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Abstract

In many applications, covariates possess a grouping structure that can be incor-

porated into the analysis to select important groups as well as important members

of those groups. This work focuses on the incorporation of grouping structure into

penalized regression. We investigate the previously proposed group lasso and group

bridge penalties as well as a novel method, group MCP, introducing a framework and

conducting simulation studies that shed light on the behavior of these methods. To fit

these models, we use the idea of a locally approximated coordinate descent to develop

algorithms which are fast and stable even when the number of features is much larger

than the sample size. Finally, these methods are applied to a genetic association study

of age-related macular degeneration.

1 Introduction

In this paper we consider regression problems in which the covariates can be grouped; our

interest is in selecting important groups as well as identifying important members of these

groups. We refer to this as bi-level selection. Here, we propose a new framework for thinking

about grouped penalization, develop fast algorithms to fit group-penalized regression models,

and apply these models to a genetic association study.

Variable selection is an important issue in regression analysis. Typically, measurements

are obtained for a large number of potential predictors in order to avoid missing a potentially

important link between a predictive factor and the outcome. However, to reduce variability
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and obtain a more interpretable model, we are often interested in selecting a smaller number

of important variables.

There is a large body of available literature on the topic of variable selection, but the

majority of this work is focused on the selection of individual variables. In many regression

problems, however, predictors are not distinct but arise from common underlying factors.

Categorical factors are often represented by a group of indicator functions; likewise for

continuous factors and basis functions. Groups of measurements may be taken in the hopes of

capturing unobservable latent variables or of measuring different aspects of complex entities.

Some specific examples include measurements of gene expression, which can be grouped

by pathway, and genetic markers, which can be grouped by the gene or haplotype that

they belong to. Methods for individual variable selection may perform inefficiently in these

settings by ignoring the information present in the grouping structure, or even give rise to

models that are not sensible.

A common approach to variable selection is to identify the best subset of variables ac-

cording to some criterion. However, this approach is unstable [Breiman, 1996] and becomes

computationally infeasible as the number of variables grows to even moderate sizes. For

these reasons, penalized approaches to regression have gained popularity in recent years.

In addition to penalties designed for individual variable selection such as the lasso [Tibshi-

rani, 1996], bridge [Frank and Friedman, 1993], smoothly clipped absolute deviation penalty

(SCAD, Fan and Li [2001]) and minimax concave penalty (MCP, Zhang [2007]), several

methods have been developed that accommodate selection at the group level. Yuan and Lin

[2006] proposed the group lasso, in which the penalty function is comprised of L2 norms

of the groups. This has the effect of encouraging sparsity at the group level while apply-

ing ridge regression-like shrinkage within a group. Meier et al. [2008] extend this idea to

logistic regression, and Zhao et al. [2006] extend the idea to overlapping and hierarchical

groups. These approaches perform group level, but not individual level variable selection.

The group bridge [Huang et al., 2007], in contrast, applies a bridge penalty to the L1 norm

of the groups, performing bi-level selection by encouraging sparse solutions at the group and

individual variable levels.

Group lasso and group bridge are not without their shortcomings, however. Group lasso

is incapable of variable selection at the individual level and heavily shrinks large covariates.

Meanwhile, group bridge suffers from a number of practical difficulties due to the fact that the

bridge penalty is not everywhere differentiable. Furthermore, both methods make inflexible

grouping assumptions that can cause the methods to suffer when groups are misspecified or

sparsely represented.
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Given the wide variety of problems that can give rise to grouped covariates, we feel that

there is a need for a larger array of tools that perform bi-level selection. This paper takes two

large steps towards that aim: by proposing a general framework through which the behavior

of group penalties can be better understood, and by developing an efficient set of algorithms

that can be used to fit models with grouped penalties.

The algorithms that have been proposed thus far to fit models with grouped penalties

are either (a) inefficient for models with large numbers of predictors, or (b) limited to linear

regression models, models in which the members of a group are orthogonal to each other,

or both. We combine the ideas of coordinate descent optimization and local approximation

of penalty functions to introduce a new, general algorithm for fitting models with grouped

penalties. The resulting algorithm is stable and very fast even when the number of variables is

much larger than the sample size. We apply the algorithm to models with grouped penalties,

but note that the idea may be applied to other penalized regression problems in which the

penalties are complicated but not necessarily grouped. We provide these algorithms as an R

package, grpreg (available at http://cran.r-project.org).

In Section 2, we describe our proposed group penalization framework, show how group

lasso and group bridge fit into this framework, and use the framework to motivate a new

method for bi-level selection which we call group MCP. In Section 3, we discuss our compu-

tational approach to fitting group penalized models based on coordinate descent algorithms.

Group lasso, group bridge, and group MCP are then compared via simulation studies in

Section 4, applied to a genetic association study in Section 5, and discussed in Section 6.

2 Specification of Models with Grouped Penalties

Suppose we have data {(xi, yi)
n
i=1}, where yi is the response variable and xi is a p-dimensional

predictor containing groups that the analyst wishes to select among. We denote xi as

being composed of an unpenalized intercept and J groups xij, with Kj denoting the size of

group j. Covariates that do not belong to a group may be thought of as a group of one.

The problem of interest involves estimating a sparse vector of coefficients β using a loss

function L which quantifies the discrepancy between an observation yi and a linear predictor

ηi = xi
′β = β0 +

∑J

j=1 xij
′βj , where βj represents the coefficients belonging to the jth group.

To ensure that the penalty is applied equally, covariates are standardized prior to fitting

such that
∑n

i=1 xijk = 0 and 1
n

∑n

i=1 x2
ijk = 1 ∀j, k. We assume without loss of generality

that the covariates are standardized in this way during the model fitting process and then

transformed back to the original scale once all models have been fit.
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Figure 1: Derivatives of penalty functions referenced in this paper. Left: Ridge (gray line),

lasso (dashed line) and bridge (γ = 1/2, solid black line) penalties. Right: MCP (solid black

line) and SCAD (dashed line) penalties.

2.1 Grouped Penalization Framework for Squared Error Loss

The effect of a penalty upon the solution is determined by its gradient. The derivatives

of three several common penalties are plotted in Fig. 1. The left panel depicts penalties

of the form λβγ. As the plot illustrates, the ridge regression (γ = 2) rate of penalization

increases with β, which has the effect of applying little to no penalization near 0 while

strongly discouraging large coefficients. Meanwhile, the lasso (γ = 1) rate of penalization is

constant. Finally, setting γ = 1/2 results in a rate of penalization that is very high near 0

but steadily diminishes as β grows larger.

The solution to the group lasso is defined to be the value β that minimizes the objective

function

Q(β) =
1

2n
‖y−Xβ‖2 + λ

J
∑

j=1

√

Kj‖βj‖, (1)

where ‖·‖ is the L2 norm. The group bridge estimate minimizes

Q(β) =
1

2n
‖y−Xβ‖2 + λ

J
∑

j=1

Kγ
j ‖βj‖

γ
1 , (2)

where ‖·‖1 is the L1 norm. Throughout this paper, we take γ = 1/2 for group bridge.

To greater understand the action of these penalties and to illuminate the development of

new ones, we can consider grouped penalties to have a form in which an outer penalty fO is

applied to a sum of inner penalties fI . The penalty applied to a group of covariates is

fO(

Kj
∑

k=1

fI(|βjk|)) (3)
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and the partial derivative with respect to the jkth covariate is

f ′

O(

Kj
∑

k=1

fI(|βjk|))f
′

I(|βjk|). (4)

Note that both group lasso and group bridge fit into this framework with an outer bridge

penalty; the former possesses an inner ridge penalty, while the latter has an inner lasso

penalty. We have intentionally left the above framework general in the sense of not rigidly

specifying the role of constants or tuning parameters such as λ, γ, or
√

Kj . A more specific

framework would obscure the main point as well as create the potential of excluding useful

forms.

From (4), we can understand group penalization to be applying a rate of penalization to

a covariate that consists of two terms: the first carrying information regarding the group; the

second carrying information about the individual covariate. Variables can enter the model

either by having a strong individual signal or by being a member of a group with a strong

collective signal. Conversely, a variable with a strong individual signal can be excluded from

a model through its association with a preponderance of weak group members.

However, one must be careful not to let it oversimplify the situation. Casually combining

penalties will not necessarily lead to reasonable results. For example, using the lasso as both

inner and outer penalty is equivalent to the conventional lasso, and makes no use of grouping

structure. Furthermore, properties may emerge from the combination that are more than

the sum of their parts. The group lasso, for instance, possesses a convex penalty despite the

fact that its outer bridge penalty is nonconvex. Nevertheless, the framework described above

is a helpful lens through which to view the problem of group penalization which emphasizes

the dominant feature of the method: the gradient of the penalty and how it varies over the

feature space.

2.2 Group MCP

Zhang [2007] proposes a nonconvex penalty called MCP which possesses attractive attractive

theoretical properties. MCP and its derivative are defined on [0,∞) by

fλ,a(θ) =







λθ − θ2

2a
if θ ≤ aλ

1
2
aλ2 if θ > aλ

f ′

λ,a(θ) =







λ− θ
a

if θ ≤ aλ

0 if θ > aλ
(5)

for λ ≥ 0. The rationale behind the penalty can again be understood by considering its

derivative: MCP begins by applying the same rate of penalization as the lasso, but continu-

ously relaxes that penalization until, when θ > aλ, the rate of penalization drops to 0. MCP
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is motivated by and rather similar to SCAD. The connections between MCP and SCAD are

explored in detail by Zhang [2007]; we will briefly discuss the connections from a grouped

penalty perspective in Section 6. The derivatives of MCP and SCAD are plotted in Fig. 1.

The goal of both penalties is to eliminate the unimportant variables from the model

while leaving the important variables unpenalized. This would be equivalent to fitting an

unpenalized model in which the truly nonzero variables are known in advance (the so-called

“oracle” model). Both MCP and SCAD accomplish this asymptotically and are said to have

the oracle property [Fan and Li, 2001, Zhang, 2007].

From Fig. 1, we can observe that λ is the regularization parameter that determines the

magnitude of penalization and a is a tuning parameter that affects the range over which the

penalty is applied. When a is small, the region in which MCP is not constant is small; when

a is large, MCP penalty has a broader influence. Generally speaking, small values of a are

best at retaining the unbiasedness of the SCAD penalty for large coefficients, but they also

run the risk of creating objective functions with problematic nonconvexity that are difficult

to optimize and yield solutions that are discontinuous with respect to λ. It is therefore best

to choose an a that is big enough to avoid problems but not too big. Zhang [2007] discusses

the issue of choosing a in depth; here, we use a = 3 for squared error loss throughout.

The group MCP estimate minimizes

Q(β) =
1

2n
‖y −Xβ‖2 +

J
∑

j=1

fλ,b





Kj
∑

k=1

fλ,a(|βjk|)



 , (6)

where b, the tuning parameter of the outer penalty, is chosen to be Kjaλ/2 in order to ensure

that the group level penalty attains its maximum if and only if each of its components are

at their maximum. In other words, the derivative of the outer penalty reaches 0 if and only

if |βjk| ≥ aλ ∀ k ∈ {1, . . . , Kj}. The relationship between group lasso, group bridge, and

group MCP is illustrated for a two-covariate group in Fig. 2.

One can see from Fig. 2 that the group MCP penalty is capped at both the individual

covariate and group levels, while the group lasso and group bridge penalties are not. This

illustrates the two rationales of group MCP: (1) to avoid overshrinkage by allowing covariates

to grow large, and (2) to allow groups to remain sparse internally. Group bridge allows the

presence of a single large predictor to continually lower the entry threshold of the other

variables in its group. This property, whereby a single strong predictor drags others into

the model, prevents group bridge from achieving consistency for the selection of individual

variables. Group MCP, on the other hand, limits the amount of signal that a single predictor

can contribute towards the reduction of the penalty applied to the other members of the

group.
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Figure 2: Penalties applied to a two-covariate group by the group lasso, group bridge, and

group MCP methods. Note that where the penalty comes to a point or edge, there is the

possibility that the solution will take on a sparse value; all penalties come to a point at 0,

encouraging group-level sparsity, but only group bridge and group MCP allow for bi-level

selection.

2.3 Other loss functions

In generalized linear models [McCullagh and Nelder, 1999], the negative log-likelihood is

used as the loss function. The usual approach to model fitting is to make a quadratic

approximation to the loss function using the current estimate of the linear predictors η(m),

and update coefficients using an iteratively reweighted least squares algorithm:

L(η) ≈ L(η(m)) + (η − η(m))′v +
1

2
(η − η(m))′W(η − η(m)),

where v and W are the first and second derivatives of L(η) with respect to η, evaluated at

η(m). Now, letting z = η(m) −W−1v and dropping terms that are constant with respect to

β, we can complete the square to obtain

L(β) ≈
1

2
(z−Xβ)′W(z−Xβ). (7)

For generalized linear models, W is a diagonal matrix, and the quadratic approximation

renders the loss function equivalent to squared error loss in which the observations are

weighted by w = diag(W). For the sake of clarity, we will present the algorithms in Section

3 primarily from the perspective of squared error loss, but mention the steps in the algorithm

that are altered by iterative reweighting.

For MCP and group MCP penalties applied to situations other than squared error loss,

a = 3 may no longer be reasonable. We have found a = 30 to be generally appropriate for

logistic regression loss functions, and use that value throughout.
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3 Local Coordinate Descent

The approach that we describe for minimizing Q(β) relies on obtaining a first-order Taylor

series approximation of the penalty. This approach requires continuous differentiability.

Here, we treat penalties as functions of |β|; from this perspective, penalties like the lasso are

continuously differentiable, with domain [0,∞).

Coordinate descent algorithms optimize a target function with respect to a single param-

eter at a time, iteratively cycling through all parameters until convergence is reached. The

idea is simple but efficient – each pass over the parameters requires only O(np) operations.

Since the number of iterations is typically much smaller than p, the solution is reached faster

even than the np2 operations required to solve a linear regression problem by QR decomposi-

tion. Furthermore, since the computational burden increases only linearly with p, coordinate

descent algorithms can be applied to very high-dimensional problems. Only recently has the

power of coordinate descent algorithms for optimizing penalized regression problems been

fully appreciated; see Friedman et al. [2007] and Wu and Lange [2008] for additional history

and a fuller treatment.

Coordinate descent algorithms are ideal for problems like the lasso where deriving the

solution is simple in one dimension. The group penalties discussed in this paper do not have

this feature; however, one may approximate these penalties to obtain a locally accurate rep-

resentation that does. The idea of obtaining approximations to penalties in order to simplify

optimization of penalized likelihoods is not new. Fan and Li [2001] propose a local quadratic

approximation (LQA), while Zou and Li [2008] describe a local linear approximation (LLA).

The LQA and LLA algorithms can also be used to fit these models, but as we will see in

Section 4, the LCD algorithm is much more efficient.

Letting β̃ represent the current estimate of β, the overall structure of the local group

coordinate descent (LCD) algorithm is as follows:

(1) Choose an initial estimate β̃ = β(0)

(2) Approximate loss function, if necessary

(3) Update covariates:

(a) Update β̃0

(b) For j ∈ {1, . . . , J}, update β̃j

(4) Repeat steps 2 and 3 until convergence
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First, let us consider the updating of the intercept in step (3)(a). The partial residual

for updating β̃0 is ỹ = y −X−0β̃−0, where the −0 subscript refers to what remains of X or

β̃ after the 0th column or element has been removed, respectively. The updated value of β̃0

is therefore the simple linear regression solution:

β̃0 ←
x′

0ỹ

x′

0x0
=

1

n
x′

0ỹ.

An equivalent but computationally more efficient way of updating β̃0 is to take advantage

of the current residuals r̃ = y−Xβ̃ [Friedman et al., 2008]. Here, we note that ỹ = r̃+x0β̃0;

thus, our update becomes

β̃0 ←
1

n
x′

0r̃ + β̃0. (8)

Updating β̃0 in this way costs only 2n operations: n operations to calculate x′

0r̃ and n

operations to update r̃. In contrast, obtaining ỹ requires n(p − 1) operations. Meanwhile,

for iteratively reweighted optimization, the updating step is

β̃0 ← x′

0Wr̃/x′

0Wx0 + β̃0, (9)

requiring 3n operations.

Updating β̃j in step (3)(b) depends on the penalty. We discuss the updating step sepa-

rately for group MCP, group bridge, and group lasso.

3.1 Group MCP

Group MCP has the most straightforward updating step. We begin by reviewing the uni-

variate solution to the lasso. When the penalty being applied to a single parameter is λ|β|,

the solution to the lasso [Tibshirani, 1996] is

β =
S( 1

n
x′y, λ)

1
n
x′x

= S(
1

n
x′y, λ),

where S(z, c) is the soft-thresholding operator [Donoho and Johnstone, 1994] defined for

positive c by

S(z, c) =



















z − c if z > c

0 if |z| ≤ c

z + c if z < −c.
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Group MCP does not have a similarly convenient form for updating individual parame-

ters. However, by taking the first order Taylor series approximation about β̃j , the penalty

as a function of βjk is approximately proportional to λ̃jk|βjk|, where

λ̃jk = f ′

λ,b





Kj
∑

m=1

fλ,a(|β̃jm|)



 f ′

λ,a(|β̃jk|) (10)

and f , f ′ were defined in equation (5). Thus, in the local region where the penalty is well-

approximated by a linear function, step (3)(b) consists of simple updating steps based on

the soft-thresholding cutoff λ̃jk: for k ∈ {1, . . . , Kj},

β̃jk ← S(
1

n
x′

jkr̃ + β̃jk, λ̃jk) (11)

or, when weights are present,

β̃jk ←
S( 1

n
x′

jkWr̃ + 1
n
x′

jkWxjkβ̃jk, λ̃jk)
1
n
x′

jkWxjk

. (12)

3.2 Group bridge

The local coordinate descent algorithm for group bridge is rather similar to that for group

MCP, only with

λ̃jk = λγKγ
j ‖β̃j‖

γ−1
1 . (13)

The difficulty posed by group bridge is that, because the bridge penalty is not everywhere

differentiable, λ̃jk is undefined at β̃j = 0 for γ < 1. This is not a problem with the algorithm;

0 presents a fundamental issue with the penalty itself. For any positive value of λ, 0 is a local

minimum of the group bridge penalty. Clearly, this complicates optimization. Our approach

is to begin with an initial value away from 0 and, if β̃j reaches 0 at any point during the

iteration, to restrain β̃j at 0 thereafter. Obviously, this incurs the potential drawback of

dropping groups that would prove to be nonzero when the solution converges. Essentially,

this approach screens groups from further consideration if they contain no members that

show significant correlation with the outcome given the current model parameters.

3.3 Group lasso

Updating is more complicated in the group lasso because of its sparsity properties: group

members go to 0 all at once or not at all. Thus, we must update β̃j at step (3)(b) in two

steps: first, check whether β̃j = 0 and second, if β̃j 6= 0, update β̃jk for k ∈ {1, . . . , Kj}.
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The first step is performed by noting that β̃j 6= 0 if and only if

1

n
‖X′

j r̃ + X′

jXjβ̃j‖ >
√

Kjλ. (14)

The logic behind this condition is that if βj cannot move in any direction away from 0

without increasing the penalty more than the movement improves the fit, then 0 is a local

minimum; since the group lasso penalty is convex, 0 is also the unique global minimum. The

conditions defined by (14) are in fact the Karush-Kuhn-Tucker conditions for this problem,

and were first pointed out by Yuan and Lin [2006].

If this condition does not hold, then we can set β̃j = 0 and move on. Otherwise, we

once again make a local approximation to the penalty and update the members of group j.

However, instead of approximating the penalty as a function of |βjk|, for group lasso we can

obtain a better approximation by considering the penalty as a function of β2
jk. Now, the

penalty applied to βjk may be approximated by λ̃jkβ
2
jk/2, where

λ̃jk =
λ
√

Kj

‖β̃j‖
. (15)

This approach yields a shrinkage updating step instead of a soft-thresholding step:

β̃jk ←
1
n
x′

jkr̃ + β̃jk

1 + λ̃jk

(16)

or, for weighted optimization,

β̃jk ←
1
n
x′

jkWr̃ + β̃jk

1
n
x′

jkWxjk + λ̃jk

. (17)

Note that, like (13), (15) is undefined at 0. Unlike group bridge, however, this is merely a

minor algorithmic inconvenience. The penalty is differentiable; its partial derivatives simply

have a different form at 0. This issue can be avoided by adding a small positive quantity δ

to the denominator in equation (15).

3.4 Convergence of the LCD algorithm

Let β(m) denote the value of the coefficients at a given step of the algorithm, and let β(m+1)

be the value after the next updating step has occurred. With the exception of the sparsity

check during the first stage of the group lasso algorithm, β(m+1) and β(m) will differ by, at

most, one element.
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Proposition 1 At every step of the algorithms described in Sections 3.1-3.3,

Q(β(m+1)) ≤ Q(β(m)) (18)

Thus, all three algorithms decrease the objective function at every step and therefore are

guaranteed to converge.

This result follows from the general theory of MM (majorization-minimization) algo-

rithms [Lange et al., 2000]. A function h is said to majorize a function g if h(x) ≥ g(x) ∀x

and there exists a point x∗ such that h(x∗) = g(x∗). All that remains to prove the theo-

rem is to show that the approximations referred to by (10), (13), and (15) majorize their

respective penalty functions. This is straightforward for group bridge and group MCP, as

both penalties are concave on [0,∞). They are therefore majorized by any tangent line. For

group lasso, one can demonstrate majorization through inspection of second derivatives by

observing that h′′(βjk)− g′′(βjk) ≥ 0 on (0,∞).

The LCD algorithm is therefore stable and guaranteed to converge, although not neces-

sarily to the global minimum of the objective function. The group bridge and group MCP

penalty functions are nonconvex; group bridge always contains local minima and group MCP

may have them as well. Furthermore, coordinate descent algorithms for penalized squared

error loss functions are guaranteed to converge to minima only when the penalties are sepa-

rable. Group penalties are separable between groups, but not within them. Convergence to

a minimum cannot be guaranteed, then, for the one-at-a-time updates that we propose here.

Nevertheless, we have not observed this to be a significant problem in practice. Comparing

the convergence of the LCD algorithms to LQA/LLA algorithms (which update all param-

eters simultaneously) for the same data, the algorithms rarely converge to different values,

and when they do, the differences are quite small.

3.5 Pathwise optimization and initial values

The local coordinate descent algorithm requires an initial value β(0). Usually, we are in-

terested in obtaining β̂ not just for a single value of λ, but for a range of values and then

applying some criterion to choose an optimal λ.

Usually, the range of λ values one is interested in extends from a maximum value λmax for

which all penalized coefficients are 0 down to λ = 0 or to a minimum value λmin at which the

model becomes excessively large or ceases to be identifiable. The estimated coefficients vary

continuously with λ and produce a path of solutions regularized by λ. Example coefficient

paths for group lasso, group bridge, and group MCP over a fine grid of λ values are presented
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Figure 3: Coefficient paths from 0 to λmax for group lasso, group bridge, and group MCP

for a simulated data set featuring two groups, each with three covariates. In the underlying

model, the solid line group has two covariates equal to 1 and the other equal to 0; the dotted

line group has two coefficients equal to 0 and the other equal to -1.

in Fig. 3; inspecting the path of solutions produced by a penalized regression method is often

a very good way to gain insight into the methodology.

Fig. 3 reveals much about the behavior of grouped penalties. Even though each of the

nonzero coefficients is of the same magnitude, the coefficients from the more significant

black group enter the model much more easily than the lone nonzero coefficient from the

gray group. Note also, however, that this assumption is less pronounced for group MCP.

Finally, notice how, for group MCP at λ ≈ 0.4, all of the variables with true zero coefficients

have been eliminated while the remaining coefficients are unpenalized. In this region, the

group MCP approach is performing as well as the oracle model.

Because the paths are continuous, a reasonable approach to choosing initial values is to

start at one extreme of the path and use the estimate β̂ from the previous value of λ as the

initial value for the next value of λ.

For group MCP and group lasso (and in general for any penalty function that is dif-

ferentiable at 0), we can easily determine λmax, the smallest value for which all penalized

coefficients are 0. From (14), it is clear that

λmax = max
j

‖X∗
′

j r̃‖

n
√

Kj

,

where the current residuals and likelihood approximation (if necessary) are obtained using

a regression fit to the intercept-only model. For group MCP,

λmax = max
j,k

√

|x′

jkr̃|

n
.
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For these methods, we can start at λmax using β(0) = 0 and proceed towards λmin.

This approach does not work for group bridge, however, because β̃ must be initialized

away from 0. We must therefore start at λmin and proceed toward λmax (i.e., work in the

opposite direction as group MCP and group lasso). For the initial value at λmin, we suggest

using the unpenalized univariate regression coefficients.

For all the numerical results in this paper, we follow the approach of Friedman et al.

[2008] and compute solutions along a grid of 100 λ values that are equally spaced on the log

scale.

3.6 Regularization parameter selection

Once a regularization path has been fit, we are typically interested in selecting an optimal

point along the path. Three widely used criteria are:

AIC(λ) = 2Lλ + 2dfλ, (19)

BIC(λ) = 2Lλ + log (n)dfλ, (20)

and

GCV (λ) =
2Lλ

[1− (dfλ/n)]2
, (21)

where dfλ is the effective number of parameters. The optimal value of λ is chosen to be the

one that minimizes the criterion.

We propose the following estimator for dfλ. Let β̂jk denote the fitted value of βjk and β̂∗

jk

denote the unpenalized fit to the partial residual: β̂∗

jk = x′

jkỹ/n. Then

d̂fλ =

J
∑

j=1

Kj
∑

k=1

β̂jk

β̂∗

jk

. (22)

This estimator is attractive for a number of reasons. For linear fitting methods such that

ŷ = Sy, there are several justifications for choosing d̂f = trace(S) [Hastie et al., 2001]. Ridge

regression is an example of a linear fitting method in which S = X(X′X + λI)−1X′. For the

special case of an orthonormal design, (22) is equal to the trace of S. The estimator also has

an intuitive justification, in that it makes a smooth transition from an unpenalized coefficient

with df = 1 to a coefficient that has been eliminated with df = 0. Another attractive feature

is convenience: the estimator is obtained as a byproduct of the coordinate descent algorithm

with no additional calculation.
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Yuan and Lin [2006] propose an estimator for the effective number of parameters of the

group lasso, but it involves the ordinary least squares estimator, which is undefined in high

dimensions, so we do not consider it here. Another common approach is to set d̂f equal to

the number of nonzero elements of β̂ [Efron et al., 2004, Zou et al., 2007]. However, this

has two drawbacks. One is that the estimator (and, hence, the model selection criterion) is

not a continuous function of λ. The other is that this approach is inappropriate for methods

that perform a heavy amount of coefficient shrinkage like the group lasso. We examine the

performance of this estimator and estimator (22) using simulation studies in Section 4.

3.7 Adding an L2 penalty

Zou and Hastie [2005] have suggested that incorporating an additional, small L2 penalty can

improve the performance of penalized regression methods, especially when the number of

predictors is larger than the number of observations or when large correlation exists between

the predictors. This does not pose a complication to the above algorithms. When minimizing

the previously defined objective functions plus λ2

∑

j,k β2
jk/2, the updating step (11) becomes

β̃jk ←
S( 1

n
x′

jkr̃ + β̃jk, λ̃jk)

1 + λ2

for group MCP and group bridge and the updating step (16) becomes

β̃jk ←
1
n
x′

jkr̃ + β̃jk

1 + λ̃jk + λ2

for group lasso. We use λ2 = .001λ for the numerical results in Section 4 and 5.

4 Simulation Studies

4.1 Efficiency

We will examine the efficiency of the LCD algorithm by measuring the average time to fit

the entire path of solutions for group lasso, group bridge, and group MCP, as well as the

lasso as a benchmark. Besides LCD, we consider the following algorithms: lars [Efron

et al., 2004], the most widely used algorithm for fitting lasso paths as of this writing; glmnet

[Friedman et al., 2008], a very efficient coordinate descent algorithm for computing lasso

paths; glmpath [Park and Hastie, 2007], an approach to fitting lasso paths for GLMs not
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Table 1: Linear regression with n = 500, p = 200.

Penalty Algorithm Average Time (s)

Lasso glmnet .03

Lasso lars .43

Group lasso LQA 3.54

Group bridge LLA 7.02

Group MCP LLA 5.13

Group lasso LCD .63

Group bridge LCD .11

Group MCP LCD .10

Table 2: Logistic regression with n = 1000, p = 200.

Penalty Algorithm Average Time (s)

Lasso glmnet 0.24

Lasso glmpath 13.77

Group lasso LQA 21.78

Group bridge LLA 29.77

Group MCP LLA 15.08

Group lasso LCD 1.80

Group bridge LCD 0.67

Group MCP LCD 0.47

based on coordinate descent; and the LQA [Fan and Li, 2001] and LLA [Zou and Li, 2008]

algorithms mentioned in Section 3.

We will consider three situations:

• Linear regression with n = 500, p = 200

• Logistic regression with n = 1000, p = 200

• Linear regression with n = 500, p = 2000

For the data sets with n > p, paths were computed down to λ = 0; for the p > n data sets,

paths were computed down to 5% of λmax.

The results of these efficiency trials are presented in Tables 1, 2, and 3. All entries are

the average time in number of seconds, averaged over 100 randomly generated data sets.
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Table 3: Linear regression with n = 500, p = 2000. For the LQA and LLA algorithms, only

one replication was performed; this is noted with an asterisk.

Penalty Algorithm Average Time (s)

Lasso glmnet 1.60

Lasso lars 22.69

Group lasso LQA 1900.49*

Group bridge LLA 1985.19*

Group MCP LLA 1823.32*

Group lasso LCD 23.00

Group bridge LCD 1.46

Group MCP LCD 3.47

These timings dramatically verify the efficiency of coordinate descent algorithms for

high-dimensional penalized regression. The LCD algorithm is not only much faster than

LLA/LQA for small p, its computational burden increases in a manner that is roughly linear

with p as opposed to the polynomial increase suffered by LLA/LQA. Indeed, the LCD algo-

rithms are, generally speaking, even faster than the LARS algorithm, a somewhat remarkable

fact considering that the latter takes explicit advantage of special piecewise linearity prop-

erties of linear regression lasso paths.

Among the grouped penalties, group lasso is the slowest due to its two-step updating

procedure. Group bridge was timed here to be the fastest, although this is potentially

misleading. Group bridge saves time by not updating groups that reach 0 with no guarantee

of converging to the true minimum. This is a weakness of the method, not a strength,

although it does result in shorter computing times.

4.2 Regularization parameter selection

In this section, we will conduct a simulation study to compare the performance of our

proposed estimator of the number of effective model parameters versus using the number of

nonzero covariates as an estimator. In this section and the next, we study penalized linear

regression and use BIC as the model selection criterion; simulations we have conducted for

logistic regression and using AIC and GCV all illustrate the same basic trends.

We simulated data from the generating model

yi = x′

i1β
(0)
1 + . . . + x′

i10β
(0)
10 + ǫi, ǫi

iid
∼ N(0, 1), (23)
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Figure 4: Model error for each method after selecting λ with BIC using one of two estimators

for the effective number of model parameters. Solid line: Estimator (22). Dashed line: Using

number of nonzero elements of β.

with 100 observations and 10 groups, each of which containing 10 members (n = p = 100).

We set β4 = . . . = β10 = 0, and randomly generated the elements of β1 through β3 in such

a way as to have the models span signal-to-noise (SNR) ratios over the range (0.5, 3) in a

roughly uniform manner. Data sets were generated independently 500 times. Model error

was chosen as the outcome; lowess curves were fit to the results and plotted in Fig. 4. We

define model error and SNR as follows:

ME = (β̂ − β(0))′E(xx′)(β̂ − β(0))

and

SNR =
1

σ2
β(0)′E(xx′)β(0).

As Fig. 4 illustrates, the performance of estimator (22) is similar to (perhaps slightly

better than) that of counting the nonzero elements of β for group bridge and group MCP,

but much better for the more ridge-like penalty group lasso. We consider this sufficient

justification for the use of (22) throughout the remainder of this article; however, further

study of this approach to estimating model degrees of freedom is warranted.

4.3 Performance

In this section, we will compare the performance of the group lasso, group bridge, and group

MCP methods across a variety of independently generated data sets. Once again, data are

generated from (23) with n = p = 100, J = 10. However, the sparsity of the underlying

models varied over a range of true nonzero groups J0 ∈ 2, 3, 4, 5 and over a range of nonzero

members within a group K0 ∈ 2, 3, . . . , 10. Furthermore, the magnitude of the coefficients
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Table 4: Variables and groups selected by the group selection methods for the simulation

study described in Section 4.3. The results for two representative models are reported. The

total number of groups/individual variables is reported along with the number of those that

were false positive (FP) and the number of truly nonzero groups that were not selected (false

negatives, FN).

Variables Groups Variables

/ group Selected FP FN Selected FP FN

Generating model 3 groups, 3 variables per group

Group lasso 10.0 2.9 0.3 0.4 28.5 20.7 1.2

Group bridge 4.2 2.5 0.3 0.8 9.9 5.2 4.3

Group MCP 2.2 5.9 3.0 0.1 12.6 7.5 3.9

Generating model 3 groups, 8 variables per group

Group lasso 10.0 2.9 0.2 0.3 28.9 7.3 2.4

Group bridge 5.0 2.5 0.3 0.8 11.8 2.1 14.3

Group MCP 2.7 5.6 2.6 0.0 14.4 4.7 14.3

was determined according to

β
(0)
jk = ajkI(j ≤ J0)I(k ≤ K0),

where a was chosen such that the SNR of the model was approximately one (actual range

from 0.84 to 1.45). This specification ensures that each model covers a spectrum of groups

ranging from those with with small effects to those with large effects, and that each group

contains large and small contributors.

We note the average number of groups and coefficients selected by the approaches for

two representative cases in Table 4, and plot model errors in Fig. 5.

The most striking difference between the methods is the extent to which the form of the

penalty enforces grouping: group lasso forces complete grouping, group MCP encourages

grouping to a rather slight extent, and group bridge is somewhere in between. This is seen

most clearly by observing the average number of variables selected per group for the cases

listed in Table 4. For group lasso, of course, this number is always 10. For group MCP,

approximately two or three variables were selected per group, while group bridge selected

four or five per group. We will address the underlying causes of this in the discussion.

Because group MCP makes rather cautious assumptions about grouping, the method

performs well when there are a larger number of rather sparse groups – situations in which
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Figure 5: Model error simulation results. In each panel, the number of nonzero groups is

indicated in the strip at the top. The x-axis represents the number of nonzero elements per

group. At each tick mark, 500 data sets were generated. A lowess curve has been fit to the

points and plotted.

the underlying model exhibits less grouping. However, it suffers in comparison to the other

methods when the nonzero coefficients are tightly clustered into groups as group MCP tends

to select too many groups and make insufficient use of the grouping information. Group

lasso exhibits the opposite trend in its performance, overshrinking individual coefficients

when groups are sparsely populated.

5 Genetic Association Study

Genetic association studies are an increasingly important tool for detecting links between

genetic markers and diseases. The example that we will consider here involves data from

a case-control study of age-related macular degeneration consisting of 400 cases and 400

controls. We confine our analysis to 30 genes that previous biological studies have suggested

may be related to the disease. These genes contained 532 markers with acceptably low rates

of missing data (< 20% no call rate) and high minor allele frequency (> 10%).

We analyzed the data with the group lasso, group bridge, and group MCP methods by

considering markers to be grouped by the gene they belong to. Logistic regression models

were fit assuming an additive effect for all markers (homozygous dominant = 2, heterozygous

= 1, homozygous recessive = 0). Missing (“no call”) data was imputed from the nearest

non-missing marker for that subject. In addition to the group penalization methods, we
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Table 5: Application of the three group penalization methods and a one-at-a-time method

to a genetic association data set. The first three columns refer to the analysis of the actual

data set; the last is the average test error over the 10 cross-validations.

Test

# of # of Error error

groups covariates rate rate

One-at-a-time 19 49 .312 .441

Group lasso 10 190 .321 .429

Group bridge 3 19 .342 .421

Group MCP 7 10 .364 .418

analyzed these data using a traditional one-at-a-time approach, in which univariate logistic

regression models were fit and marker effects tested using a p < .05 cutoff. For group lasso

and group bridge, using BIC to select λ resulted in the selection of the intercept-only model.

Thus, more liberal model selection criteria were used for those methods: AIC for group lasso

and GCV for group bridge.

To assess the performance of these methods, we computed 10-fold cross-validation error

rates for the methods. For the one-at-a-time approach, predictions were made from an

unpenalized logistic regression model fit to the training data using all the markers selected

by individual testing. The results are presented in Table 5.

Table 5 strongly suggests the benefits of using group penalized models as opposed to one-

at-a-time approaches: the three group penalization methods achieve lower test error rates

and do so while selecting fewer groups. Although the error rates of ≈ .42 indicate that these

30 genes likely do not include SNPs that exert an overwhelming effect on an individual’s

chances of developing age-related macular degeneration, the fact that they are well below

0.5 demonstrates that these genes do contain SNPs related to the disease. In particular,

bi-level selection methods seem to perform quite well for these data. Group bridge identifies

3 promising genes out of 30 candidates, and group MCP achieves a similarly low test error

rate while identifying 10 promising SNPs out of 532.

There are a number of important practical issues that arise in genetic association studies

that are beyond the scope of this paper to address. Nearby genetic markers are linked; in-

deed, this is the impetus for addressing these problems using grouped penalization methods.

However, genetic linkage also results in highly correlated predictors. We have observed that

the choice of λ2 for group bridge and group MCP has a noticeable impact on the SNPs

selected. Furthermore, most genetic association studies are conducted on much larger scales
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than we have indicated here: moving from hundreds of SNPs to hundreds of thousands

of SNPs presents a new challenge to both the computation and the assigning of group la-

bels. The handling of missing data, the search for interactions, and the incorporation of

non-genetic covariates are also important issues. The fact that signals from markers are

known to be grouped in genetic association studies is a strong motivation for the further

development of bi-level selection methods.

6 Discussion

High-dimensional problems in which p exceeds n are increasingly common as automated

data collection and storage becomes cheaper to obtain and easier to implement. For these

problems, traditional likelihood methods break down and the need to introduce additional

structure into the problem arises. Regression problems with grouped covariates are an im-

portant class of these types of problems. Furthermore, because we are often interested not

only in selecting groups but in identifying the important members of groups, methods that

can perform bi-level selection are needed.

This paper introduces a framework that sheds light on the behavior of grouped penaliza-

tion methods, describes a fast, stable algorithm for implementing group penalty approaches

to this problem, and applies them to an important application: genetic association studies.

In addition, we describe a novel type of group penalty, group MCP, in which the effects of

group and individual variable penalization are localized. The behavior of this penalty raises

interesting questions about the nature of group penalization.

The derivatives of the bridge, SCAD, and MCP penalties were plotted in Fig. 1. Suppose

there are 10 covariates in a group, one of which is large (i.e., at least aλ for MCP); what

happens to the rate of penalization applied to the rest? For MCP, the group penalty drops

to 9/10 of the initial rate. This produces rather weak grouping effects. By comparison,

the derivative of the bridge penalty drops rapidly upon the introduction of any nonzero

elements; this produces the stronger grouping effects seen in group bridge. The SCAD

penalty, by contrast, might not drop at all; indeed, our work with a group SCAD method

reveals that it displays even less grouping than group MCP.

The bridge penalty is attractive from the perspective of performing bi-level selection

while still producing grouped solutions, but it introduces complications into the optimization

process. The efficiency of the LCD algorithm provides a powerful incentive to work with

penalties that are continuously differentiable; this was indeed one of the motivating factors

behind the development of group MCP. To develop continuously differentiable penalties
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that can perform bi-level variable selection while producing strongly grouped solutions is

an important next step. That these methods remain robust even when grouping is less

pronounced is also desirable. This seemingly requires penalties whose derivatives look like

that of the bridge penalty, but that do not suffer from a singularity at 0; to the knowledge

of the authors, these tools have not yet been developed or studied.

Nevertheless, group lasso, group bridge, and group MCP can all be valuable tools depend-

ing on the application. Furthermore, using the LCD algorithm, these grouped penalization

methods can be conveniently applied to large data sets that, not long ago, would have been

deemed infeasible to analyze using penalized regression.
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