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Abstract

We re-examine a lower-tail upper bound for the random variable

X =

∞∏
i=1

min

{
i∑

k=1

Ek, 1

}
,

where E1, E2, . . .
iid∼ Exp(1). This bound has found use in root-finding and seed-

finding algorithms for randomly growing trees, and was initially proved as a lemma
in the context of the uniform attachment tree model. We first show that X has a
useful representation as a compound product of uniform random variables that allows
us to determine its moments and refine the existing nonasymptotic bound. Next we
demonstrate that the lower-tail probability for X can equivalently be written as a
probability involving two independent Poisson random variables, an equivalence that
yields a novel general result regarding indpendent Poissons and that also enables us to
obtain tight asymptotic bounds on the tail probability of interest.

1 Introduction

Concentration inequalities, which provide bounds on the tail probabilities of random vari-
ables, represent a vital and highly popular subject of mathematical research. These inequal-
ities find applications in a variety of fields, including geometry, statistics, empirical process
theory, machine learning, and randomized algorithms, to name a few. In this brief note, we
reconsider an inequality that has been used in a particular area of the theory of randomly
growing trees. A randomly growing tree consists of a sequence of inductively defined trees
{Tn}n∈N, where Tn is formed from Tn−1 by introducing a new vertex and attaching it to an
existing vertex of Tn−1 according to some probabilistic rule. The inequality was first proved
and utilized in Bubeck et al. (2017) in the context of root-finding algorithms for the uniform
attachment tree model, and it was subsequently used again in Devroye and Reddad (2019)
to prove a result regarding seed-finding in this same model. A variation on the inequality
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was also proved in Khim and Loh (2017) to aid in the analysis of root-finding for diffusions
over regular trees. Note that the term root-finding algorithm refers to any method that iden-
tifies (in the limit) the first vertex (“root”) of a randomly growing tree with some specified
probability. Similarly, a seed-finding algorithm seeks to partially or fully recover the first
several vertices (“seed”) of a randomly growing tree with high probability. The tail bound
appears as Lemma 2 in Bubeck et al. (2017) and is stated as follows:

Lemma 2 from Bubeck et al. (2017): Let E1, E2, . . .
iid∼ Exp(1) and let

X =
∞∏
i=1

min

{
i∑

k=1

Ek, 1

}
. (1)

Then for any t > 0, we have that

P(X ≤ t) ≤ 6t1/4. (2)

We note that (2) is intended to be used for small t, as it gives a nontrivial bound only
for t < (1/6)4 ≈ 0.000772. Lemma 12 of Khim and Loh (2017) proved that the same tail
bound holds for

X =
∞∏
i=1

min

{
−

i∑
k=1

log(Bk), 1

}
, (3)

where B1, B2, . . .
iid∼ Beta(β, 1) for β ∈ (0, 1]. Since B1

d
= U1/β for U ∼ U(0, 1), we have

using the uniform-exponential relationship that − log(B1) ∼ Exp(β). Thus the case β = 1
corresponds to the definition of X in (1).

The random variable X arises in the context of a particular method for finding the
root/seed of a randomly growing tree. Specifically, letting V (T ) denote the vertex set of a
tree T and (T, v)u↓ denote the subtree starting at u in the rooted tree (T, v), consider the
function ϕT : V (T )→ N defined by

ϕT (v) =
∏

u∈V (T )\{v}

|(T, v)u↓|. (4)

Thus ϕT (v), which is referred to in Khim and Loh (2017) as the subtree product estimator,
is the product of all the sizes of the subtrees of the rooted tree (T, v). It can be thought of as
a measure of vertex centrality in T , with smaller values of ϕT corresponding to more central
vertices. Given the product form of ϕT , it is perhaps unsurprising that X comes into play
in proofs involving the estimator. Interestingly, the vertex minimizing the function ϕT turns
out to be the maximum likelihood estimate for the root of a diffusion over a regular tree, and
ϕT can also be seen as a relaxation of the likelihood functions for the root and seed in the
uniform attachment model. It has been proven for these models (see Bubeck et al. (2017),
Khim and Loh (2017), and Devroye and Reddad (2019)) that picking the K vertices with the
smallest values of ϕT produces a successful root/seed-finding algorithm for K large enough.
The variable X appears in an intermediate step of these proofs that involves upper-bounding
the probability that a vertex v ∈ V (T ) becomes more central than the root vertex r in the
limit of a sequence of randomly growing trees {Tn}n∈N:

lim sup
n→∞

P(ϕTn(v) ≤ ϕTn(r)).
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In this paper, we consider a general setting that encompasses both of the preceding

definitions of X. In particular, we define X as in (1), but now we let E1, E2, . . .
iid∼ Exp(λ)

for an arbitrary λ > 0. We carry out a careful examination of X en route to obtaining both
nonasymptotic and asymptotic bounds for P(X ≤ t). To begin, we demonstrate that X has
a useful representation as a compound (Poisson) product of iid standard uniform random
variables. This representation allows us to easily calculate the moments ofX, and it also leads
to a quick refinement of the t1/4 rate shown in (2). After this, we prove that P(X ≤ t) can be
equivalently expressed as a probability involving two independent Poisson random variables.
This equivalence immediately yields a general result regarding independent Poissons, and
we also use it to obtain tight asymptotic bounds on P(X ≤ t).

2 A Useful Representation and Some Consequences

We begin by proving that X can be written as a Poisson product of iid standard uniform
random variables. Our proof uses some fundamental results from the theory of Poisson
processes. In particular, we recall that for a Poisson process {N(t) : t ∈ [0,∞)} with rate
λ, the number of arrivals in any time interval of length t has a Pois(λt) distribution. Also,
conditional on the number of arrivals by time t, the arrival times of N(t) have the same joint
distribution as the order statistics from a U(0, t) distribution. See, for example, Ross (1996)
for these and other basic details on Poisson processes.

Lemma 1. For λ > 0, let E1, E2, . . .
iid∼ Exp(λ) and let

X =
∞∏
i=1

min

{
i∑

k=1

Ek, 1

}
. (5)

Then we have that

X
d
=

N∏
i=1

Ui, (6)

where N ∼ Pois(λ), {Ui}i∈N is an iid sequence of U(0, 1) random variables independent of
N , and the product is understood to equal 1 if N = 0.

Proof. Consider a Poisson process with rate λ and arrival times given by the sequence{
i∑

k=1

Ek

}
i∈N

.

Moreover, let N denote the number of arrivals by time 1 for this Poisson process, so that
N ∼ Pois(λ). We clearly have that

X =

1 if N = 0,
N∏
i=1

∑i
k=1Ek if N > 0.
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Given that N = n, we also see that(
E1, E1 + E2, . . . ,

n∑
k=1

Ek

)
d
=
(
U(1), . . . , U(n)

)
,

where U(1), . . . , U(n) are the order statistics corresponding to a sample of size n from a U(0, 1)
distribution. It follows that

X
d
= X∗ =

1 if N = 0,
N∏
i=1

U(i) =
N∏
i=1

Ui if N > 0,

where {Ui}i∈N is an iid sequence of U(0, 1) random variables independent of N .

This compound product representation easily yields the moments of X.

Corollary 1. For any β > −1, we have that E
[
Xβ
]

= e−
βλ
1+β . In particular, this implies

that E [X] = e−λ/2 and Var(X) = e−2λ/3 − e−λ.

The next result is a simple consequence of Corollary 1. It shows that we can obtain a
rate of tα for any α ∈ (0, 1) for the lower tail of X, and it furthermore gives the optimal rate
corresponding to such α. Note that this is a refinement of the original result shown in (2),
which gives the rate t1/4.

Theorem 1. For any α ∈ (0, 1), we have for all t > 0 that

P(X ≤ t) ≤ e
αλ
1−α tα. (7)

In particular, by optimizing the bound with respect to α, it follows that

P(X ≤ t) ≤ exp

{
−
(√
− log t−

√
λ
)2
+

}
, (8)

where x+ = max{x, 0}.

Proof. Using Corollary 1, we have for α ∈ (0, 1) and t > 0 that

P(X ≤ t) = P(X−α ≥ t−α)

≤ E
[
X−α

]
tα (Markov’s Inequality)

= e
αλ
1−α tα.

Optimizing the preceding expression with respect to α, we see that it is minimized at
(1−

√
λ/(− log t))+, which yields (8).

Remark 1. We note that Theorem 1 provides a better constant than that given in (2).
Also, we observe that since 1/X does not have a finite moment generating function in a
neighborhood of zero, we resort to finding the best moment bound. In this connection it
is worth pointing out that the best moment bound is in general always tighter than the
Chernoff bound, see Nelson and Philips (1995). Another interesting aside is that − logX is
a sub-exponential random variable.
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3 Tight Asymptotic Bounds

The following result further exploits the characterization of X from Lemma 1 as a compound
product of uniforms to show that P(X ≤ t) has a novel representation as a probability
involving two independent Poisson random variables. While the result is intriguing in its
own right, we will also see later that it provides the key to obtaining tight asymptotic bounds
for the lower tail of X that in particular demonstrate that the bound of Theorem 1 is at
least asymptotically tight.

Theorem 2. For any t ∈ (0, 1), we have that

P(X ≤ t) = P(N > N∗), (9)

where N ∼ Pois(λ) and N∗ ∼ Pois(− log t) are independent.

Proof. Using Lemma 1, we have for t ∈ (0, 1) that

P(X ≤ t) = P

(
N∏
i=1

Ui ≤ t, N > 0

)

= P

(
−

N∑
i=1

logUi ≥ − log t, N > 0

)
.

Now since {− logUi}i∈N is an iid sequence of Exp(1) random variables, we can associate
with it a rate 1 Poisson process that is independent of N . Letting N∗ denote the number of
arrivals by time − log t for this Poisson process, so that N∗ ∼ Pois(− log t), we see that{

−
n∑
i=1

logUi ≥ − log t

}
= {n > N∗}.

We can therefore conclude that

P(X ≤ t) = P(N > N∗),

where N and N∗ are independent.

Remark 2. In view of Theorem 2, it is worth mentioning that the use of the union bound
and concentration inequalities for the Poisson distribution fails to recover Theorem 1. Never-
theless, Theorem 2 suggests that the bound of Theorem 1 can be generalized to one involving
two independent Poisson random variables; this is done in the following corollary.

Corollary 2. Let Mµ and Mν be two independent Poisson random variables with means µ
and ν, respectively. Then we have that

P(Mµ ≥Mν) ≤ exp
{
−
(√

ν −√µ
)2
+

}
. (10)
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Proof. Let β > 0. Using Markov’s Inequality, we observe that

P(Mµ ≥Mν) = P(eβMµ ≥ eβMν )

≤ E
[
eβMµ

]
E
[
e−βMν

]
= exp

{
µ(eβ − 1) + ν(e−β − 1)

}
.

Minimizing the above bound with respect to β yields (10).

We are now ready to state and prove our asymptotic result. The proof makes use of a
couple simple sets of inequalities which are given in the appendix.

Theorem 3. We have that

logP(X ≤ t) = −
(√
− log(t)−

√
λ
)2

+O (log(− log t)) . (11)

Proof. By Theorem 2, it suffices to consider P(N > N∗), where N ∼ Pois(λ) and N∗ ∼
Pois(− log t) are independent. For a lower bound, we have that

P(N > N∗) =
∞∑
k=0

P(N∗ = k)P(N > N∗|N∗ = k)

=
∞∑
k=0

e−(− log t)(− log t)k

k!
P(N ≥ k + 1)

≥ t
∞∑
k=0

(− log t)k

k!

e−λλk+1

(k + 1)!
(Lemma 2)

= te−λ

(
∞∑
k=1

(− log t)kλk+1

k!(k + 1)!
+ λ

)

≥ te−λ

(
∞∑
k=1

(− log t)kλk+1 22k

√
2πk(2k + 1)!

+ λ

)
(Lemma 3)

≥ te−λ

(
1√
2π

∞∑
k=1

(− log t)kλk+1 22k

(2k + 2)(2k + 1)!
+ λ

)

= te−λ

(
− 1

4
√

2π log t

∞∑
k=1

(2
√
−λ log t)2k+2

(2k + 2)!
+ λ

)

= te−λ

(
− 1

4
√

2π log t

(
e2
√
−λ log t + e−2

√
−λ log t

2
− 1− (2

√
−λ log t)2

2

)
+ λ

)

≥ te−λ

(
− 1

4
√

2π log t

(
e2
√
−λ log t

2
− 1 + 2λ log t

)
+ λ

)
.

We prove an analogous upper bound for λ < 2 (see Remark 3 following this proof for
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comments on how to extend it to the case λ ≥ 2). To this end, we observe that

P(N > N∗) =
∞∑
k=0

e−(− log t)(− log t)k

k!
P(N ≥ k + 1)

≤ t
∞∑
k=0

(− log t)k

k!

e−λλk+1

(k + 1)!

1

1− λ/(k + 2)
(Lemma 2)

≤ te−λ

1− λ/2

(
∞∑
k=1

(− log t)kλk+1

k!(k + 1)!
+ λ

)

≤ te−λ

1− λ/2

(
∞∑
k=1

(− log t)kλk+1 (2
√

2)22k

√
2πk(2k + 1)!

+ λ

)
(Lemma 3)

≤ te−λ

1− λ/2

(
1√
π

∞∑
k=1

(− log t)kλk+1 22k+1

(2k + 1)!
+ λ

)

=
te−λ

1− λ/2

(√
λ

−π log t

∞∑
k=1

(2
√
−λ log t)2k+1

(2k + 1)!
+ λ

)

≤ te−λ

1− λ/2

(√
λ

−π log t
e2
√
−λ log t + λ

)
.

Remark 3. Note that our use of the upper bound provided by Lemma 2 in the proof is only
valid for λ < 2, and it is slightly messier (though straightforward) to handle the case λ ≥ 2.
For this case, we simply observe that

P(N > N∗) =
∞∑
k=0

e−(− log t)(− log t)k

k!
P(N ≥ k + 1)

= t

bλc∑
k=0

(− log t)k

k!
P(N ≥ k + 1) + t

∞∑
k=bλc+1

(− log t)k

k!
P(N ≥ k + 1)

≤ t

bλc∑
k=0

(− log t)k

k!
+ t

∞∑
k=bλc+1

(− log t)k

k!
P(N ≥ k + 1).

The first term above is O(t(− log t)bλc), while the second term can be handled exactly as
in the proof of Theorem 3 (i.e., by applying the upper bound in Lemma 2) since k + 2 > λ
for all k ≥ bλc+ 1. The result of the theorem remains unchanged.

References

Bubeck, S., L. Devroye, and G. Lugosi (2017). Finding adam in random growing trees.
Random Structures & Algorithms 50 (2), 158–172.

7



Devroye, L. and T. Reddad (2019). On the discovery of the seed in uniform attachment
trees. Internet Mathematics .

Feller, W. (1968). An introduction to probability theory and its applications (3 ed.), Volume 1.
Wiley New York.

Khim, J. and P.-L. Loh (2017). Confidence sets for the source of a diffusion in regular trees.
IEEE Transactions on Network Science and Engineering 4 (1), 27–40.

Nelson, R. and T. K. Philips (1995). The moment bound is tighter than chernoff’s bound
for positive tail probabilities. The American Statistician 49 (2), 175–178.

Ross, S. M. (1996). Stochastic Processes (2 ed.). Wiley New York.

4 Appendix

We borrow from folklore the following simple set of inequalities for the upper tail of a Poisson
random variable.

Lemma 2. Let Y ∼ Pois(µ). Then for all µ < n+ 1, we have that

e−µµn

n!
≤ P(Y ≥ n) ≤ e−µµn

n!

1

1− µ/(n+ 1)
. (12)

Proof. The lower bound is trivial. For the upper bound, we observe for µ < n+ 1 that

P(Y ≥ n) =
∞∑
k=n

e−µµk

k!
≤ e−µµn

n!

∞∑
k=0

µk

(n+ 1)k
=
e−µµn

n!

1

1− µ/(n+ 1)
.

The next lemma is an easy consequence of Stirling’s approximation.

Lemma 3. For all n ∈ N, we have that

22n

√
2πn(2n+ 1)!

≤ 1

n!(n+ 1)!
≤ 2
√

2
22n

√
2πn(2n+ 1)!

. (13)

Proof. Let n ∈ N. We begin by observing that the inequalities

(n!)2

2(2n)!
≤ n!(n+ 1)!

(2n+ 1)!
≤ (n!)2

(2n)!

hold, which combined with Stirling’s bounds (see, e.g., Feller (1968)),

e
1

12n+1

√
2πnn+1/2e−n ≤ n! ≤ e

1
12n

√
2πnn+1/2e−n,
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yield that

e
2

12n+1
− 1

24n

√
2πn

22n+3/2
≤ n!(n+ 1)!

(2n+ 1)!
≤ e

1
6n
− 1

24n+1

√
2πn

22n+1/2
.

The preceding inequalities simplify to the inequalities

1

2
√

2

√
2πn

22n
≤ n!(n+ 1)!

(2n+ 1)!
≤
√

2πn

22n
,

which are an easy rearrangement of those in (13).
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