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ABSTRACT
Motivation: In pharmacogenetic studies, it is common that multiple
microarray experiments are conducted to investigate the relation-
ship between the same clinical outcome and gene expressions. An
important goal of such experiments is to discover a small number
of influential genes out of thousands being measured. To increase
statistical power and achieve consistent biomarker selection across
multiple experiments, meta analysis techniques should be used.
However, it is difficult to apply standard meta analysis approaches
because of high dimensionality of microarray data and because dif-
ferent microarray experimental settings in different experiments may
not be comparable.
Results: We propose the Meta Threshold Gradient Descent Regula-
rization (MTGDR) approach for regularized microarray meta analysis.
The proposed approach is model-based, allows for experiment-
specific estimates and is capable of selecting the same sets of
influential genes across different experiments. We demonstrate the
MTGDR method for biomarker selection in pancreatic and liver cancer
studies, where the logistic regression models are assumed.
Availability: Research R code is available at

http://publichealth.yale.edu/faculty/labs/ma/.

1 INTRODUCTION
Microarrays are capable of profiling human tissues on a genome-
wide scale and have been extensively used in pharmacogenetic
studies, where expression levels of thousands of genes are measured
along with certain clinical outcomes. A major goal of such studies
is to identify a small number of “interesting” genes that can be used
as biomarkers for disease diagnosis and prognosis prediction and as
targets for therapy. There are usually multiple independent microar-
ray experiments with the same gene sets and the same phenotype
measured in the same species. Meta analysis is needed to combine
data from different experiments and analyze them (Choi et al. 2004;
Ghosh et al. 2003; Wang et al. 2004; and Warnat et al. 2005).

Microarray meta analysis is challenging because (1) microarray
experiments usually measure a huge number of genes from a small
number of samples (i.e., the “large d, small n” setting), while only
a small number of those genes are important. Any model-based
approach needs a corresponding biomarker selection mechanism
(Li 2007); and (2) different experiments may have different setups.
Especially, different platforms may be used. Arrays that hybridize

one sample at a time (e.g. synthesized oligonucleotide arrays) mea-
sure gene expression based directly on the signal intensity of each
probe set. Spotted cDNA arrays hybridized with fluorescent labe-
led targets, in contrast, typically measure the ratio of the signal
from a test sample to the signal of a co-hybridized reference sam-
ple. Thus one unit increase in the expression levels measured in a
study using cDNA arrays is usually not directly comparable to one
unit increase in a study using oligonucleotide arrays. For example,
it has been shown that data from Affymetrix GeneChip oligonucleo-
tide microarrays correlate poorly with the data from custom-printed
cDNA microarrays (Kuo et al. 2002). Thus, data from different
platforms cannot be directly combined.

Several approaches have been proposed to deal with the pro-
blem of detecting differentially expressed genes based on multiple
datasets. Examples include using proper transformations to directly
integrate raw gene expression data (Warnat et al. 2005); a Lasso
based method (Ghosh et al. 2003); a random effects model based
method (Stevens and Doerge 2005); a robust gene ranking approach
(Hong et al. 2006) and a Bayesian approach (Jung et al. 2006),
among others. The aforementioned approaches are only applicable
to the simple “disease-versus-normal” setting and can be inefficient.

There are also studies that consider constructing predic-
tive models from multiple microarray experiments. A majo-
rity voting with impact factors algorithm is proposed in Fung
and Ng (2004). Gene shaving methods based on random for-
rest and Fisher’s linear discrimination are applied in Jiang et al.
(2004). A computationally intensive Bayesian approach is pro-
posed in Conlon et al. (2007). Statistical software, including
the R packages metaArray (Ghosh and Choi 2006), MergeMaid
(http://astor.som.jhmi.edu/MergeMaid/) and RankProd (Hong et al.
2006), has been developed for microarray meta analysis. The afo-
rementioned studies investigate predictive model building. However
biomarker selection, which is of critical interest, is either ignored or
carried out with relative ineffective approaches.

On the other hand, for microarray data generated under a single
experimental setting, simultaneous biomarker selection and esti-
mation has been extensively investigated. Examples include the
Lasso method (Ghosh and Chinnaiyan 2004; Gui and Li 2005a),
the Threshold Gradient Directed Regularization–TGDR (Gui and Li
2005b; Ma and Huang 2005, 2007), and the support vector machine
with SCAD penalty (Zhang et al. 2006). We refer to Li (2007)
for a thorough review of existing methods. Regularized approaches
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are capable of selecting a small number of influential genes along
with model construction. In terms of biomarker selection, they are
usually much more efficient than simply detecting differential genes.
Although great successes have been demonstrated by these approa-
ches, they cannot be used directly in meta analysis, since different
platforms and experimental settings are not directly comparable.

In this paper, we propose a model-based method, Meta Threshold
Gradient Descent Regularization (MTGDR), for biomarker selec-
tion in microarray meta analysis. The MTGDR takes advantage
of recent development in regularized biomarker selection methods
(with a single microarray dataset) and is capable of analyzing
several datasets generated under different experimental settings. It
thus fills the gap between the available meta analysis methods and
single-dataset regularized biomarker selection methods. Compared
to the available meta analysis methods, the MTGDR is model-
based, allows for experiment-specific estimates and can be more
efficient. Compared to the single-dataset regularized biomarker
selection methods, the MTGDR has the desired flexibility of allo-
wing for different estimates/models for different experiments and
thus can accommodate different experimental setups.

Notations and data settings are first introduced in Section 2. The
MTGDR algorithm is described in Section 3. We demonstrate the
proposed MTDGR on microarray data when binary clinical outco-
mes are available, although it is also applicable to other quantitative
outcomes. We analyze four pancreatic cancer experiments in Sec-
tion 4 and four liver cancer experiments in Section 5. Discussions
are provided in Section 6.

2 DATA AND MODEL
For simplicity of notation, we assume that the same set of d genes
are measured in all M different experiments with M > 1. We post-
pone discussions of possibly different sets of genes from different
experiments to the Discussions section. Let Y 1, . . . , Y M be the cli-
nical outcomes and let Z1, . . . , ZM represent the gene expressions
measured. For m = 1, . . . , M , we assume Y m is associated with
Zm via the model Y m ∼ φ(Zm′βm), where βm is the regression
coefficient, Zm′ denotes the transpose of Zm, and φ is the known
link function.

We assume the same link function across different experiments.
This assumption has been generally made in meta analysis. Howe-
ver, we allow for different regression coefficients βm, and hence
different models for different experiments. The rationale is that one
unit gene expression change in experiment 1 (say for example a
cDNA study) may not be equivalent to one unit change in expe-
riment 2 (say for example an Affymetrix study). The regression
coefficients, which measure the degree of associations, should be
different. This assumption shares the same spirits as the fixed effect
models in standard meta analysis (Stevens and George 2005).

We choose data with binary outcomes as an example. We note that
the proposed MTGDR is generally applicable, regardless of clinical
outcome types and statistical models. For experiment m, let Y m =
1 denote the presence and Y m = 0 denote the absence of disease.
We assume the commonly used logistic regression model, where the
logit of the conditional probability is logit(P (Y m = 1|Zm)) =
αm + Zm′βm. Here αm is the unknown intercept.

Suppose that there are nm iid observations in experiment m. The
log-likelihood is:

Rm(αm, βm) =

nmX
j=1

Y m
j log

�
exp(αm + βm′Zm

j )

1 + exp(αm + βm′Zm
j )

�

+ (1− Y m
j ) log

�
1

1 + exp(αm + βm′Zm
j )

�
. (1)

Since the intercept αm will not be subject to regularization, for
simplicity, we rewrite Rm(αm, βm) as Rm(βm).

3 MTGDR METHOD
3.1 Regularized microarray biomarker selection
Although thousands of genes are surveyed in microarray studies,
usually there are only a portion of them that are actually associated
with the clinical outcome of interest. This is the basis for biomar-
ker selection and the sparsity assumption, which states that most
components of the regression coefficient βm are zero.

The proposed MTGDR is related to the TGDR, which is intro-
duced by Friedman and Popescu (2004) in the context of linear
regression and has been used for biomarker selection in microar-
ray classification (Ma and Huang 2005) and survival analysis (Gui
and Li 2005b). Compared with other methods such as the Lasso,
the TGDR approach is a non-linear boosting-like approach. It can
be used to analyze a single dataset, or pooled dataset by sim-
ply merging different datasets. However, it is not a meta analysis
method.

3.2 MTGDR algorithm
We propose the MTGDR approach for regularized biomarker selec-
tion in microarray meta analysis. We first make the following two
basic assumptions:

(S1) the sets of genes with nonzero coefficients (i.e., the identified
genes) are the same across experiments.

(S2) although the same logistic regression model holds, the nonzero
components of the regression coefficients βm may be not equal
across experiments;

Assumption (S1) assumes that although different experiments
are not directly comparable, the biological conclusions should be
comparable, i.e, we should conclude the same sets of genes to be
significantly associated with the outcome across different experi-
ments. Assumption (S2) is mainly due to the concern of different
experimental setups, especially platforms;

Let β = (β1, . . . , βM ) and R(β) = R1(β1) + . . . + RM (βM ).
Here β is a d×M matrix. Denote ∆ν as the small positive increment
as in ordinary gradient descent searching. In the implementation
of this algorithm, we choose ∆ν = 10−3, Let βm(ν) denote the
parameter estimate of βm corresponding to ν. For a fixed threshold
0 ≤ τ ≤ 1, the MTGDR algorithm can be summarized as follows.

1. Initialize β = 0 (component-wise) and ν = 0.

2. With current estimate β, compute the d×M negative gradient
matrix g(ν) = −∂R(β)/∂β, where the (j, m) element of g is
gj,m(ν) = −∂Rm(βm)/∂βm

j .

3. Compute the length d vector of meta gradient G, where the jth

component of G is Gj(ν) =
PM

m=1 gj,m(ν).
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4. Compute the meta threshold vector F (ν) of length d, where
the jth component of F (ν):

Fj(ν) = I(|Gj(ν)| ≥ τ ×maxl|Gl(ν)|).

5. Update the (j, m) element of β: βj,m(ν + ∆ν) = βj,m(ν) −
∆νgj,m(ν)F (ν) and update ν by ν + ∆ν.

6. Steps 2-5 are iterated k times, where k is determined by cross
validation.

The MTGDR algorithm shares some similarities with the TGDR:
it starts with the zero estimate and coefficients for important genes
(defined as those with large meta gradients) are updated at each ite-
ration. The tuning parameters τ and k jointly determine the property
of β and hence the property of biomarker selection. When τ ≈ 0,
β is dense even for small values of k. When τ ≈ 1, β is sparse
for small k and remains so for a relatively large number of iterati-
ons, but will become dense eventually. At the extreme when τ = 1,
the MTGDR usually updates estimate for a single gene at each ite-
ration, which is similar to the Lasso approach. When τ is in the
middle range, the characteristics of β are between those for τ = 0
and τ = 1. For τ 6= 0, biomarker selection can be achieved with
cross validated, finite k, by having certain components of β exactly
zero.

In step 3, the meta gradient, which is defined as the sum across
different experiments, is computed. A meta threshold vector is com-
puted in step 4. By doing so, we force the threshold vector to be the
same for each gene across experiments. So when a gene is selected,
it is selected in all models across experiments, which corresponds
to assumption (S1). In steps 2 and 5, the gradients are computed for
each experiment (dataset) and estimates are updated accordingly. By
doing so, we allow different estimates (and hence different models)
for different experiments, which corresponds to assumption (S2).

The meta gradient in step 3 is the most straightforward definition
that considers the common effects across all experiments. Consider
for example gene 1 only shows significant effect in experiment 1;
whereas gene 2 shows moderate negative effects in all experiments.
Then the sum of gradients (combined effects) for gene 2 may be
larger than that for gene 1. Gene 2 is thus more likely to be selec-
ted since consistent effects are demonstrated across experiments,
whereas gene 1 may demonstrate significant effect in experiment
1 purely by chance. If a gene shows significant effects in all experi-
ments but the gradients have both positive and negative signs, then
the sum may be small and hence this gene may not be selected. The
rationale is that if a gene is selected, it is supposed to show similar
biological effects across experiments (for example, up-regulation of
this gene is positively associated with the clinical outcome). If both
positive and negative associations are observed, then inconsistent
biological conclusions are reached in different experiments. The
corresponding gene thus should not be selected. It is worth poin-
ting out that with the proposed MTGDR, it is still possible that a
gene selected has coefficients with different signs in different expe-
riments. For example, if a gene demonstrates dramatically large
positive effect in one study but no or small negative effect in other
studies, this gene may still be selected.

3.3 Tuning parameter selection
As in Ma and Huang (2005), we use the V-fold cross validation
to select the optimal k and τ . For τ = 0, 0.05, . . . , 0.95, 1, we

search over integer k to maximize the V-fold cross validation objec-
tive function, which can be defined following Ma and Huang (2005)
and is omitted here. With the V-fold cross validation, the tuning
parameters with the best predictive power are selected. Partial pro-
tection against over-fitting is also provided. In our study, we set
V = 3 mainly due to the small sample sizes consideration.

3.4 Evaluation
The proposed MTGDR is a statistical method for biomarker selec-
tion using multiple microarray data sets. In general, biomarker
selection results ultimately should be validated biologically and by
use of independent data (Grutzmann et al. 2005; Choi et al. 2004).
Statistically, with the available data, we consider the following
Leave-One-Out (LOO) cross validation approach which provides an
unbiased evaluation of the prediction performance.

We first remove one subject from the data. With the reduced data,
we first carry out cross validation and MTGDR estimation and then
use this estimate to make prediction for the one removed record.
With the logistic model, the predicted probability can be computed.
We use 0.5 as the cutoff and predict the class label. We repeat this
procedure over all subjects and calculate the prediction error.

In our numerical study, gene screening is carried out before the
MTGDR estimation. As pointed out in Ma (2006), gene scree-
ning can be classified as un-supervised (where associations between
genes and clinical outcome are not considered) and supervised
(where associations between genes and clinical outcome are consi-
dered). As pointed in Simon et al. (2003) and Ma (2006), supervised
gene screening uses information on the clinical outcome and may
lead to over-optimistic prediction evaluation. On the other hand, un-
supervised screening is mainly due to technical concerns and usually
does not cause biased evaluation. In our study, we first carry out the
un-supervised screening. Then in the LOO evaluation, we carry out
the supervised screening for each reduced data (with one subject
removed) separately. So for each reduced data, the sets of genes that
pass the screening may be different.

3.5 A graphic demonstration
We use the following small numerical example to demonstrate the
MTGDR parameter paths. For m = 1, 2 and 3, we generate data
from logit(P (Y m = 1|Zm) = βm

1 Zm
1 + βm

2 Zm
2 + βm

3 Zm
3 +

βm
4 Zm

4 . In this simulated meta analysis, there are three independent
experiments and four genes per experiment. Zj

i s are generated inde-
pendently and N(0, 0.5) distributed. We set β1 = (2.0, 2.0, 0, 0),
β2 = (1.5, 1.5, 0, 0) and β3 = (1.0, 1.0, 0, 0). In all three expe-
riments, only the first two genes are associated with the binary
outcomes, and their corresponding coefficients are different. We
simulate 50 observations under each experiment.

The 3-fold cross validation select τ = 1.0 and k = 620. We show
in Figure 1 the parameter paths as a function of k for τ = 1.0. Indi-
vidual parameter paths are similar to Lasso paths. Similar properties
have been demonstrated for the TGDR in Friedman and Popescu
(2004). We can see that for any k the estimated coefficients for one
gene are either all zero or all nonzero across experiments. This cor-
responds to assumption (S1). We also note that for a specific gene
with nonzero coefficients, the estimated coefficients are different
across experiments, as required in assumption (S2).
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Table 1. Pancreatic cancer study. PDAC: number of PDAC samples. Normal: number of normal
samples. Array: type of array used. UG: number of unique UniGene clusters.

Dataset P1 P2 P3 P4
Author Logsdon Friess Iacobuzio-Donahue Crnogorac-Jurcevic
PDAC 10 8 9 8
N 5 3 8 5
CP 5 8 – –
Array Affy. HuGeneFL Affy. HuGeneFL cDNA Stanford cDNA Sanger
UG 5521 5521 29621 5794
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Fig. 1. Parameter path as a function of k. Dashed red line: simulated expe-
riment 1; Dash-dotted blue line: simulated experiment 2; Solid black line:
simulated experiment 3. Vertical lines: cross-validated k.

4 PANCREATIC CANCER STUDY
4.1 Data
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of
malignancy-related death. Apart from surgery, there is still no
effective therapy and even resected patients usually die within one
year postoperatively. Several experiments have applied microarray
technology to pancreatic cancer, targeting to identifying predictive
pancreatic cancer biomarkers. We use four datasets in our study:
Iacobuzio-Donahue et al. (2003), Logsdon et al. (2003), Crnogorac-
Jurcevic et al. (2003) and Friess et al. (2003). These four datasets
have been selected and used in the meta analysis of Grutzmann et
al. (2005). We show data descriptions in Table 1. Two of the four
studies use cDNA arrays and two use oligonucleotide arrays. Clu-
ster ID and gene names are assigned to all of the cDNA clones and
Affymetrix probes based on UniGene Build 161. The two sample
groups considered in our analysis are PDAC and normal pancreatic
tissues. Data on chronic pancreatitis are available for Logsdon et al.
(2003) and Friess et al. (2003). As in Grutzmann et al. (2005), those
CP samples are not used in our study.

Table 2. Pancreatic cancer datasets: estimations for
genes with nonzero coefficients.

UniGene P1 P2 P3 P4
Hs.107 -0.078 -0.074 -0.096 -0.062
Hs.12068 -0.265 -0.387 -0.189 -0.250
Hs.16269 0.038 0.055 0.060 0.017
Hs.169900 -0.879 -0.992 -0.693 -0.775
Hs.180920 -0.144 -0.244 -0.223 -0.189
Hs.241257 0.096 0.128 0.124 0.062
Hs.287820 1.051 1.157 1.055 0.736
Hs.317432 -0.023 -0.012 -0.053 -0.022
Hs.5591 -0.082 -0.170 -0.149 -0.149
Hs.62 0.111 0.100 0.104 0.126
Hs.66581 -0.024 -0.028 -0.034 -0.013
Hs.75335 -0.270 -0.259 -0.250 -0.250
Hs.76307 0.435 0.303 0.616 0.416
Hs.78225 0.011 0.010 0.018 0.010
Hs.83383 -0.074 -0.094 -0.066 -0.085

Data pre-processing, including normalization, is carried out for
each experiment separately. We refer to the original articles for
details on data preparation. Grutzmann et al. (2005) identifies a
consensus set of 2984 UniGene IDs. Our dataset is provided by
Dr. Grutzmann and contains the same set of 2984 genes. We carry
out un-supervised screening and remove genes with more than 30%
missingness in any of the four datasets. There are 1204 genes that
pass this screening.

For Affymetrix expression measurements, we add a floor of 10
and make log2 transformations. We fill in missing values with
medians across samples (for each dataset separately), and then
standardize each gene to zero mean and unit variance. For cDNA
studies, we fill in missing values with sample medians for each data-
set separately, and then standardize each gene to zero mean and unit
variance.

4.2 Alternative approaches
Individual TGDR. The TGDR itself is not a meta analysis method.
To illustrate this point, we analyze each dataset separately using
the TGDR, following Ma and Huang (2007). For the four datasets,
7 (P1), 10 (P2), 6 (P3) and 1 (P4) genes are identified, respec-
tively. There is only one common gene identified in both P2 and
P3. Otherwise there is no overlap between the four sets of selected
genes. Therefore, straightforward application of the original TGDR
method to each individual data set will not yield a set of genes

4



Regularized microarray meta-analysis

with common effect across different datasets. Similar phenome-
non has been observed with other single-dataset biomarker selection
methods.

A simple method. We compute the two-sample t-statistic for each
gene and each dataset. We then assign a rank for each gene and each
dataset, based on the t-statistic. The overall rank for one gene is
defined as the sum of ranks across four datasets. The five genes with
the largest ranks are identified. Only five genes are selected because
of the small sample sizes, especially for data P2. With this simple
method, assumption (S1) is satisfied. We then construct experiment-
specific logistic models (assumption S2). With the LOO approach,
a total of 4 subjects cannot be properly predicted.

Pooled TGDR analysis. We ignore the fact that the four datasets
are from different studies and different platforms, and simply pool
them together. The sample size of the pooled dataset is 56. We apply
the TGDR to the pooled dataset. A total of 22 genes are identified in
the final model. The LOO approach misclassifies 2 subjects. As has
been noted in Grutzmann et al. (2005), the four selected datasets
are relatively easy to classify. This partly explains the satisfactory
prediction performance of the simple pooling.

4.3 MTGDR analysis
We employ the MTGDR. Tuning parameters are chosen via the 3-
fold cross validation. 15 genes are identified. We show the gene IDs
and corresponding estimates in Table 2. We can observe from Table
2 that (1) if a gene has nonzero coefficient for one dataset, then it has
nonzero coefficients for all datasets, as required by (S1); (2) the esti-
mated coefficients for one gene can be different across experiments;
this corresponds to (S2) and is the extra flexibility allowed by the
MTGDR compared with the pooled analysis; and (3) although the
estimated coefficients may be different for one gene across expe-
riments, their signs are the same. The same signs lead to similar
biological conclusions – i.e., whether up-regulations of this gene
are positively or negatively associated with the clinical outcome of
interest. Prediction error is computed using the LOO approach des-
cribed in Section 3.4. There are 2 subjects that cannot be properly
predicted.

Individual TGDR (and other single-dataset methods) cannot
achieve consistent biomarker identification across experiments and
will not be further discussed here. The simple method achives infe-
rior prediction. In addition, the number of biomarkers identified
is limited by the smallest sample size across experiments. The
MTGDR identifies 15 genes, which is fewer than the pooled ana-
lysis. Previous microarray studies (Ghosh and Chinnaiyan 2005;
Li 2007; Ma and Huang 2005) have been targeting to constructing
parsimonious models, which can lead to a more focused hypothe-
sis for further investigation (for example a shorter list of genes to
be studied). The MTGDR outperforms the pooled analysis in this
sense.

5 LIVER CANCER STUDY
5.1 Data
Gene expression profiling studies have been conducted on hepato-
cellular carcinoma (HCC), which is among the leading causes of
cancer death in the world. A microarray meta analysis is carried
out in Choi et al. (2004), where the main goal is to detect diffe-
rentially expressed genes. We study datasets D1–D4 in Choi et al.
(2004). Data information is provided in Table 3. Datasets D1–D4

were generated in three different hospitals in South Korea. Although
the studies were conducted in a controlled setting, Choi et al. (2004)
“failed to directly merge the data even after normalization of each
dataset.”

In studies D1–D3, expressions of 10336 genes are measured. In
study D4, expressions of 9984 genes are measured. We focus on the
9984 genes that are measured in all four studies. For each dataset,
the within-print-tip-group normalization is first carried out (Choi et
al. 2004). We then pre-process the data as follows.

(1) Un-supervised screening:
(1.1) if a gene has more than 30% of missing in any dataset,
then this gene is removed from downstream analysis. 3122 out
of 9984 genes pass this screening.
(1.2) if a subject has more than 30% missing expressions for
the 3122 genes, then this subject is removed. 8 subjects are
removed, leading to an effective sample size of 125. We show
the number of subjects actually used in the analysis in Table 3.

(2) For each dataset, we then fill in missing expression values with
medians across samples.

(3) Supervised screening: we compute the two-sample t-statistic
for each gene and each dataset. We then assign a rank for each
gene and each dataset, based on the t-statistic. The overall rank
for one gene is defined as the sum of ranks for all four data-
sets. The 1000 genes with the highest ranks are selected for
downstream analysis. This rank based screening shares similar
spirits as Hong et al. (2006).

(4) Normalize each gene expression to zero mean and unit
variance.

Gene screening is conducted to exclude genes which are not
likely to be influential. Similar procedure has been used in Ma and
Huang (2005) and references therein. The proposed MTGDR has no
limitation on the number of genes that can be used in the analysis.

5.2 Alternative approaches
Individual TGDR. With the individual TGDR, 27 (D1), 10 (D2),
20 (D3) and 6 (D4) genes are identified, respectively. The gene
sets identified are quite different. For example, the gene sets identi-
fied from datasets D1 and D2 have no overlap. Assumption (S1) is
seriously violated.

A simple method. We employ the simple method described in
Section 4.2. With larger sample sizes, we select the top ten genes.
The LOO prediction error is 0.26.

Pooled TGDR analysis. We simply pool the four datasets
together after data pre-processing. The four liver datasets are gene-
rated in similar experimental settings and are expected to behave
similarly. Using the TGDR for regularization, a total of 34 genes
are selected in the final model. There are 36 subjects that are
misclassified. The LOO prediction error is 0.29.

5.3 MTGDR analysis
We analyze the liver cancer data using the proposed MTGDR, with
optimal tuning parameters selected using the 3-fold cross validation.
34 genes are identified. We provide the gene information and corre-
sponding estimates in Table 4. We can see that Table 4 has similar
characteristics as Table 2. However, for a small number of genes, the
signs of the four estimates can be different. For example, for gene
15.4.E1/Rab9 effector p40, three out of four estimated coefficients
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Table 3. Liver cancer study. Tumor: number of tumor samples. Normal: number of normal
samples. Numbers in the “()” are the number of subjects used in the analysis. Ver. 2 chips have
different spot locations from Ver. 1 chips.

Dataset D1 D2 D3 D4
Experimenter Hospital A Hospital B Hospital C Hospital C
# tumor 16 (14) 23 29 12 (10)
# normal 16 (14) 23 5 9(7)
Chip type cDNA(Ver.1) cDNA(Ver.1) cDNA(Ver.1) cDNA(Ver.2)
(Cy5:Cy3) sample:normal liver sample:placenta sample:placenta sample:sample

Table 4. Liver cancer datasets: estimations for genes with nonzero coefficients.

Gene Information D1 D2 D3 D4
1.2.F.7/noseq/ -0.076 -0.100 -0.078 -0.035
1.3.A.8/clone MGC:5207 IMAGE:2901089 0.147 0.199 0.030 0.054
10.1.B.9/cDNA FLJ20844 fis, clone ADKA01904 -0.020 -0.016 -0.002 -0.002
11.3.F.6/noseq/ -0.275 -0.519 -0.225 -0.170
15.1.G.7/Cyt19 protein (Cyt19), mRNA 0.023 0.019 -0.001 0.009
15.2.D.10/EST387826 cDNA -0.041 -0.031 -0.003 -0.015
15.3.E.9/hypothetical protein MGC11287 0.016 0.034 0.015 0.014
15.4.E.1/Rab9 effector p40 (RAB9P40), mRNA 0.166 0.243 -0.012 0.083
17.2.B.11/ATPase, H+ transporting, lysosomal 9kD 0.145 0.258 0.108 0.020
18.3.F.6/nomatch/ 0.072 0.073 0.070 0.045
19.1.G.5/Ras association (RalGDS/ 0.168 0.176 -0.036 0.042
2.2.E.11/triosephosphate isomerase 1 (TPI1), mRNA 0.012 0.012 0.004 0.011
2.2.G.10/UDP-glucose pyrophosphorylase 2 (UGP2) -0.296 -0.274 -0.043 -0.178
21.3.A.4/noseq/ 0.016 0.011 0.002 0.001
23.3.H.1/thioredoxin-like, 32kD (TXNL) 0.285 0.226 0.066 0.033
25.2.A.5/noseq/ 0.016 0.014 0.001 0.009
26.2.D.2/adipose differentiation-related protein (ADFP) -0.169 -0.114 -0.219 -0.118
26.4.B.5/Human zyxin related protein ZRP-1 mRNA 0.161 0.127 0.042 0.070
3.2.E.10/Human G protein-coupled receptor V28 mRNA -0.707 -0.589 -0.359 -0.375
4.1.D.1/multiple endocrine neoplasia I (MEN1), mRNA -0.086 -0.075 -0.130 -0.090
4.2.H.5/solute carrier family 22, member 1 -0.014 -0.120 -0.144 -0.092
4.3.C.1/noseq/ -0.058 -0.020 -0.008 0.007
4.4.B.9/noseq/ -0.438 -0.670 -0.460 -0.502
5.1.A.9/noseq/ -0.001 -0.007 -0.002 -0.001
5.1.D.1/malate dehydrogenase 2, NAD (mitochondrial) 0.135 0.043 0.063 0.060
6.2.E.3/tubulin, beta polypeptide (TUBB), mRNA / 0.024 0.012 0.004 0.011
6.3.B.3/noseq/ 0.104 0.104 -0.023 0.015
6.4.D.11/non-metastatic cells 2, protein expressed NME2 0.053 0.072 0.020 0.025
6.4.F.5/H2A histone family, member Z (H2AFZ), mRNA 0.047 0.062 -0.001 0.042
7.3.A.5/nomatch/ -0.329 -0.432 -0.297 -0.222
7.3.G.9/guanine nucleotide binding protein, q polypeptide 0.073 0.019 0.049 0.029
8.2.B.11/cystatin B (stefin B) (CSTB), mRNA 0.040 0.112 0.051 0.046
8.2.D.8/RNA helicase-related protein (RNAHP), mRNA -0.739 -1.369 -1.002 -1.140
8.3.A.7/proline-rich Gla polypeptide 2 -0.001 -0.019 -0.024 -0.026

are positive, and one is negative. As discussed above, different signs
of estimates may indicate conflicting biological conclusions. Howe-
ver, we observe that the negative coefficient is very small, which
may be caused by random variations.

Prediction performance is evaluated using the LOO approach.
There are 20 subjects that are misclassified, leading to a prediction
error of 0.16, which is a significant improvement over the simple
approach and pooled TGDR.

6 DISCUSSIONS
Multiple microarray experiments have been conducted to investigate
relationship between the same clinical outcomes and gene expres-
sions. Individual experiments usually have small sample sizes and
may not have sufficient statistical power. It is thus critical to deve-
lop microarray meta analysis methods that can effectively combine
multiple datasets. In this article, we propose the MTGDR method
for biomarker selection in microarray meta analysis. The MTGDR
is a novel extension of the TGDR. The MTGDR is designed for
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microarray meta-analysis and is computationally affordable for even
extremely high dimensional data.

An important feature of the MTGDR is that it can accommodate
different platforms and experimental settings, and is capable of fin-
ding genes that have consistent effects across different experiments.
The MTGDR achieves this task in an efficient way by combining
all the available data sets in the analysis, while properly taking into
account possible heterogeneity among different experiments. Our
simulation and real data example demonstrate the superiority of this
combined approach for finding genes with consistent effects than
individual dataset-based analysis. It is clear that the genes that are
found to have consistent effects in multiple data sets should be the
priority targets for verification based on different platforms or using
independent data.

In our data analysis, the same sets of genes across experiments are
considered. When different sets of genes are included in different
experiments, the MTGDR is still applicable by setting gradients for
missing genes zero. However meta analysis will be less powerful, if
the sets of genes measured differ greatly.

We have considered studies with binary outcome and the logistic
regression model only. The MTGDR method is generally applica-
ble, as long as the objective function R(β) is well defined and
differentiable. For example, the MTGDR can be applied to find a
common set of genes that influence a continuous outcomes inclu-
ding censored survival data based on multiple microarray gene
expression data sets.
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