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Abstract

The threshold diffusion process, first introduced by Tong (1990), is a continuous-
time process satisfying a stochastic differential equation with a piecewise
linear drift term and a piecewise smooth diffusion term, e.g., a piecewise
constant function or a piecewise power function. We consider the problem
of estimating the (drift) parameters indexing the drift term of a threshold
diffusion process with continuous-time observations. Maximum likelihood
estimation of the drift parameters requires prior knowledge of the functional
form of the diffusion term, which is, however, often unavailable. We propose a
quasi-likelihood approach for estimating the drift parameters of a two-regime
threshold diffusion process that does not require prior knowledge about the
functional form of the diffusion term. We show that, under mild regularity
conditions, the quasi-likelihood estimators of the drift parameters are consis-
tent. Moreover, the estimator of the threshold parameter is super consistent
and weakly converges to some non-Gaussian continuous distribution. Also,
the estimators of the autoregressive parameters in the drift term are jointly
asymptotically normal with distribution the same as that when the thresh-
old parameter is known. The empirical properties of the quasi-likelihood
estimator are studied by simulation. We apply the threshold model to es-
timate the term structure of a long time series of US interest rates. The
proposed approach and asymptotic results can be readily lifted to the case
of a multi-regime threshold diffusion process.
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1. Introduction

In financial and insurance markets, diffusion processes have become the
standard tool for modeling returns and values for risk management purposes.
For example, a number of diffusion processes have been used to model the
term structure of market yields such as interest rate (Vasicek, 1977; Cox et al.,
1985; Black and Karasinski, 1991), some of which include time-dependent
covariates in the mean function (Hull, 2010; Black et al., 1990). While the
functional form of the diffusion term differs in these models, their drift terms
stay affine (or can be transformed to linear functions). Despite their relative
computational convenience, linear diffusion processes fail to capture non-
linear characteristics such as multimodality, asymmetric periodic behavior,
time-irreversibility, and the occurrence of occasional extreme events that are
commonly found in real data.

Continuous-time nonlinear models have proved increasingly useful over
the past decade for capturing the aforementioned nonlinear properties (Tong,
1990; Decamps et al., 2006). Although continuous-time nonlinear diffusion
processes form a relatively large model class, the field of empirical nonlinear
time series modeling is relatively under-explored, except for the first-order
continuous-time threshold autoregressive (CTAR) model proposed by Tong
(1990); see Section 2 for the definition of the CTAR model, and some of its
properties. The first order CTAR model will be simply referred to as the
threshold diffusion (TD) process below. Several approaches on the inference
of TD processes with discrete-time data have been proposed in the litera-
ture, e.g., Gaussian likelihood estimation (Tong and Yeung, 1991; Brockwell
and Hyndman, 1992; Brockwell, 1994; Brockwell et al., 2007), moment-based
estimators (Chan et al., 1992; Coakley et al., 2003), and Bayesian approach
(Pai and Pedersen, 1999). If sufficiently fine data are available, the likeli-
hood function can be approximated by the Girsanov’s formula (at least for
the case of known diffusion term). An advantage of Bayesian estimation is
that even when the data are not sufficiently fine, Bayesian data augmenta-
tion techniques could be used; see (Elerian et al., 2001; Eraker, 2001, 2004;
Roberts and Stramer, 2001; Stramer and Roberts, 2007).

Within the under-developed literature on the inference of the TD pro-
cesses with continuous-time data, maximum likelihood is preferable for effi-
ciency consideration. Recently, Kutoyants (2012) derived the asymptotic dis-
tribution for maximum-likelihood estimation of a TD model under restrictive
conditions including bounded parameter space, known ordering among some



parameters, and known functional form of the diffusion term. In practice,
the functional form of the diffusion term is generally unknown. Thus, it is
desirable to develop an estimation method that does not require knowing the
functional form of the diffusion term.

Here, we introduce a quasi-likelihood approach to estimate the drift pa-
rameters of a TD model, without requiring prior knowledge of the functional
form of the diffusion term. The quasi-likelihood is obtained by applying
Girsanov’s theorem to the TD model with constant diffusion coefficient even
though the true diffusion term may be non-constant and even nonlinear. The
consistency and the limiting distributions of the quasi-likelihood drift estima-
tors of a 2-regime TD model are derived in Section 4, under some regularity
conditions. Given data over T units of time, we show that the threshold
parameter is T-consistent and its limiting distribution admits a closed-form
pdf. Moreover, the autoregressive parameter estimators are VT -consistent,
and asymptotically independent of the threshold estimator, with a limiting
normal distribution which is the same as that assuming known threshold.
A simulation study is conducted in Section 5 to illustrate the asymptotic
results. In Section 6, we apply the proposed method to study the term struc-
ture of the US interest rate. We conclude briefly in Section 7. All proofs are
collected in Section 8.

2. Nonlinear Diffusion Processes

We begin with the general nonlinear diffusion process:
dX(t) = p(X(t),t)dt + o(X(t),1)dW (t) (1)

where the function p(z,t) is the drift term (instantaneous mean function),
o(x,t) is the diffusion term (0?(x,t) instantaneous variance function) and
W = {W(t)} stands for the standard Brownian process. Here, we focus
on the case that both the drift and diffusion terms are time-homogeneous,
ie., p(z,t) = p(z) and o(z,t) = o(z). The drift and the diffusion terms
are generally known up to some parameters, in which case we write ug for
p and o, for o where the drift parameter 8 and the diffusion parameter ~
are vectors that may share some common parameters. For conciseness, these
parameters are often suppressed.

Among all nonlinear diffusion processes, the first-order m-regimes thresh-
old diffusion (TD) model, which is the first-order case of the continuous-time
threshold autoregressive process (Tong, 1990; Tong and Yeung, 1991), has
received much attention in the literature, and it is defined to be the solution



of the following stochastic differential equation
iX(0) = 348 (xy) @+ oW O < X0 <) @

where —oc0 = rg < 1y < ... < 1, = oo are the threshold parameters,
B = (B, Bi1) are the autoregressive parameters and o;’s are the diffu-
sion parameters. In other words, the drift term is piecewise linear while the
diffusion term is piecewise constant, and the two functions have identical
break points. Specifically, pu(x) = >0 (Bio + Bax)(rio1 < x < r;) and
o(x) = Y 0i1(rim1 < @ < r;). Thus, the TD process models the situa-
tion that the underlying process is governed by m Ornstein-Uhlenbeck (OU)
sub-processes, with the ith OU governing mechanism in effect whenever the
process X (t) is in the ith regime, i.e., X(¢) € (r;,-1,7;]. The TD process
may switch regimes infinitely many times within an arbitrary small interval
of time due to the properties of the Brownian motion.

Similar to Chan and Tong (1986), the hard-thresholding regime switch-
ing mechanism may be smoothed by employing a soft-thresholding rule.
A smooth threshold diffusion (STD) model can be obtained by replacing
I(ri-y <o <) by F(x;ry,s;) — F(x;7i-1, 8i-1) where F(+;7,s) denotes the
cumulative distribution function of some location-scale family with location
parameter r and scale parameter s, for instance the family of normal or logis-
tic distributions. The proposed estimation method and much of the theory
developed below can be lifted to the STD model, with details to be reported
elsewhere.

For the stationary solution of a TD model to exist, the sub-models of the
two outermost regimes must be “stationary”. The following theorem is due
to Brockwell and Hyndman (1992) (see also Brockwell et al. (1991)).

Theorem 1. Suppose that o; > 0,5 = 1,....,m. Then the process defined by
(2) has a stationary distribution if and only if

lim p(x) > 0; 1i_>m wu(z) <0,

T——00

i.e., f1p < 0 and P11 < 0, or in the case that 11 = 0 (B = 0), then
Bio > 0 (Bmo < 0). Further, if the stationarity condition is satisfied, the
stationary density is given by

m(x) = Z ki exp{(Binz® + 2Bix) /o2 (rioy < x < 13),
i=1
where the constants {k;} are determined by the conditions that (i) [°._m(x)dx =

1 and (ii) on(r;—) = o2 w(ri+),i=1,- -+ ,m—1, where 7(r;—) and (r;+)

4



1 A,NM[N
LA

T
10

Figure 1: Left diagram: the stationary density function of X(t), where
dX(t) ={(-2—4X () [(X(t) <0)+ (3—=3X(t))[(X(t) > 0)}dt + 4dW (¢).
Right diagram: a realization of X simulated using the Euler scheme with
step size equal to 0.01.

are the left and right hand limits of © at r;. That is, the function o*(z)w(x)
is continuous at all threshold points, and the stationary density function 7(z)
is continuous only if the instantaneous variance function o?(x) is continuous
at the threshold points.

Note that the stationary density is generally non-Gaussian, asymmetric
and often multi-modal for a TD process. For instance, Figure 1.1 displays the
stationary density function of the process dX (t) = {(—2 —4X (¢))I(X(t) <
0)+(3—3X(¢))I(X(t) > 0)}dt+4dW (t), which is non-Gaussian and bimodal.
The form of the stationary density implies that it has finite moments of all
orders. Also, a stationary TD model is geometrically ergodic (Stramer et al.,
1996).

A more general TD model may be obtained by relaxing the piecewise
constant diffusion term to a piecewise smooth function, for instance, a piece-
wise power diffusion term obtained by replacing o; by ¢; X7 (t) where 7; are
parameters. The preceding more general formulation enables us to model
positive data without the need for data transformation. The stationarity
results stated in Theorem 1 can be extended to the more general TD model.
As an illustration, consider the stationarity condition for the square-root case
when X is a positive process a.s., and o(z) = Y ", op/xl(risy < x < 13),
where 0 =rg <ry < ... <1, = oco. We shall assume that o; > 0,Vz. Let
Y (t) = /X (t). Then the stationary condition for { X (¢)} and {Y(¢)} should
be the same. By Ito’s formula,

Y (t) = 2{(4%’;’/—(;)01' + %Y{t))dt + %dW(t)}](\/ri__l <Y(t) <ri).



Thus, {X(¢)} is stationary if 48,0 — 0? > 0 and B,,; < 0. Following an
argument in Karlin and Taylor (1981, p. 221), the stationary density function
can be shown to be

w(w) = ka7 exp(2Bna/of)(riy < x < 1y) (3)
=1

where the constants k; satisfy condition (i) of Theorem 1 and (ii’) o2r;m(r;—) =
afﬂrm(m—i-),i = 1,---,m — 1. Thus, the stationary density is piecewise
“Gamma”-distributed. In summary, the TD model with a general diffusion
term is a solution to the following stochastic differential equation.

dX(t) = {Z B/ (Xl(t)) I(rioy < X(t) < r)}dt +o(X(t)dW(t), (4)
i=1
where o(-) may be some piecewise smooth function.

3. Quasi-likelihood Estimation

As indicated in the preceding section, the functional form of the diffusion
term of a TD model is generally unknown as it could be piecewise constant
or piecewise power, or of some other piecewise smooth form. Thus, it is of
interest to develop an estimation method for the drift parameters that does
not requires prior knowledge on the functional form of the diffusion term.
The quasi-log-likelihood function introduced below is designed to achieve
this goal. As the idea is rather general and applicable to a general (possibly
time-inhomogeneous) diffusion process, we motivate the quasi-likelihood in
the general framework that the observations {X(¢),0 < ¢t < T} are a real-
ization of a general diffusion process X = {X(¢)} satisfying (1) where the
drift term pg is parameterized by the unknown parameter 6. Suppose the
diffusion term o is known. Let dP be the probability measure induced by
the standard Brownian process W = {W(t)}, and dPp that induced by X.
By the celebrated Girsanov’s theorem for semimartingales, the log-likelihood
function is

log(A) = log(7)
A CrCRET A e o
[T (X (1)) 1T 3 (X(),0)
B / o2(x (), 0™ 2/0 2ot O



In the case of a constant diffusion term, log(A) is proportional to

16) = / no(X (1), )X (1) ~ / WX (1), 1)t

In the general case of a possibly non-constant diffusion term, {(8) is no longer
the log-likelihood function. However, it can be interpreted as a quasi-log-
likelihood function, and the quasi-likelihood estimator 0 is the argument
maximizing [(-). If the drift term is a smooth function of @ and assuming the
validity of interchanging differentiation and integration and that all stochas-
tic integrals below are well defined, the quasi-likelihood estimator satisfies
the following estimating equation obtained by setting to 0 the first derivative
of [ w.r.t. 0:

T
o)
0 = / %(X(t),t){dX(t) — pe(X(t),t)dt}. (6)
0
Evaluated at 6y, the true drift parameter, the right side of the preceding
equation equals fOT ag%(X(t), t)o (X (t),t)dW (t) where o(X (t),t) is the true
diffusion term. Hence, it has zero mean, showing that (6) is an unbiased
estimating equation. Another heuristic derivation of the quasi-log-likelihood

mimics the approach of least squares. Consider
T
| HAX @) = noCX (1) t0dt)?  o?(X(0), )]
0

= [ —2uelx0.00x(0) + X0, )

Hence, the quasi-log-likelihood is essentially equal to some negative “multi-
ple” of the integrated square errors.

Here, we study the properties of the quasi-likelihood estimation of the
drift term of a TD process. However, the drift term of a TD model is gen-
erally a discontinuous function, which complicates the theoretical analysis of
the quasi-likelihood estimator. For simplicity, we assume a two-regime TD
process and derive the large-sample properties of the quasi-likelihood esti-
mator of the drift parameters. However, the limiting results can be readily
lifted to the case of more than two regimes. The drift term of a two-regime

TD model can be written as
r) [ I(X(t)>r)
< r)) P (X<t>f<x<t> > r))

I(X(1)
)+ By Y (I(X () > 1),

ZIA

w(X®),t) = B (X(t)[(X(
= BIY(OI(X(t)

IN



where Y (t) = (1, X(¢))" and B8] = (Bi, B1), i = 1,2.

Then, quasi-likelihood estimation may be carried out by a two-step proce-
dure: First, for given r, obtain the likelihood estimator for the vector of
coefficients (3;; and denote this estimator by 8,, which is given by (letting

Litr) = 1(X(t) <), Lt r) = 1(X(t) > 7))

OT 11(7751;7“) dt fOT X(t);l(t;r) dt 0 0
T X@)L(Gr T X2(t)I (t;r

5, = o %dt Jo (—)Tl( Lat OT ()T

0 0 f Ta(tr) 14 fo X(t)ég(tn") dt

0 T
0 0 foT X(t);g(t;r) dt fOT XQ(t)éz(t;T) dt

A

Substituting § by 4, in the quasi-log-likelihood function yields the profile
quasi-log-likelihood function of r

I(r) = 1(8,,7).

Then, perform a maximization of I(r),r € [a,b] to obtain the threshold es-
timator 7, where a, b are often chosen to be some percentiles, e.g. from the
twenty to the eighty percentiles, of the observed data in order to guarantee
data abundance for estimation in each regime.

In practice, the data are often digitized or measured by discrete-time sam-
pling from the underlying continuous-time process, in the form of { X (¢;),0 <
i < m}, in which case the stochastic integrals can be approximated by Euler
approximation. In particular, the profile function /() becomes a piecewise
constant function under the Euler scheme, and the threshold parameter can
be computed via an exhaustive search. The Euler approximation scheme will
be adopted in all numerical studies reported below.

It is instructive to compare the proposed estimation method with two
closely related methods. Brockwell et al. (2007) derived the maximum likeli-
hood estimator for the drift coefficients of the CTAR(p) model with constant
diffusion term, which coincides with the proposed quasi-likelihood estima-
tor, for p = 1. The estimation method of Tong and Yeung (1991) assumes
the continuous-time sample path connecting two consecutive data to entirely
lie in a single regime if both data fall in the same regime, but otherwise
cross the threshold only once with the time of crossing determined by lin-
ear interpolation. Under this assumption and with the data augmented by
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pseudo data at the interpolated times of threshold crossing, the likelihood
can then be computed by Kalman filter, the maximization of which yields
the Tong-Yeung estimator. Applying first-order Taylor approximation in the
Kalman filter and assuming known threshold and conditional homoscedasc-
ity, the Tong-Yeung estimator becomes the proposed estimator, except that
it requires constructing pseudo data that vary with the threshold param-
eter. The latter requirement renders the optimization for the Tong-Yeung
estimator less tractable in the general case.

The quasi-likelihood estimator of the drift parameter of a 2-regime TD
process generated by (4), based on the observations {X(¢),0 <t < T}, will
be denoted by 6. The true parameter is denoted by

T AT T T
0o = (51,0752,077”0) = (B10,0, B11,0, B20,0, B21,0,70)

with the parameter space being @ = R* x [a, ].

4. Large-sample Properties

The following assumptions will be used to establish the asymptotic prop-
erties of é, as T' — oo.
(A1) Bi,o # B and that (B, — B5,)(1,70)" # 0.
(A2) The process { X (t)} is stationary and geometrically ergodic with finite
fourth moments.
(A3) The true threshold parameter 7y lies in a pre-specified, finite interval
la,b], say, a = 20 percentile and b = 80 percentile of the observed data.
The process {X(¢)} admits a marginal probability density function that is
a.s. continuous with possible discontinuity of first kind at the true threshold
ro. More specifically, the density function would be discontinuous only if the
instantaneous variance function o?(z) is discontinuous at z = r.
(A4) The variance function o?(x) is a positive function, with finitely many
discontinuity points (left and right limits exist for all z); Further, o(x) has at
most linear growth, i.e., 3 constants ¢y, ¢ such that |o(z)| < ¢1+co|z|, x € R.

Though parameters in the two regimes are different, the mean function
might still be continuous. (A1) excludes this possibility of continuity at the
threshold point. And the assurance of discontinuity would be used in showing
the super-consistency of the threshold parameter. (A2)-(A4) are useful in
proving the consistency and the weak convergence of the estimators. These
assumptions are essential for model identifiability. That ry is known to be
in a fixed, finite interval [a,b] guarantees adequate data for estimation in
each regime, for large samples. Given the above assumptions, we are able
to show the large-sample properties of the estimators. We first show that



the estimators lie in a compact subset of the parameter space. The following
lemma provides some technical results needed below.

Lemma 1. Suppose (A2) is valid. Then the following averages satisfy the
uniform law of large numbers

l TX"’(t)](X( t) < r)dt,k =0,1,2.

—/ XE (1) < P)o(X ()W (1), k =0, 1.

i.e. they tend to their expectations uniformly in r € [a,b], with probability
approaching 1 as T — oo.

Lemma 2. Suppose (A1)-(A}) are valid. Then it holds with probability
approaching 1 as T — oo that the quasi-likelihood estimator 07 lies in a
compact set, that is, there exists a finite constant M > 0, such that Or lies
in Cy with probability approaching 1 as T — oo, where

C1 =10 :[B1— Biol <M, |By — Bap| < M,r € [a,b]}.
Then, we show the estimators are consistent.

Theorem 2. Assume (A1)-(A4) hold. Then the quasi-likelihood estimator
Or = (ﬁl,ﬁg, T) is consistent, i.e. 01 — 0y in probability.

In particular, the estimator of the threshold parameter is T-consistent.

Theorem 3. Assume (A1)-(A4) hold. Then the quasi-likelihood estimator
of the threshold parameter is T-consistent:

b= 1o+ 0,(1/T).

Before discussing the limiting distribution of the threshold parameter,
define

Ir() = U8y rnyr; 7o + K/T) — 1(8ry, 0)-

Theorem 4. Suppose (A1)-(A4) hold. (Ip(k)I(k > 0),lr(—k)I(k < 0)) con-
verges weakly to (Iy(k),12(k)) in D[0, 00) x D[0, 00), equipped with the product
topology of uniform convergence over compact sets and where {W(t), —oo <
t < oo} below denotes the Brownian motion with W(0) =0 a.s., and

L(k) = =5 [ (ro)m(rot)k + f(ro) y/m(ro-H)o (ro )W (x),
la(r) = =5 f2(ro)m(ro—)k + f(ro)\/m(ro—)o (ro—) W (=k),

where f(ro) = (B1o — Bao) ' (1,70)". Furthermore, r = T (7 — ry) converges

10



weakly to 7, the unique maximizer of l~(), with the following probability den-
sity function (with 7 € R):

m [ 1 1 - 1 1
202(T0—) —mr 20’2(7'0—) 202(7’0—) 20’2(7’0—)

g(r) =I(7 < 0)

—mf)
m 1 1 1 1
I(r>0 — r) — d(—
0= D0 Vi 202600 Y 7 202001 M 2% 00)
where m = a*(ro+) f2(ro)m(ro+) = 02(ro—)f2(ro)m(ro—), ¢ and ® are the
probability density and distribution function of a standard normal random
variable, respectively.

Using Theorem 4, we can construct confidence intervals for the threshold
parameter as follows. Let m_ = m/{20%(ro—)}* and m; = m/{20%(ro+)}>.
Consider the asymmetrically transformed variable 7 = m_7I(7 < 0) +
m 7 I(7 > 0) whose probability density function is g(7) = |#|~"/2¢(—+/|7]) —
®(—+/]F|),7 € R. (It is interesting to note that Hansen (1997) showed that
up to scale, the preceding density function is also the limiting density of the
threshold parameter estimator for a discrete-time self-exciting threshold au-
toregressive (SETAR) model when the autoregressive coefficients in the two
regimes are asymptotically equal.) Table 1 displays several selected quan-
tiles of 7. Hence, a 95% confidence interval for the threshold parameter is
asymptotically equal to

(7 — 21458/ (m T), 7 + 2.1458/(m_T)). (7)

In practice, m_ and m, have to be approximated by substituting the un-
known true parameter values by their estimates, which requires the specifi-
cation of the diffusion term. However, the form of the limiting distribution
may lend to the use of other approaches, e.g. bootstrap and subsampling,
for constructing the confidence intervals.

A promising bootstrap approach is the regenerative block bootstrap (Bertail
et al., 2006), which is applicable to Markov processes that can be decomposed
into independent and identically distributed (IID) blocks. For instance, for a
regular (irreducible) and stationary Markov process that admits an atom, it
can be decomposed into IID blocks between consecutive visits to the atom.
In practice, the aforementioned decomposition with data sampled over a fi-
nite interval, say, [0, 7], is generally marred by an incomplete initial block
before the first visit to the atom and an incomplete closing block after the
last visit, unless the atom is visited at ¢ = 0 or T. A regenerative block
bootstrap process, say {X*(s),0 < s < T}, can then be obtained by (i)
concatenating the initial block with a number of randomly selected complete

11



blocks with replacement, plus the closing block so that 7™, the size of the
concatenated process, just exceeds or equals T', the observed sample size, (ii)
subsampling the concatenated process over the interval [t*,t* + T| where t*
is uniformly distributed over [0,7* — T'], and (iii) shifting the time interval
to [0,7]. An advantage of this approach is that it ensures that the observed
process can be a realized bootstrap process. In the general case of a diffusion
without an atom, a sufficiently small closed interval inside the interior of the
state space, say a closed interval around the median of the process, may be
utilized as an approrimate atom for constructing an approximate regenera-
tive block bootstrap. This bootstrap approach will be illustrated in the real
application. Further investigations of the regenerative block bootstrap and
other re-sampling approaches will be pursued elsewhere.

prob. | 0.6000 0.7000 0.8000 0.9000 0.9500 0.9750 0.9950
quantile | 0.0187 0.0923 0.2755 0.7558 1.3931 2.1454 4.1954

Table 1: Selected quantiles for 7.

Theorems 3 and 4 are supported by the following three lemmas.

Lemma 3. Suppose (A1)-(A4) hold. The processes {I(rg — A < X(t) <
ro + A)} and {f(X(@)I(ro — A < X(t) < ro+ A)} are p—mizxing for any
function f(-) that is bounded over compact sets.

The following two lemmas show that I can be replaced by [(6o, 70 +
k/T) — (8o, o) for large samples.

Lemma 4. Assume (A1)-(A4) hold. Then, for any positive number K,

Sup |Bi,7‘ - Bi,r0| - Op(l/ﬁ>,l - 17 2

|r—ro|<K/T

Lemma 5. Assume (A1)-(A4) hold. Then, for any fized positive number
K

‘slup (k) — (180,70 + K/T) = 1(80,70))| = 0,(1).
k|I<K
Note that the O,(1/T) convergence rate of the threshold parameter im-

plies that the threshold estimator is asymptotically independent of 5. We can
show that & is v/T-consistent and its limiting distribution is identical to the
case of knowing the true threshold.

12



Theorem 5. Suppose (A1)-(A4) hold. Then &; — 8 = O,(1/v/T). More-
over, VT (67 — d¢) is asymptotically normally distributed with the same dis-
tribution as for the case of known threshold, i.e. N(0,%) where

% = B (lgy) E(loylg,) B~ (ly) -

where igo = al(5 lo=g, and leo = %l;%b 0o
Note that
0T Iljlir)dt fT X(t)h(t Ddt 0 0
P OT X(t Il(tr dt f 11(“" dt 0 0
) 0 OT L(tr) 1 fT Mdt
0 0 fOT X(t)IQ(tr di fT X2(t)12(tr ) dt

and F (igoigo) equals the expectation of

[T RENAK@) gy [T XL ) dt 0 0
zT X(t)hg;;;)UQ(X(t)) 5 sz X <t>11<t7;5 2<X Dat o 0
0 0 fT Ixy(t; r)o;(X dt fT X(t)Ig(t;)a (1) dt
0
0 0 [ XOnlne o) gy [T X0 g

Hence, the calculation of ¥ requires knowing the diffusion term. For positive
data, the diffusion term may take the form of a piecewise power function, i.e.,
o(x) = oz I(x < 1)+ oyx?I(x > r). The power v may be specified from
data analysis, see the real application below. In the case of known ~, the
parameters o; can be estimated by quadratic variation calculation. (For any
continuous-time process {Y(¢)}, its quadratic variation process [Y]; equals
the limit lim > " {Y'(¢;) — Y (¢;—1)}* taken as the partition 0 = ¢y < t; <

. < t;,, =t gets finer and finer, i.e., m — oo and max(*, |t;—t;_1| — 0.) Let
Xi(t) = X(t)I(X(t) <r)and Xo(t) = X(¢)I(X(t) > r). Then the quadratic
variations of X; are given by

T
[(Xilr = / o2 X2 (t)dt,
0

so 0 can be estimated by

62 = [Xlr/ / X2(t)dt. (8)
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5. Simulation

We have conducted a simulation study to illustrate the asymptotic behav-
ior of quasi-likelihood estimation for the continuous-time threshold diffusion
processes. Data were simulated from the following two models, both of which
have the same mean function, but one has constant volatility function and
the other has piecewise constant volatility function.

dX (1) = {(=2 — AX () I(X() < 0) + (3 — 3X (1)) (X () > 0)}dt + 4dW (1),
dY (1) = {(—2—4Y (£))dt+4dW () }(Y (£) < 0)+{(3—3Y (£))dt+8dW (£) (Y (t) > 0).

The parameter GOT = ((s(;r,’l“o) = (610,0 = —2, 61170 = —47 52070 = 3,621,0 =
—3,7r9 = 0) for both models. The diffusion processes were generated by the
Euler scheme with At = 1/100. (The integrals in the closed-form solutions
for the @’s are then approximated by sums.) The estimators of the (3’s
and parameter r are obtained by maximizing the quasi-likelihood function,
with the threshold parameter searched over the interval [a,b] where a and
b are chosen to be the 20 and 80 percentiles of each realization. We choose
T = 200,500 and 1000 respectively, and for each T', the Monte Carlo results
reported below are based on 500 replications.

Table 2 lists, for each experimental setting, the sample mean, bias, and
standard deviation of each drift estimate, and the corresponding empirical
coverage rates of the nominally 95% confidence intervals. The confidence
intervals are constructed based on Theorems 4 and 5, assuming that the
functional form of the diffusion term is known, with o? estimated by (8) and
other parameters estimated by the quasi-likelihood estimates. The standard
deviations and the biases of the estimators generally become smaller with
larger T, confirming the derived consistency results. The normal quantile-
quantile plots, in Fig. 2, for the autoregressive parameters estimated with
the simulated X and 7" = 500 confirms the asymptotic normality result in
Theorem 5. The plots for other cases of the X process are similar, but those
for the Y process (unreported) approach straightness more slowly. A plot of
the limiting density function of 7 = T'(7 — 1) and its empirical counterpart
for {X(¢)}, with T" = 500, 1000, are displayed in Figure 3, from which we
could clearly see that the empirical density functions, obtained by kernel
smoothing, are symmetric around 0, decrease quickly to 0 on both sides,
and they are tracking the limiting density function closely. As the limiting
density is singular at the origin, it is hard for the kernel density estimate to
match the limit density at the origin. Fig 4 shows the plot for the Y process,
in which case the limiting density is asymmetric around the origin. Again
the empirical densities are similar to the limiting density although the match
over the positive axis is poorer than that over the negative axis.
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The empirical coverage probabilities of the nominal 0.95 confidence inter-
vals are generally lower than but approach the nominal 0.95 with increasing
T, but with greater disparity for the case of piecewise constant diffusion
than its constant counterpart. For the threshold parameter, the confidence
intervals are constructed based on (7), with the parameters estimated by the
quasi-likelihood estimates and the diffusion parameter(s) estimated by (8).
We also computed the confidence intervals using the true parameter values,
and the corresponding empirical coverage rates are enclosed in parentheses
in Table 2. For the case of constant diffusion, these two sets of confidence
intervals have similar coverage rates, but their difference is larger for the case
of piecewise constant diffusion.
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Figure 2: Normal quantile-quantile plots for 3 estimated with data sampled
from X with T = 500

6. Interest Rate Analysis

Consider the three-month US treasury rate based on the Federal Reserve
Bank’s H15 data set (Fig. 5). It is a continuous-time process with data
collected on a daily basis. As the rates are only published on business days,
the data are unequally spaced, but they shall be treated as equally spaced
partly because it is unclear whether over a gap of, say, two non-business
days, information accumulates twice as fast as over a one-day gap between
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T Parameter Estimates Coverage Rate
Bio B Bao B T Po  Bu Po  Pu T
6 -2 -4 3 -3 0
X

200 | average -2.267 -4.159  3.192 -3.087  -0.002 | 0.910 0.918 0.926 0.942 0.884
sd 0.845 0.527 0.715 0.331 0.128 (0.906)
bias -0.267  -0.159  0.192 -0.087  -0.002

500 | average -2.074 -4.055  3.068 -3.032  0.001 0.924 0.944 0.936 0.924 0.930
sd 0.491 0.304 0.433 0.208 0.034 (0.930)
bias -0.074  -0.055  0.068 -0.032  0.001

1000| average -2.059 -4.047 3.014 -3.012  0.000 0.942 0.952 0.940 0.940 0.936
sd 0.339 0.205 0.310 0.143 0.017 (0.932)
bias -0.059  -0.047 0.014 -0.012  0.000

Y

200 | average -2.098 -4.062  4.182 -3.272  0.266 0.872 0.874 0.868 0.888 0.850
sd 0.953 0.525 2.282 0.554 0.511 (0.972)
bias -0.098  -0.062  1.182 -0.272  0.266

500 | average -2.047 -4.034  3.501 -3.114  0.094 0.918 0.928 0.934 0.940 0.874
sd 0.480 0.273 1.093 0.280 0.227 (0.956)
bias -0.047  -0.034  0.501 -0.114  0.094

1000| average -2.061  -4.039  3.223 -3.065  0.044 0.916 0.920 0.922 0.948 0.916
sd 0.346 0.196 0.690 0.183 0.116 (0.970)
bias -0.061  -0.039  0.223 -0.055  0.044

Table 2: Empirical performance of the quasi-likelihood estimators for the
X and Y processes. The empirical coverage rates pertain to nominal 0.95
confidence intervals. For the threshold parameter, the confidence intervals
are constructed based on the drift parameters estimated by quasi-likelihood
and the diffusion parameters by quadratic variation calculations, and the
empirical coverage rates for those based on the true parameter values are
enclosed in parentheses.
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Figure 3: Empirical density function of T'(7—r¢), based on the { X (¢)} process
with 7' = 500 (red dashed curve) and 7' = 1000 (blue dotted curve) and the

limiting density function (solid curve).
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Figure 4: Empirical density function of T'(7—rg), based on the {Y'(¢)} process
with 7" = 500 (red dashed curve) and 7" = 1000 (blue dotted curve) and the
limiting density function (solid curve).
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Figure 5: Daily interest rate (solid curve) with the horizontal blue line being
the estimated threshold.

consecutive daily data. Moreover, the model fit changes little upon using
the actual, irregular calendar sampling times; see Supplementary Material.
We shall adopt the convention that the equal time interval for the “daily”
interest rates is At = .046 while one unit in time represents one month.

The left diagram in Fig. 6 suggests that the short rate X may satisfy the
continuous-time threshold model dX(t) = u(X(¢))dt + o(X(t))dW (t). The
quasi-likelihood scheme provides us the following parameter estimates for the
mean function:

B1 = (0.0216,-0.00498) ", Bz = (0.416, —0.0480) ", # = 6.52.

where the threshold parameter was searched from a = 20 percentile to b = 80
percentile of the data. That is,

0.0216 —0.00498X (t) if X (t) <= 6.52
(0.022)  (0.0066)

u(X () =
0416  —0.0480X(t) if X(t) > 6.52
(0.28)  (0.032)

where the standard errors of the autoregressive parameters are enclosed in
parentheses and a 95% confidence interval of the threshold parameter is
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Figure 6: Left diagram: AX(t) versus X(t), for the interest data. Fitted
drift term using all data: purple dashed line. Fitted drift term using all data
except the “outliers” (red solid circles): red solid line. The Right diagram:
{AX(t)}? versus X(t). Fitted diffusion term based on data excluding the
outliers: red solid line. Upper left insert zooms in on the lower part of the
figure for better appreciation of the fitted diffusion term.

(3.333,6.768); see below on how the standard errors and the confidence in-
terval are computed.

However, several observations appear to be outliers (red solid circles in
the diagram); these observations have daily change in the interest rate being
not less than 0.9 in magnitude. Excluding these outliers yields the following
TD model:

0.0216 —0.00498X (¢) if X(t) <= 6.52
(0.022)  (0.0066)

n(X(t) =
0.599  —0.0724X(t) if X(t) > 6.52
(0.26)  (0.030)

while a 95% confidence interval of the threshold parameter is (4.932,6.688).
Hence, removing the outliers preserves the threshold but modifies the fit in
the upper regime in rendering the slope more negative and the intercept more
positive. The slope of the estimated drift above the threshold, however, seems
greater than what would be expected from the appearance of the scatter
plot, perhaps due to the influence by a few moderately outlying observations
with interest rate change close to -0.9. This raises an interesting future
research problem on how to robustify quasi-likelihood estimation. The right
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diagram in Fig. 6 plots the squared daily interest-rate change versus the
daily interest rate, which suggests that the squared diffusion term is a linear
function, prompting us to model o(z) = o1/zl(x < 6.52) + ooy/zI(z >
6.52). Based on the quadratic variation formulas in (8), we could calculate
6?2 = .0186, 62 = .0573. With this diffusion specification, the standard errors
for the autoregressive parameters reported in the preceding model fit are
computed based on Theorem 5, while confidence intervals of the threshold
parameter are constructed using Theorem 4.

The uncertainty in the parameter estimates can be alternatively assessed
by the regenerative block bootstrap introduced in Section 4. The short rates
are multiples of 0.01, with the median short rate being 4.83. Thus, the me-
dian may be treated as representing an approximate atom comprising all
values between 4.825 and 4.835. We then carried out the regenerative block
bootstrap based on the decomposition of the process between consecutive
visits to 4.83. (We have also tried the regenerative bootstrap based on the
atom at the threshold 6.52, which yielded similar results; see Supplementary
Material.) The TD model was then refit to each regenerative block boot-
strap process, with outliers similarly suppressed. The procedure was repli-
cated 1000 times. Based on the percentile method, the 95% bootstrap con-
fidence intervals of 19, 11, 520, f2,1 are (—0.0466,0.0996), (—0.0201,0.0194),
(0.0148,1.39), (—0.198, —0.010), respectively, while that of the threshold is
(4.38,8.04). The bootstrap-based inference is broadly similar to the infer-
ence based on the asymptotics, although the bootstrap confidence intervals
are generally wider than their theoretical counterparts. The drift term in
the lower regime is then not significantly different from the zero function,
showing that the short rate evolves as a martingale process, until it hits the
upper regime. In the upper regime, the drift term has a significantly negative
slope, effecting an autoregressive regulation to check the growth of the short
rates and thereby ensuring ergodicity of the process.

Fig. 7 displays the histogram of the interest rate data, with the super-
imposition of the stationary density given by (3) with the coefficients de-
termined by the model fitted with all data and that without the outliers.
The stationary densities are capable of capturing the bimodality in the data,
although there seems to be an excess of observations in the center than in
the lower tail, as compared to the stationary densities. However, the fit ex-
cluding the outliers seems to fit the data slightly better in the upper regime
than that using all data; overall, the former provides a slightly better fit to
the data.

Note that the fitted TD model is consistent with the pattern displayed in
Fig. 6. The slope parameter in the upper regime is larger than that in the
lower regime, in magnitude; hence, there is stronger mean reversion in the
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Figure 7: Histogram of the interest rate data, with the stationary density of
the TD model fitted with all data (purple dashed line) and that excluding
the outliers (red solid line) superimposed.

upper regime (with higher interest rates) than in the lower regime. Also, the
diffusion term is proportional to X (¢), and the proportionality parameter o
is also larger in the upper regime.

7. Conclusion

An interesting problem is to develop the likelihood ratio test for threshold
nonlinearity with continuous-time data. So far, we only considered the TD
model which is the first order case of the continuous-time Autoregressive and
Moving-average (CTARMA) model (Tong, 1990). An interesting problem
is to extend our approach to higher-order cases of the CTARMA models.
The quasi-likelihood method is only applied to estimate the piecewise linear
mean function. A challenge is to explore the use of the new approach to
estimate more general forms of the mean function. Another extension is
weighted quasi-likelihood estimation, with weights mimicking the inverse of
the diffusion term so the quasi-likelihood estimator may furnish an iterative
approach to maximum likelihood estimation.

Though we assume the observations come from a continuous-time process,
real data are usually observed discretely. As a result, the integrals used to
calculate the estimators need to be replaced by sums. It is of interest to
determine the order of convergence of these discrete sums to their integral
limits and find the conditions to guarantee that the asymptotic properties of
the quasi-likelihood estimator would not be affected by the discretization.

The theoretical properties of the threshold estimator is established under

21



the condition that the threshold is known to lie in some finite interval. It
would be interesting to explore whether it is possible to relax this condition,
as is the case for conditional least square estimation of a discrete-time SETAR

model (Chan, 1993).
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8. Appendix: Proofs of Lemma 1 and Theorem 4

We present the proofs of Lemma 1 and Theorem 4. The proofs of other
results are similar to those in Chan (1993) and hence omitted.

8.1. Proof of Lemma 1

Below, we abuse the notation X so it now represents a random variable
having the marginal stationary density of {X (¢)}. First, we show that

sup |—/ XFk(t) ) < r)dt—E(X*I(X < r))| = 0 in probability, k = 0,1, 2.

reR

Let [T] denote the greatest integer that is smaller than 7". Then,

sup |—/ XFk(t) ) < r)dt — BE(XFI(X < 7))
< sl [ HOIXD <) - BRI )ar
[T]+1
< ilelg\ / XEOI(X () < r)dt — BE(XFI(X <)+ %{/m | X*(t)|dt + E| X*]}.

Since the last term on the right side of the preceding inequality converges to
0 in probability, without loss of generality, we may and shall assume that T’
is an integer The expression fOT XE()I(X(t) < r)dt can be equivalently
written as =+ Zl 1fl Xt X(t) < r)dt,k = 0,1,2. Adapting the notion
from Van der Vaart (2000, Sectlon 19.2), given two functions [ and u, denote
the bracket [, u] as the set of all functions f with [ < f < u. An e-bracket
in IL; (P) is a bracket [[,u] such that F|u — | < e. The bracketing number
Npj(e, F,L;) is the minimum number of e-brackets needed to cover F. It is
known from the Glivenko-Cantelli theorem (Van der Vaart, 2000, Theorem
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19.4) that for a class of measurable functions F, if Njj(e, F,Ly) < oo for
every € > 0, then

sup | — FX)]| = 0 as.
ap 3 70600~ B
Without loss of generality, assume 0 € [a, b], F = F1UFy = { fo XX (t) <

r)dt,r € (a,0] }U{f0 XEOI(X(t) < r)dt,r € (0,b]}, where functlons in both
F1 and F, are monotone functions in r for k£ = 0, 1, 2. Hence, Ve, we could find
a partition a = mg < m; < --- < m, = b such that 0 is one of the m;’s and
E[| Xk )| I(m;—1 < X(t) < m;)] < €. So F can be covered by m e-brackets
constructed from consecutive pairs of fol XEOI(X(t) < my)dt,i =0, ,n.
Also fo | X%(t)|dt is an L, envelope function for fo XFOI(X(t) < r)dt
r € la,b]. Thus, the class F belongs to the Glivenko-Cantelli class and
T fOT XE() (X (t) < r)dt converges uniformly to E[X*I(X < r)], see Van der
Vaart (2000, Theorem 19. 4)

Now consider —fo Xt o(X()I(X(t) < r)dW(t),k = 0,1. We claim
that for a fixed k =0, 1, the stochastic equicontinuity condition holds for the
process %fOT XE)o(X)I(X(t) < r)dW(t),r € [a,b], ie. every e,n > 0,
there exists a > 0 such that for all T" sufficiently large,

P( sup l|/ XEW)I(ry < X(t) <)o (X(8)dW (1) > €) <7
|ro—r1|<d,r1,r2€[a,b] 0 (9)

Indeed, this can be shown by adapting the proofs of Lemmas 1 and 2 in
Van Zanten (2000), by modifying the definition of the function h on p. 255

there to w
= / / zkl[xyy](z)dzdv
o Jo

and noticing that there exists a constant M dependent on k such that for all
x,y in the interval [a, b], the first derivative |h/(u)| < M|z — yl.

8.2. Proof of Theorem /4

Without loss of generality, let ro = 0. Applying Lemmas 4 and 5, we
can proceed as if lp(k) = l(,@o,To + Ii/T) — 1(Bo,70). Thus, Ip(k) = L.r(k) +
byr(r) where Iy p(x) = —§ [/ {(BY (1) = BLY (¢ ))21(0 < X(t) < 8/T) +
(620 (t) — /310 (t)*1(— ’{/T<X()<O)}dtandl2T fo :310 ti

)
520 )1 (O<X(t) k/T)o(X(t))+ (ﬁz,o (t)— 51,0 ())( k[T < X(t
0)o (X (1)) }dW (2).

<
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In order to show the required weak convergence result for the process
l~T, it suffices to verify the following two conditions (Van der Vaart, 2000, p.
261).

Condition (i) For every K, e, > 0, there exists a partition of [— K, K], de-
noted by Ry, ..., R, , such that lim supp_, ., P(sup; sup,, .,cr, Ir(ko)—lr(k1)| >
€) <.

Condition (ii) The sequence (I7(k1),lr(K2), ..., Ir(kq)) converges in distribu-
tion to those of the limiting Gaussian process for every finite set of real
numbers {k;}.

We now verify these two conditions.

1) Let K,e,n > 0 be given. Let —K =y < 01 < --- < §, = K be a partition
of [-K, K], where §; —0;_1 = h > 0, for i = 1,--- q. Define R; as the
intersection of (0;_1,6;] with {x : @ < ro + x/T < b}. The determination
of h relies on the the following consequence of the Garsia-Rodemich-Rumsey
inequality, see (3.2) in Barlow and Yor (1982), which states that for a family
of real-valued random variables {U(a),a € R} for which there exist constants
H,v > 0 and o > 1 such that E(|U(a) — U(b)]") < Hla — b|*, for all a,b,
then for any constant 0 < m < a — 1, there exists a constant C', dependent
on o, m and 7y, such that

E ( sup 10(@) = U(bm) < CHre™ (10)

P

We shall show below that for any constant K > 0, there exists a constant
H such that for all —K < k1,ky < K

E|i1,T(/12) — il,T(Kl)F S H|:‘£2 — Ii1|2, (11)
and . .
E|l27T(I{2) — l27T(K1)|4 S H|/{2 — Iil|2. (12)

Thus, by choosing h > 0 sufficiently small, Condition (i) can be readily
shown to hold, by making use of (10), (11), (12) and the Markov inequality.
It remains to verify (11) and (12). We can enlarge the partition to ensure
that the elements in each R; are of the same sign. Consider the case that
0 < K1 < ke < K where K is fixed. Below ¢ denotes a generic constant that
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may vary from occurrence to occurrence.
E(L,T(’@) - Zl,T(/fl))z

cE( /0 Tf(ml T < X(t) < ko/T)dt)>?

IN

IN

cE(/TI(/ﬁ/T < X(t) < ka/T) — E(I(k1 /T < X(t) < ko/T))dt)?
e / " (/T < X(1) < o/ T)t)
< cEQ(/T I(k1/T < X(t) < ko/T)dt),

by the p-mixing property of {I(c; < X(t) < ¢g)}, for any two fixed con-
stants ¢y, co; the aforementioned p—mixing property can be proved by the
same techniques used in proving Lemma 3. But EQ(IOT I(k/T < X(t) <
ke /T)dt) < c|kg — K1|?, by (A3). The case for —K < k; < kg < 0 can be
proved similarly. Thus, (11) holds. The verification of (12) can be proceeded
similarly on noting that the Burkholder-Davis-Gundy inequality implies the
existence of a universal constant C' such that, for 0 < k1 < ko < K,

E(/O (BloY (t) = BagY (D) (51/T < X(t) < 52/ T)or (X (t))dW (t))*
< CE(/O (BioY (1) = B (1))*I(k1/T < X (t) < kip/T)o*(X(t))dt)?

and the fact that o(-) is bounded over compact sets by (A4).

2) To show the convergence of the finite-dimensional distributions, we first in-
troduce some notations. Consider the empirical measure defined by m,(B) =
T fo ) € B)dt where B is any Borel set. Moreover, for continuous semi-
martmgales the empirical measure admits a (random) density function w.r.t
the Lebesgue measure, known as the empirical density function and denoted

by 7,(-), so that X fo ) € B)dt = [, m(x)dz. It can be shown that for
any K > 0,
sup |m(x) — m(x)| — 0 in probability, (13)
|lz|<K

where 7(-) is the stationary density function; this can be shown by adapting
the proof of Theorem 7 of Van Zanten (2000) for diffusion processes with
discontinuous coefficients satisfying (A2) and (A4).

Let 5 > 0 be fixed. We shall first show that [ 7(k) converges to a constant
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in probability. Recall that we let ro = 0 and f(ro) = {(1,70)(B1.0 — B10)}?

hah) = = [ (BLY(0) = BLaY (0F10 < X() < /T
7 [~T )
= 7/0 {(1,2)(Bro — Bro)} mr(x)dw

= S fro)m(rot),

in probability, owing to (13) and (A3).

Next, we show that, in terms of finite dimensional distributions, {[2&"(/{)7 K >
0} converges weakly to a centred Gaussian process with covariance kernel
F2(ro)m(ro+)o2(ro+) (k1 A ko) and {ly7(k), & < 0} converges to an indepen-
dent centred Gaussian process with non-positive index and whose covariance
kernel equals K (k1, k) = f2(ro)m(ro—)o?(ro—)(|k1] A|kz|). We prove this by
making use of the Central Limit Theorem for triangular array of martingale
difference sequences (Durrett, 2010, Theorem 7.4) and illustrate this for the
case of a fixed k > 0. Without loss of generality, assume 7' is a positive inte-
ger. Then, b (k) = 3o, Wir where Wiz = [ (B[0Y (1) = B3,Y (1)) 1(0 <
X(t) < /<;/T)a( (t))dW (t). We now verify that conditions (1) and (ii) of
Theorem 7.4 of Durrett (2010) hold for Iy (k)/+/f2(ro)m(ro+)o?(ro+)s.
(1) Dser EAWZLI(IWip| > e)} — 0 in probability.
(ii) >, W2y — f2(ro)m(ro+)o?(ro+)k in probability.
{W,r} is a martingale difference sequence where the underlying process
{X(t)} is stationary and ergodic,

ZE{ il ((Wiz| > €)} ZE{ irI((Wiz| > €)}

= TE{WS,T](|W0,T| >e)} = E{(\/TWO,T)QI(\/T|W07T| > VTe)}

— 0, by the dominated convergence theorem and the boundedness of {TW&T}

Thus Condition (i) is satisfied, and Condition (ii) directly follows from the
convergence results about the empirical density functions for an ergodic sta-
tionary process (Van Zanten, 2000). The aforementioned finite-dimensional
convergence result can then be verified by the Cramér-Wold device. Hence,
we have shown the weak convergence of l~T() More specifically,

lr(R)I(k = 0) ~ —%f(ro)zﬂ(ToJr)HJrf(To) m(ro+)o(ro+)W (k)

(=) I(5 > 0) = 2 F(ro)n(ro= )+ F(ro) /700 )o=)W (),
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where {W(k),x € R} is the standard Brownian motion with W(0) = 0
almost surely. Since 7(x)o?(x) is a continuous function, /7 (ro+)o(ro+) =
7(ro—)o(ro—), after re-scaling, the limiting process is a Brownian motion
with negative linear drift on the two tails. If o(x) is continuous at = = ry,
they would also be symmetric about ry in distribution.
Now, we show that

ir = T(F — ro) = argmax{lr(r)I(r > 0) + Ir(=r)I(r > 0)}

also converges in distribution using the continuous mapping theorem. First,
note the time at which the processes I (x)I(x > 0) and Ip(—k)I(k > 0) reach
their maximum is almost surely unique respectively. The maximum value of a
Brownian motion W (s), s < t is defined as M (t) = max;<; W (s). Now denote
the time that M(t) is first reached as 0;(t) = inf{s < t: W(s) = M(t)} and
the latest time that M () is reached as 0(t) = sup{s <t : W(s) = M(¢t)}. It
is known that 6, (t) = 65(t) holds almost surely (Karatzas and Shreve, 1991, p.
102); consequently, the time that each process reaches its maximum is almost
surely unique. Since I7(k)I(k > 0) and Ip(—k)I(k > 0) weakly converge to
independent continuous processes, the probability that they reach the same
maximum is 0. Then the uniqueness of the entire process is proved by the
independence of the two processes.

Now, 7y = Fp = T(# — o) = argmax, {Ip(r)I(r > 0) +Ip(—r)I(r > 0)} is
a map from D|[0,00) to R. By the uniqueness of the maximizer, continuity
and weak convergence of ZT(-), rr = T(F —rg) also converges weakly to 7,
(Van der Vaart, 2000, Theorem 18.11).

Finally, we drive the limiting distribution of 77. The time that the process
{Z(t) = ut + W(t),p < 0,t > 0} reaches its maximum is defined as mz =
argmax{Z(t)} = argmax;{ut+W (t)}. It has the following density function:

o (5) = ~2ZZ0(u/5) + (5]

where ¢, ® are standard Gaussian density and distribution function respec-
tively (Buffet, 1900).

It can be easily seen that the density function approaches infinity when
s approaches 0, and as s increases, the density converges to 0 quickly. Thus,
the maximum is achieved at a small neighborhood of 0 with high probability.
Note that this definition and result can be applied when t is negative by
symmetry. For instance, when {Z(t) = —ut + W(—t),u < 0,t < 0}, mz can
be defined as my; = argmax;{—ut + W(—t)}. Therefore, we could readily
obtain the distribution of the time when a two-sided process such as {Z(t) =
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{ut+W @) H (t > 0)+{pu(—t)+ W(—=t)} (t < 0),u < 0,t € [0, +00)} reaches
its maximum.

Now consider the density function of our objective process, 7, the limiting
process of 7 = arg max, Ir(r). Define

m = f*(ro)o*(ro+)m(ro+) = f*(ro)o*(ro—)m(ro—),
the density function of mr is:

1 1 1 1 1

ng(S) = I(S < 0)20'2<7'0—)[\/—_8¢<_20'2(7“0—) \/__S) - CI)(

20 (rg—)? _202(r0—>\/__3)]

1 1 1 1 1
270 V520 ) T 2 M 2o V)

Then, as m7 has density function g,,7(s), the density function of 7 can be
expressed as:

+ I(s>0)

gils) = I(s<o 0T L o0 L

2 —ms _202(7“0—) - 202(ro—) _202(7’0_)
fAro)m(rot) . 1 1 1 1
[(8 > 0) 9 [\/%¢(_20'2(7’0+> \/%) - 20_2<7,0+) (_20_2<7,0+> m5>]
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Supplementary Material

Model fit with irregular sampling times

So far, the analysis proceeds under the working assumption that the short
rates were regularly sampled data. This assumption may be assessed by com-
paring the model fit based on the working assumption with the following fit
based on the actual, irregular calendar sampling times (with outliers similarly
suppressed):

0.0207 —0.00478X(t) if X(t) <= 6.52
(0.021)  (0.0063)

n(X (@) =
0.582  —0.0703X(t) if X(t) > 6.52
(0.25)  (0.029)

with a 95% confidence interval of the threshold parameter being (4.950, 6.685),
and 67 = .0178,6% = .0551. The two model fits are quite similar, showing
that the working assumption is reasonable.

Regenerative block bootstrap for the real application

Using the median as the atom, there are 80 complete blocks with the block
size distribution summarized by the following table. The longest complete
block corresponds to the stretch of high interest rate period.

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 2.0 9.0 189.7 79.5 5287.0

Table S1: Summary of complete-block sizes for the regenerative block boot-
strap using 4.83 as the atom.

Using the estimated threshold value of 6.52 (the 76.9 percentile) as the
atom, the number of complete blocks is reduced to 42, with the following
summary of the block size distribution:

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 4.0 11.0 192.2  133.0 2101.0

Table S2: Summary of complete-block sizes for the regenerative block boot-
strap using 6.52 as the atom.



Notice that the longest block size is slightly half the maximum block size
for the case of using 4.83 as the atom. The corresponding 95% bootstrap con-
fidence intervals of B19, 11, 520, f2.1 are (—0.0420,0.0674), (—0.0151,0.0183),
(0.145,1.33), (—0.162, —0.0320), respectively, while that of the threshold is
(5.60,8.04). The inference from the regenerative block bootstrap using ei-
ther values as the atom is broadly similar although the bootstrap confidence
intervals based on the atom at the median are slightly wider than their coun-
terparts based on using the threshold as the atom, likely because the latter
has lesser complete cycles, resulting in reduced variation in the regenerative
block bootstrap.

Proofs of other results in the paper

Maximizing the quasi-likelihood ratio function /(@) is the same as max-
imizing 1(0) — 1(6) where 6y = (8, B35.70)" is the true parameter. For
simplicity, we give the proofs for the case r > ry throughout this section as
the proof for the case r < rq is similar. Consider the following decomposition:

1(0) —1(6y) = Rit+ Roy + Rsy,

where
Ry, = / {(Buo + BuX (1)) — (Bron + BrraX(O)(X (1) < ro))dX ()

_%/O {(ﬁlo + ﬁllX(t))Z _ (51070 + Bll,OX(t»Q}[(X(t) < ro)dt

1

T
= —5/ (Bio + Buu X (t) — Broo — BrroX ()2 I(X (t) < ro)dt
0

n / (Bro + B X (£) — Boo — PruoX(ENI(X(E) < ro)o (X (£)dW(2),

Ry, = / {(Bro + BuX (1)) — (Bano — Bn X (6} (r0 < X(8) < r))dX (1)

_%/(; {(Bro + BuX(t)* — (Baoo — 52170)((15))2}[(700 < X(8) < r)dt

1

T
= —5/ (Bro + BurX () — Baoo — BoroX ()21 (ro < X(t) < r)dt
0

+ /0 (Bio + B X (1) — Baoo — Baro X (D)1 (ro < X(8) < r)o(X(1))dV (1),



Rsy

- / {(Boo + B X (8)) — (Bao — Baro X(O)H(X () > r))dX (1)

_%/0 {(Ba0 + B X (1))* = (Bao0 — Bar,0 X (8))2H (X (t) > r))dt

1

= —5/0 (B20 + Ba1 X (t) — Ba0,0 — Bar,oX ()21 (X (t) > r)dt

T / (Bao + Bur X (£) — By — Ban o X(O)I(X (1) > r)or (X (1)) AW (2).

8.3. Proof of Lemma 2

r))dt + (X (t))dW (t), so the quasi-likelihood ratio function for r» > ry be-
comes:

+

_|_

1(6) — 1(60)
T

(Rit+ Roy + Rsy)
1 T
~57 0
1 T
o7 (Bro + B11 X (t) — Baoo — Baro X (1)) 1(ro < X(t) < r)dt
0
1 /T

oT (B2 + Bar X (t) — Bao0 — Bor o X (8))?I(X () > r)dt
0

1
T

(Bio + B11X (1) = Brop — Bi1,0X (8))°I(X (1) < ro)dt

%/0 (Bro + B X (t) = Broo — BrioX () I(X(t) < ro)o(X(t))dW (1)
%/O (Bro + B11X(t) — Baoo — Baro X (1)) (ro < X(t) < 7)o (X(t))dW (1)

T | B+ B X(0) = g = Baa XDIX(0) > o (X)W (1) (51)

The sum of the three terms involving dW (t) is uniformly bounded by an

(181 —

B0l 4181 — B0l + B2 — B2,0])0p(1) term and %fOT XEOI(X(t) < r)dt

converges to its expectation uniformly for r € [a,b],k = 0,1,2, according
to Lemma 1. Henceforth in this proof, all 0,(1) terms hold uniformly for
r € |a,b]. Here we provide a proof that there exists an M > 0 such that
0 € C; with probability approaching 1 as T — oo, only for the case that

181 —

Bio| > |B2 — B2, as the other case that |32 — Bao| > |81 — Bio| can

3



be proved similarly. Let ¢ = min,2,2—; E{(u+vX(t))2I(X(t) < 1)} which
is positive, as E[(u + vX)?I(X < rg)] is a continuous and positive function
in (u,v). Hence, for b > r > rg

1(6) — 1(6o)
T
T

< ;T (Bro+ BuX (1) = Broo — BuuoX (1)21(X (1) < ro)dt
+ (181 — 51,0’ + |81 — Bao| + |82 — B2,0])op(1)

RV 2 B — B Bro — B10,0 \2
< — gl ool [ (D) B0 B0y <
+ (|B10 — B0l + 3|81 — Biol)op(1)
< _%]ﬂl — Brol (€ +0p(1)) + (I1B10 — Baol + 3|81 — Bao))op(1)  (S2)

Thus, 3M > 0 such that for |31 — 81| > M, (S2) is negative with probability
going to 1 as T" — oo. Similar inequalities can be established for the case
a < r <ryand/or |Bs — Bap| > |B1 — Bio|- Consequently, it holds with
probability approaching 1 as T — oo that 6)~1(60) l(eo < 0 for 6 ¢ C, for a
suitably chosen finite M > 0.

8.4. Proof of Theorem 2
Without loss of generality, assume @ € (. By the boundedness of C; and
Lemma 1,

1 1
?(1(0) —1(6y)) — E[T(Z(O) —1(6p))] in probability, uniformly for 8 € Cj.

Then it remains to show that E(I(0)) is maximized at 6y and it is a well-
separated maximum. Let X be a random variable with the same marginal
stationary distribution of {X (¢)}. For r > ro,

1(6) — (o),
T
= —%E{(ﬂm + B X — Proo — Bll,oX)ZI(X < ro)}

= —%E{(ﬁlo + 11X — B — Ba1,0X ) I(rg < X < 1)}

H(O) = E

- _%E{(ﬁm + o1 X — Baog — Bo1,0X)°I(X > 1)}
< 0if 6 # 6,.



It can be shown similarly that H(0) < 0 if 8 # 6, for the case r < r9. As
the function H(-) is continuous in 6, for all sufficiently small € > 0

min  H(#) <0.
|0—60|>€,0€Cy

Thus, 0 is a well-separated maximum and we have 07 — 6y, in probability
as T'— oo, c.f. Van der Vaart (2000, p.45).

8.5. Proof of Lemma 3

First we show that {I(0 < X(¢) < r)} is p—mixing. Below, 7(z) is the
stationary density function of X(¢), and p'~*(x,y) is the conditional den-
sity function of X (t) at y given X (s) = z, with s < t. Assumption (A2)
implies that, for some 7 < 1 and an integrable non-negative function h,
2 (2, y) — w(y)|dy < A*~*h(x) (Cline and Pu, 1999).

!cov(I(O<X() ), 1(0 < X(s) <r)|
— 0<X) )0 < X(s) <)) — E*[1(0 < X(t) <7r)]|

= ]/ / (z,y)dxdy — E*[1(0 < X(t) < 7)]|
= | / / () (4 () — 7(y) + 7w (y))dedy — E2I(0 < X(t) < 7))

1 [ [ #)t ) - rldods

< o [ har,

which verifies the p—mixing property for {/(0 < X (¢) < r)}.

Then we show that f(X(¢))I(0 < X(t) < r) is p-mixing following similar
reasoning.
|[Cov(f(X(#))1(0 <

= [E(f(X@)I(0 <

=1 o f@)
=1Jo Jo f@)
=1Js fo f(@)
S cy t— éfo (l’
compact sets.

(t) <r), f(X(s))I(0 < X(s) <7))|

(1) <) f(X ()0 < X(s) < 7)) = E*(F(X())I(0 < X(t) <7))|
y)m(@)p' = (z, y)daedy — E*(F(X(£)I(0 < X(t) <1))|
Y (@) (P (2, y) — w(y) + w(y))dady — B*(f(X(t)1
)7 (@) (p'*(x,y) — 7(y))dudy|
(z)

z)r(z)dz, for some constant ¢ because f(-) is bounded over

X(t) <
< X(t) <

I
I (0 < X(t) <r))l
fy
)h

8.6. Proof of Theorem 3

By the consistency of the quasi-likelihood estimator, we may and shall
assume that @ € CQ = {0 : |,31 — ,310‘ < ¢, |,32 — ﬁgo’ < C,lT — 7"0| < A}



with 1 > ¢, A > 0 to be determined below. For simplicity, assume ro = 0. It
suffices to show that for all e > 0, 3K > 0, such that with probability greater
than 1 —e€, 1 > |r| > K/T implies (81, B2,7) — 1(B1,B2,0) <0

Define Mp(X (t)) = —(Bo+ 81X (t) — B20.0— 210X (t))?. Note that for any
81 and B, [Mp, (X(1)) — Mg, (X()] < |8; — BIA(X (1)) where A(X (1)) =
(24 |B1.0 — B20])(1 + X?(t)). Below, we only consider the case 7 > 0 as the
case r < 0 can be proved similarly.
Define Q(r) = E[I(0 < X(t) < r)]. Consider

1
TQ()

- r) / (B10 + B X (t) — Bao0 — Bar,0X ()2 1(0 < X () < r)dt

=75 U(B1,B2,7) = 1(B1, B2,0))

(B20 + Bor X (t) — Bro — BuX(1)1(0 < X(t) < 7)odW (1)

- QTQ (M, (X(£)T(0 < X(t) < r) — My, (X()I(0 < X(t) < r)]dt

/ Boo + B X (£) — By — BuX(O)I(0 < X(£) < r)odW (£)

- QTQ [Ma, (X (1)) = Ma, o (X(H)1(0 < X(¢) < 1)t

+2TQ( ; / My (X (1)) = M, (X ()10 < X (1) < 1)

1
57T | Mool (X(0) = My (X0 < X (1) < )

+T—C;(r) /(520 + Ba1 X (t) — Bro — BuX (1)) 1(0 < X(t) < 7)odW (1)

+

(181 — Buol + |82 — Bzo|)2Té( ) / AX ()0 < X(t) < r)dt

IN

1 T
+W/O M,@LO(X(t))I((O < X(t) < T)dt

+[B1 — 52\#(7,) ; \/O XI()I(0 < X(t) < 7)o (X(8)dW (1)

Let f(-) be a real-valued function that is bounded over compact sets. Let
A > 0 be fixed. We claim that for any ¢ > 0,C' > 0, 3K > 0 such that for T’
sufficiently large



P( sup |/OTI(O<X(t)<T)dt—1|<C)>1—6 (S3)

K/T<r<A TQ(r)
T RX )0 < X(1) <) = B(F(X($)I(0 < X(¢) <)) N
P | Q0 &) < C)> 1=
| (54)
P sup ’fo XI()1(0 < X(t) < r)a(X(t))dW(t)dt‘ 0> 1o i—o1
K/T<r<A TQ(r)

(S5)

Assuming the validity of this claim, we proceed as follows. Let K =
— (B0, — Pa0p)?/2 < 0, by assumption (Al). Note that Mg, ,(0) = 2x and
hence Mg, ,(X(t)) < w for X(t) € (0,A] if A is sufficiently small, which
is assumed to be the case henceforth. Let M; be a finite upper bound of
E(A(X(t))) for X(t) € [0,A]. Then, with probability greater than 1 — 4e,
for A > r > K/T and T sufficiently large:
ﬁ(r)(l(ﬁlaﬁzﬂ”) —1(B1,82,0))
< (|Br0 = Bi| + |B20 — B2|)(C + M) + C + £k + C|By — Bof
<2c(C+ M)+ CH+ K+ (2c+ |B1o — Bapo])C
which is < 0 if we choose ¢,C > 0 to be sufficiently small. Hence, with
probability approaching 1 as T — oo,

sup  (I(B1, B2, 1) — 1(B1,B2,0)) < 0.

K/T<r<A

Now we verify (S3) and (S4). As the stationary density function of { X (¢)}
is continuous and positive at rg = 0, for A small, 30 < m < M < oo, such
that mr < Q(r) < Mr, for r € (—A, A). Note that var(I(0 < X(t) < r)) =
Qr)(1—Q(r)) < Q(r)(1 —mr).

Because f(z) is bounded over compact sets, 3 a constant H > 0, such that
E(f(X)I(r < X(t) <r9)) < H(Q(r2) — Q(r1))
var((X (1)1 (r < X(t) <rp)) < H(Q(r2) — Q(r1))

Define:
artr) = [ 1=y,
reey = [ KOO <X 20,
Rrrry = [ 1O <X O S,



Then 3 a constant H > 0 such that

var(TQr(r / / 100 < X(t) < )= Q(r)(I(0 < X(s) < 1)—Q(r)))dt < THQ(r),

V&I‘(TRT<7")) < THQ<T)7

Val"(TRT(Tl,?”Q)) S TH{Q(T2) - Q(Tj)}

as the the process f(X(t))I(r; < X(t) < ry) is p-mixing and f(-) is bounded
over compact sets. Then (S3) and (S4) can be verified using the above results
and an argument in Chan (1993, Proposition 1).

It remains to verify (S5), which can be similarly proved by noting that,
for j = 0,1, there exists a constant H such that var(fOT Xi(t)I(ry < X(t) <
ro)o(X(t))dW (t)) < TH(Q(r2) — Q(r1)) for some finite constant H > 0,
thanks to the Burkholder-Davis-Gundy inequality.

8.7. Proof of Lemma 4

Recall that [(0) is the quasi-likelihood function of 8 = (87,7)" where
d=(8],8))". 1(.,r) is maximized globally at 6, = (Bir, Ba,). We aim to
show that {(8,7) attains maximum at |8, — &,,| = 0,(1/v/T) for |r — re| <
K/T.

By the consistency result, the parameter space can be restricted to a
neighborhood of 0y, say E = {|8; — Bio| < 1,|r —ro| < 1,7 =1,2}.
First, consider the case r > ry. Then,

1(8,1) —1(d,,,7)

= =3 | B1= B0 V() = (1o~ Bu) Y OPITX(0) < ro)i
a %/0 [((B1 = B2o) Y (1) = ((Bro — Boo) Y (1)L (ro < X(t) < r)dt

[((B2 = B20) 'Y (1)) = ((Beo — Ba0) Y ()1 (X (1) > r)dt

0

(BIY (t) = BLY ())I(X(t) < ro)a(X(1))dW (¢)

+
\MII—‘
S

BLY(t)
B Y (t)

( = BoY ()1 (ro < X(t) < r)o(X(1))dW (1)
( = BaoY (NI(X(1) > r)o(X(8))dW (t)

J
J



Because [(4,r) is a quadratic function of 6,

1(8,7) — 1(3yq,7)
= (57“ - Sro)Tj<5r0? T) + (1/2)(6r - STU)TZ.(&“ov T)((Sr - Sm) (86)

where [(8,7) and (8, 7) are the first and second partial derivative of [ w.r.t.
8. 1(8,79) would be 0 at &§ = 8,,, so:

(6 (8 | ~ fOT(/él,ro — Boo) Y)Y () (ro < X(t) < r)dt
l((smv ) - l(5r07 ) l(6r07T0> - ( _fOT(B2,r0 —BQ,O)TY(t)Y(t)[(TO < X(t) S T)dt >

Note that, for 7"0 < r < ry+ K/T, i(8,,,r) is bounded in magnitude by
2f0 + X2()I(|X(t) — ro| < K/T)dt whose expectation is O(1). This
bound can be snmlarly shown to hold for the case when ro > r > ry —
K/T. Thus, |i(d ro; )| = 0,(1 ) uniformly for |r — ro| < K/T. On the other
hand, 1(8,,,7) = [[(8ry,7) — [(8yy,70)] + 1(8ry,70), Where the first term is an
Op(l) term using similar reasoning as above. Denote I1(t,ry) = I(X(t) <
7’0), Ig(t,T0> =1- Il(t,T()),

AAT)—( ffo i(t,ro)dt —f% Li(t, ro)dt ) =12

Li(t,ro)dt — |, ()21 (t,70)dt

The second derivative [(d,,, ro) is a block diagonal matrix consisting of Ay (T)
and Ay(T') as the first and second block diagonal matrices, respectively. By
ergodicity, %Az (T) — E{( (t 7”0) X(t)]xt, To))T<]Z' (t, T()), X(t)]z(t, 7”0))}7
which are negative definite and hence their eigenvalues are less than —\ for
some A > 0. So [(8,70) < —T(2\ — 0,(1)) x I, where I, is a 4 x 4 identity
matrix. Plugging in these inequalities back to I(8, ) —1(8,,,7), then VK > 0,
|r—ro| < K/T, and for § on the boundary of the open neighborhood of radius
ar = O(1/T7),1 >~ > 1/2 centered at 8,,,

1(8,7) —1(8yy,7) < ap x {O(1) — (A + 0,(1))Tar/2} <0,

with probability approaching 1 as T'— oo. Thus, I(4, r) would only attain its
global maximum within the o,(1/+/T) neighborhood of d,,, which completes
the proof.



8.8. Proof of Lemma 5

We shall only give the proof for the case x > 0 as the case k < 0 is similar.
Let Mgz be as defined in the beginning of the proof of Theorem 3.

()
= 1(Bpgrnyry 70+ 5)T) — U8y, 70 + K/T) 4 U8y, 70 + #/T) — 1(8,70)
1

= o0,(1)+ 5/0 (M,él,m(X(t)) — MBQ,TO (X())N)I(0 < X(t) < rk/T)dt

+ O,(1/VT), (S7)

where the terms o0,(1) and O,(1/v/T) hold uniformly for || < K, by making
use of (S6) and Lemma 4and employing arguments similar to those employed
in the proof of Lemma 4.0n the other hand,

/0 T(MBMO(X(t)) — My, (XM)I0 < X(t) < x/T)dt
_ /0 (Mo, (X (8)) — Mg, o (X ()L (10 < X(8) < 1o+ w/T)dt
+ /0 "My, (X(0) ~ Ma,,, (XOWT(ro < X(2) < ro-+ /T
+ /0 T(M[;Q’TO(X@)) M, (X(O)I(ro < X(£) < ro+ /T)dt

where the last two terms can easily be shown to be 0,(1) terms, owing to
Lemma 4 and using similar argument as we did in the proof the Lemma 4.
This completes the proof.

8.9. Proof of Theorem &

Given 719, the quasi-likelihood function I(d,7¢) is continuous and twice
differentiable in §, so an application of Van der Vaart (2000, Theorem 5.21)
implies that V7' (5 — §p) is asymptotically normal with zero mean and co-
variance matrix V(8o) = E(lg,)) ' E(lg,lg,) ((E(lg,))™)". Because 7 is T-
consistent and 3; = BMO + 0,(1/ VT), hence, B; and ,étm follows the same
asymptotic distribution. As a special case, when we have a constant o, the
asymptotic distribution coincides with the covariance matrix of the maximum
likelihood estimators.
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