle prop-

erty, meaning that it is sign consistent and equal to the oracle Laplacian shrinkage estimator

with high probability. We also study the grouping properties of the SLS estimator. Our

results show that the SLS is adaptive to the sparseness of the original p-dimensional model

with p� n and the denseness of the underlying do-dimensional model, where do < n is the

number of nonzero coefficients. The asymptotic rates of the penalty parameters are derived.

However, as in many recent studies, it is not clear whether the penalty parameters selected

using cross validation or other procedures can match the asymptotic rate. This is an im-

portant and challenging problem that requires further investigation, but is beyond the scope

of the current paper. Our numerical study shows the satisfactory finite-sample performance

of the SLS. Particularly, we note that, the cross validation selected tuning parameters seem

sufficient for our simulated data. We are only able to experiment with four different adja-

cency measures. It is not our intention to draw conclusions on different ways of defining

adjacency. More adjacency measures are hence not explored.

We have focused on the linear regression model in this article. However, the SLS method

can be applied to general linear regression models. Specifically, for general linear models,

the SLS criterion can be formulated as

1

2n

n∑
i=1

`(yi, b0 +
∑
j

xijbj) +

p∑
j=1

ρ(|bj|;λ1, γ) +
1

2
λ2

∑
1≤j<k≤p

|ajk|(bj − sjkbk)2,

where ` is a given loss function. For instance, for generalized linear models such as logistic

regression, we can take ` to be the negative log-likelihood function. For Cox regression,

we can use the negative partial likelihood as the loss function. Computationally, for loss
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functions other than least squares, the coordinate descent algorithm can be applied iteratively

to quadratic approximations to the loss function. However, further work is needed to study

theoretical properties of the SLS estimators for general linear models.

There is a large literature on the analysis of network data and much work has also been

done on estimating sparse covariance matrices in high-dimensional settings. See for example,

Zhang and Horvath (2005), Chung and Lu (2006), Meinshausen and Bühlmann (2006),

Yuan and Lin (2007), Friedman, Hastie and Tibshirani (2008), Fan, Feng and Wu (2009),

among others. It would be useful to study ways to incorporate these methods and results

into the proposed SLS approach. In some problems such as genomic data analysis, partial

external information may also be available on the graphical structure of some genes used as

predictors in the model. It would be interesting to consider approaches for combining external

information on the graphical structure with existing data in constructing the Laplacian

quadratic penalty.

8 Appendix

In the appendix, we give proofs of Theorems 1 and 2 and Propositions 1 and 2.

Proof of Theorem 1. Since cmin(λ2) > 1/γ, the criterion (2.1) is strictly convex and its

minimizer is unique. Let X̃ = X̃(λ2) =
√
n(Σ + λ2L)1/2, ỹ = ỹ(λ2) = X̃−1X ′y and

M̃(b;λ, γ) = (2n)−1‖ỹ − X̃b‖2 +

p∑
j=1

ρ(|bj|;λ1, γ).

Since X̃ ′(X̃/n, ỹ) = (Σ + λ2L,X
′y), M(b;λ, γ)− M̃(b;λ, γ) = (‖y‖2−‖ỹ‖2)/(2n) does not

depend on b. Thus, β̂ is the minimizer of M̃(b;λ, γ).

Since |β̂oj | ≥ γλ1 gives ρ′(|β̂oj |;λ1) = 0, the KKT conditions hold for M̃(b;λ, γ) at β̂(λ) =

β̂
o
(λ) in the intersection of the events

Ω1 =
{∥∥X̃ ′Oc(ỹ − X̃β̂

o
)/n‖∞ ≤ λ1

}
, Ω2 =

{
min
j∈O

sgn(β∗j )β̂
o
j ≥ γλ1

}
. (8.1)

Let ε̃∗ = ỹ − X̃β∗ = ε̃+ Eε̃∗ with ε̃ = ỹ − Eỹ. Since X̃ ′ỹ = X ′y and both βo and β∗ are

supported in O,

X̃ ′BEε̃
∗/n = X ′BXβ

o/n− X̃ ′BX̃β∗/n
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= ΣB,Oβ
o
O − ΣB,O(λ2)Σ

−1
O (λ2)ΣOβ

o
O

= λ2{ΣB,O(λ2)Σ
−1
O (λ2)LO − LB,O}βoO, (8.2)

which describes the effect of the bias of β̂
o

on the gradient in the linear model ỹ = X̃β∗+ ε̃∗.

Since X̃ ′OEε̃
∗/n = 0, we have ‖X̃ ′Eε̃∗/n‖∞ = λ2C2.

Since X̃ ′ε̃ = X̃ ′ỹ − EX̃ ′ỹ = X ′y − EX ′y = X ′ε, (8.2) gives

Ω1 ⊆
{
‖X ′Ocε/n‖∞ < λ1 − λ2C2

}
. (8.3)

Since β∗ = Eβ̂
o
, β̂

o

O = Σ−1
O (λ2)X

′
Oy/n can be written as β∗O+ ((vj/n)1/2u′jε, j ∈ O)′, where

‖uj‖ = 1 and {vj, j ∈ O} are the diagonal elements of Σ−1
O (λ2)ΣO{Σ−1

O (λ2)}. Thus,

Ωc
2 ⊆ ∪j∈O

{
sgn(β∗j )u

′
jε ≥ (n/vj)

1/2|β∗j | ≥ σ
√

2 log(|O|/ε)
}
. (8.4)

Since λ1 ≥ λ2C2 + σ
√

2 log(p/ε) maxj≤p ‖xj‖/n, the sub-Gausian condition (A) yields

1− P
{

Ω1 ∩ Ω2

}
≤ P

{
‖X ′Ocε/n‖∞ > σ

√
2 log((p− |O|)/ε) max

j≤p
‖xj‖/n

}
+
∑
j∈O

P
{

sgn(β∗j )u
′
jε ≥ σ

√
2 log(|O|/ε)

}
≤ 2|Oc|ε/(p− |O|) + |O|ε/|O| = 3ε.

The proof of (4.5) is complete, since β̂oj 6= 0 for all j ∈ O in Ω2.

For the proof of (4.6), we have ‖β∗O − βoO‖∞ = λ2C1 due to

β∗O − βoO = Σ−1
O (λ2)ΣOβ

o
O − βoO = −λ2Σ

−1
O (λ2)LOβ

o
O. (8.5)

It follows that the condition on β∗ implies Conditon (B) (iii) with sgn(β∗O) = sgn(βoO) =

sgn(β̂
o

O) in Ω2. �

Proof of Theorem 2. For m ≥ 1 and vectors u in the range of X̃, define

ζ̃(v;m,O, λ2) = max

{
‖(P̃B − P̃O)v‖2

(mn)1/2
: O ⊆ B ⊆ {1, . . . p}, |B| = m+ |O|

}
, (8.6)

where P̃B = X̃B(X̃ ′BX̃B)−1X̃ ′B. Here ζ̃ depends on λ2 through P̃ . Since β̂(λ) is the MC+

estimator based on data (X̃, ỹ) at penalty level λ1 and (4.9) holds for Σ(λ2) = X̃ ′X̃/n, the

proof of Theorem 5 in Zhang (2010) gives β̂(λ) = β̂
o
(λ) in the event Ω = ∩3

j=1Ωj, where

Ω1 =
{
‖X̃ ′Oc(ỹ − X̃β̂

o
)/n‖∞ ≤ λ1

}
is as in (8.1) and

Ω2 =
{

min
j∈O

sgn(β∗j )β̂
o
j > γ(2

√
c∗λ1)

}
, Ω3 =

{
ζ(ỹ − X̃β∗; d∗ − |O|,O, λ2) ≤ λ1

}
.
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Note that (λ1,ε, λ2,ε, λ3,ε, α) in Zhang (2010) is identified with (λ1, 2
√
c∗λ1, λ1, 1/2) here.

Let ε̃∗ = ỹ − X̃β∗ = ε̃ + Eε̃∗ with ε̃ = ỹ − Eỹ. Since X̃ ′ỹ = X ′y, (8.2) still holds

with ‖X̃ ′Eε̃∗/n‖∞ = λ2C2. Since X̃ ′ε̃ = X ′y−EX ′y = X ′ε, (8.2) still gives (8.3). A slight

modification of the argument for (8.4) yields

Ωc
2 ⊆ ∪j∈O

{
sgn(β∗j )u

′
jε ≥ (n/vj)

1/2
(
|β∗j | − γ(2

√
c∗λ1)

)
≥ σ

√
2 log(|O|/ε)

}
. (8.7)

For |B| ≤ d∗, we have ‖P̃BEε̃∗‖/
√
n = ‖Σ−1/2

B (λ2)X̃
′
BEε̃

∗‖/n ≤ ‖X̃ ′BEε̃∗/n‖∞
√
|B|/c∗(λ2)

and ‖P̃Bε̃‖/
√
n = ‖Σ−1/2

B (λ2)X̃
′
Bε̃‖/n ≤ ‖X ′Bε/n‖∞

√
|B|/c∗(λ2). Thus, by (8.6)

ζ(ỹ − X̃β∗; d∗ − |O|,O, λ2) = ζ(ε̃+ Eε̃∗; d∗ − |O|,O, λ2) ≤
(‖X ′ε/n‖∞ + λ2C2)

√
d∗√

(d∗ − |O|)c∗(λ2)
.

Since |O| ≤ d∗/(K∗ + 1), this gives

Ω3 ⊆
{
‖X ′ε/n‖∞ <

√
c∗(λ2)K∗/(K∗ + 1)λ1 − λ2C2

}
. (8.8)

Since max{1,
√
c∗(λ2)K∗/(K∗ + 1)}λ1 ≥ λ2C2 + σ

√
2 log(p/ε) maxj≤p ‖xj‖/n, (8.3), (8.7),

(8.8) and Condition (A) imply

1− P
{

Ω1 ∩ Ω3

}
+ P

{
Ωc

2

}
≤ P

{
‖X ′ε/n‖∞ > σ

√
2 log(p/ε) max

j≤p
‖xj‖/n

}
+
∑
j∈O

P
{

sgn(β∗j )u
′
jε ≥ σ

√
2 log(|O|/ε)

}
≤ 2p(ε/p) + |O|ε/|O| = 3ε.

The proof of (4.10) is complete, since β̂oj 6= 0 for all j ∈ O in Ω2. We omit the proof of (4.11)

since it is identical to that of (4.6). �

Proof of Proposition 1. The β̃ satisfies

− 1

n
x′j(y −Xβ̃) + λ2(djβ̃j − a′jβ̃) = 0, 1 ≤ j ≤ q. (8.9)

Therefore, by Cauchy-Schwarz and using ‖xj‖2 = n, we have

λ2 max
1≤j≤q

|djβ̃j − a′jβ̃| ≤
1

n
max
1≤j≤q

|x′j(y −Xβ̃)| ≤ 1√
n
‖r̃‖.

Now because G(β̃;λ2) ≤ G(0;λ2), we have ‖r̃‖ ≤ ‖y‖. This proves part (i).

For part (ii), note that we have

λ2(djβ̃j − a′jβ̃ − (dkβ̃k − a′kβ̃)) =
1

n
(xj − xk)′r̃.
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Thus

λ2|djβ̃j − a′jβ̃ − (dkβ̃k − a′kβ̃)| ≤ 1

n
‖xj − xk‖‖r̃‖.

Part (ii) follows. �.

Proof of Proposition 2. The β̃ must satisfy

− 1

n
x′j(y −Xβ̃) + λ2(β̃j − v−1

g 1′gβ̃g) = 0, j ∈ Vg, 1 ≤ g ≤ J. (8.10)

Taking the difference between the jth and kth equations in (8.10) for j, k ∈ Vg, we get

λ2(β̃j − β̃k) =
1

n
(xj − xk)′(y −Xβ̃), j, k ∈ Vg.

Therefore,

λ2|β̃j − β̃k| ≤
1

n
‖xj − xk‖ · ‖y −Xβ̃‖, j, k ∈ Vg.

Part (i) follows from this inequality.

Define β̄g = v−1
g 1′gβ̃g. This is the average of the elements in β̃g. For any j ∈ Vg and

k ∈ Vh, g 6= h, we have

λ2(β̃j − β̄g − (β̃k − β̄h)) =
1

n
(xj − xk)′(y −Xβ̃), j ∈ Vg, k ∈ Vh.

Thus part (ii) follows. This completes the proof of Proposition 2. �
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