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Abstract

We introduce a new dimension-reduction technique, the Partially Linear Reduced-rank

Regression (PLRR) model, for exploring possible nonlinear structure in a regression involving

both multivariate response and covariate. The PLRR model specifies that the response vector

loads linearly on some linear indices of the covariate, and nonlinearly on some other indices

of the covariate. We give a set of sufficient conditions for the identifiability of the PLRR

model. We propose a method for estimating a PLRR model, and derive the large-sample

properties of the estimator. Simulation and real data analysis are used to illustrate the new

approach.

Key Words: dimension-reduction technique, identifiability, large-sample properties, pollu-

tion, semiparametric methods.

1 Introduction

Bona fide nonparametric regression with high-dimensional covariate is seldom feasible owing to

the curse of dimensionality. Much of the recent literature concerns the development of effective

dimension reduction techniques for facilitating the use of nonparametric regression in exploring
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possible nonlinear regression relationship; see Xia et al. (2002) and the references therein, and

also §2 below. Extension of the available dimension-reduction techniques designed for the case of

univariate response and multivariate covariate to the case of nonparametric regression with both

multivariate response and covariate is not completely straightforward because of the need for ef-

ficiently reducing the covariate dimension simultaneously for all components of the response. Li

and Chan (2001) extended the technique of linear reduced-rank regression to a semiparametric

dimension-reduction technique useful for exploring the nonlinear relationship between the mul-

tivariate response and the multivariate covariate. Essentially, their so-called SemiPArametric

Reduced-rank Regression (SPARR) model assumes that the response vector loads linearly on

a set of nonlinear factors each of which depends on a set of linear indices of the covariate. In

practice, some of the “nonlinear” factors in a SPARR model may be fairly linear over the ob-

servable data range. Here, we consider the case that the response vector loads linearly on some

linear indices of the covariate, and nonlinearly on some other indices of the covariate that are

orthogonal to those linear indices that linearly affect the response; the orthogonality condition

is one approach for guaranteeing model identifiability; see below. The new model studied here

will be referred to as the Partially Linear Reduced Rank (PLRR) model; this new model bears

some resemblance to the partially linear single-index regression (Xia et al., 1999), except that

the number of indices can be other than 1 and that the response is a vector. When the PLRR

model is applicable, it reduces the dimension of the indices for the genuine nonlinear factors as

compared to the general SPARR model so that the nonlinear part can be estimated with greater

resolution.

This paper is organized as follows. In §2, we elaborate on the PLRR model, and give a

set of sufficient conditions for model identifiability. An iterative estimation procedure is then

proposed. The large-sample properties of the proposed estimation method are derived in §3, with

proofs relegated to an appendix. A small-scale simulation study on the empirical performance

of the proposed estimation scheme is reported in §4. In §5, we illustrate the PLRR model

with a real dataset collected in Hong Kong. The fitted PLRR model cast new insights on the

temporal dynamical structure of 4 pollution variables and their interaction with weather. We

briefly conclude in §6.

2 The Model and an Estimation Method

Let Yt and Xt be m and n-dimensional random vectors, both of which are assumed to have
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been standardized. The Partially Linear Reduced-rank Regression (PLRR) model is defined as

follows:

Yt = C{DXt + f(BXt)}+ εt, t = 1, · · · , T (1)

where εt are iid, independent of Xt and of zero mean and finite variance matrix, C,D and B

are unknown matrices of respectively dimensions m × r1, r1 × n and r2 × n matrix; r1 and

r2 will be referred to as the ranks of the model. The unknown function f maps from Rr2 to

Rr1 . The model is identifiable if (i) the (integer) ranks r1 > 0 and r2 > 0 are minimal, (ii) D

and B are orthogonal to each other, i.e. DBT = 0 where the superscript T denotes transpose,

and (iii) after suitable permutation of the components of Y and those of X and re-labeling the

components if necessary, the leading sub-square matrix of C is the identity matrix of dimension

r1, and similarly that of B is the r2 × r2 identity matrix. Condition (i) implies that f(BX)

cannot be further decomposed as D1X + f1(B1X) such that D1B
T
1 = 0, D1 6= 0 and the row

space of B is the direct sum of the row spaces of D1 and B1. Conditions (i) and (ii) entail

that the conditional mean function decomposes into a linear part and a “minimal” nonlinear

part, the arguments of each part being distinct sets of orthogonal co-ordinates of X. To see

the need of condition (ii), suppose that (1) holds. We can then subtract from the linear part a

term HBXt where H is any r1 × r2 constant matrix, and add the same term to the nonlinear

part, resulting in a different decomposition. Condition (ii) eliminates this source of model non-

identifiability. Indeed, if condition (ii) is not satisfied, performing the aforementioned procedure

with H = BT (BBT )−1 will result in a decomposition satisfying (ii). Finally, condition (iii)

removes model ambiguity due to rotation of C and B. Specifically, without the constraints set

by (iii), we can use any two invertible matrices P and Q of appropriate dimensions and effect

the changes of C to CP , D to P−1D, B to QB and f(·) to P−1f(Q−1·) without altering the

conditional mean of Yt given Xt, causing model non-identifiability. See the appendix for a proof

of the model identifiability under conditions (i)-(iii). Note that the covariate Xt may contain

lagged values of Yt.

The PLRR model is an interesting special case of the SemiPArametric Reduced-rank Re-

gression (SPARR) model introduced by Li and Chan (2001). The SPARR model is defined as

follows:

Yt = Cg(B′Xt) + εt, t = 1, · · · , T, (2)
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where the components of g may be linear or nonlinear; B′ is an unknown r′2 × n matrix. Here,

B′X is said to consist of r′2 indices of X. The vector function g(B′Xt) may be regarded as

consisting of r1 “nonlinear” factors on which the response loads linearly through the matrix

C. The SPARR model provides a useful framework for dimension reduction with multivariate

response and covariate. In some cases, the function g may split into a linear part and another

nonlinear part, which becomes the PLRR model with the rank r2 < r′2 and hence provides a

more parsimonious model. Indeed, a function with a lower-dimensional argument will generally

lead to more efficient estimation.

Thus, the PLRR model considers the interesting case that the function f in the SPARR model

splits into a linear part and a nonlinear part, the arguments of the two parts being orthogonal

linear combinations of X. This distinct-orthogonal-argument condition resembles an assumption

used by Xia et al. (1999) in the case of scaler response. The SPARR model generalizes a number

of existing parametric, nonparametric and semiparametric models including the Reduced-Rank

Regression Model (Reinsel and Velu, 1998), the additive model (Hastie and Tibshirani, 1990),

the index model (Li, 1992), partially linear model (Carroll et al., 1997; Xia et al., 1999) and

projection pursuit (Friedman and Stuetzle, 1981); see Li (2000, pp. 102-4).

We now consider the estimation of a PLRR model. Were the parameters (B,C,D) known,

there are several approaches for estimating f(·), e.g., local polynomial (Fan and Gijbels, 1996)

and spline smoothing (Eubank, 1988). Here we adopt the local polynomial method (of degree

1, for simplicity), owing to its generally good performance in terms of bias and variance, its

ability to adapt to various types of covariate design, and absence of boundary effects; see (Fan

and Gijbels, 1996; Ruppert and Wand, 1994) for details.

First, we consider the case that the bandwidth and the ranks of C and B are known. Let

Kh(·) be a kernel function with h > 0 as the bandwidth, e.g., Kh(·) equals the pdf of the normal

distribution with covariance matrix equals hI; I is the identity matrix. We propose to estimate

the model by minimizing the following weighted least squares criterion function (the notation

|| · || denotes the L2-norm):

L(C,D,B,A0t, A1t, t = 1, · · · , T ;h)

=
∑

t

∑
i

||Yi − CDXi − C[A0t + A1tB(Xi −Xt)]||2Kh[B(Xi −Xt)] (3)

where A0t are r1×1 vectors and A1t are r1×r2 matrices. The arguments minimizing L(C,D,B,A0t,

A1t, t = 1, · · · , T ;h) yield the estimators Ĉ, D̂, B̂, Â0t, Â1t, t = 1, · · · , T , where Â0t estimates
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f(BXt) and Â1t estimates the first derivative matrix of f(·) evaluated at BXt.

This objective function can be motivated as follows. For a smooth function f(·), it can be

locally approximated by a tangent plane, the effective size of the neighborhood over which the

approximation is applied is controlled by the bandwidth of the kernel. Specifically, for a given

x = Xt, we model the data around x by

Yi = CDXi + C[A0t + A1tB(Xi −Xt)] + error (4)

where A0t and A1t depend on Xt. The As are then estimated by minimizing the weighted sum

of squares defined with the kernel function K:∑
i

‖Yi − CDXi − C[A0t + A1tB(Xi −Xt)]‖2 ×Kh[B(Xi −Xt)]. (5)

While it is desirable to minimize the preceding local least squares simultaneously for all data

cases, it is more tractable to minimize the sum of (5) over all t, resulting in (3). Strictly speaking,

the minimization of the objective function (3) only yields estimators of f(·) at BX’s. However,

given Ĉ, D̂, B̂ and ĥ, for any u, f(u) can be estimated by Â0 which minimizes∑
i

||Yi − ĈD̂Xi − Ĉ[A0 + A1(B̂Xi − u)]||2Kĥ(B̂Xi − u).

The bandwidth and the ranks can be estimated by minimizing the criterion function

L(r1, r2) =
∑

t

‖Yt − Ĉ{D̂Xt − f̂(B̂Xt)}‖2 (6)

over a finite grid of h, r1 and r2, where f̂ , B̂, D̂ and Ĉ are estimated by the cross-validated

weighted sum of squares obtained by suppressing the terms with i = t in the double sum in (3).

Below, we shall normalize L(r1, r2) by the total variance of Y so that L(·, ·) can be interpreted

as the fraction of unexplained total variances. See §4 for numerical evidence suggesting the

consistency of this rank determination procedure.

For fixed ranks and bandwidth, we outline below an iterative procedure for minimizing the

objective function defined by (3), with further elaboration including useful formulas given in

Appendix B. Given a set of initial values of B,C and D, the iterative scheme cycles through the

following steps until the objective function converges.

Step 1: Find Â0t and Â1t by minimizing the inner sum of the objective function in (3) with

respect to A0t and A1t. Denote these estimators by Â
(k)
0t and Â

(k)
1t , where k is the iteration

number.
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Step 2: Update B by minimizing the objective function∑
t

∑
i ||Yi − Ĉ(k−1)D̂(k−1)Xi − Ĉ(k−1)(Â(k)

0t + Â
(k)
1t B(Xi −Xt))||2Kh(B̂(k−1)(Xi −Xt)).

Let the minimizer be B̂(k). Then we normalize B̂(k) by transforming B̂(k) to the form

(I, B̂∗) after permuting the components of X if necessary, where I is the r2 × r2 identity

matrix and B̂∗ is an r2 × (n− r2) matrix.

Step 3: Update C by minimizing the criterion∑
t

∑
i ||Yi − C(D̂(k−1)Xi + Â

(k)
0t + Â

(k)
1t B̂(k)(Xi −Xt)||2Kh(B̂(k)(Xi −Xt)).

Let the minimizer be Ĉ(k). Then we normalize Ĉ(k) by transforming Ĉ(k) to the form

(I, Ĉ∗T )T after permuting the components of Y if necessary, where I is an r1× r1 identity

matrix and C∗ is an (m− r1)× r1 matrix.

Step 4: Update D by minimizing the criterion∑
t

∑
i ||Yi − Ĉ(k){Â(k)

0t + Â
(k)
1t B̂(k)(Xi −Xt)} − Ĉ(k)DXi||2Kh(B̂(k)(Xi −Xt)).

In Step 2, B appearing in the kernel function is fixed at the value from the preceding iterate in

order to simplify the minimization problem. It can be shown by adapting the proof of (C.17) in

Appendix C that the separate updating of the two occurrences of B is asymptotically equivalent

to simultaneously updating both occurrences of B in the preceding loss function. Note that

the whole B (C) is estimated even though it contains some redundant parameters before the

normalization. This is done because it is not known beforehand which sub-matrices of B (C) are

of full rank. Hence we first update the whole B (C) followed by normalization using the pivoting

technique used in Gauss-Jordan elimination method (Press et al., 1992). After a few iterates,

one can fix a certain square sub-matrix of B (C) for normalization to the identity matrix.

To start the algorithm, we determine the initial values with the following procedure: First,

we run a reduced-rank linear regression of Y on X to find the initial values of C and D. Then, we

run a projection pursuit regression (Venables and Ripley, 2002) of Y − Ȳ −CDX on HX where

H = (I−DT (DDT )−1D), via the ppr function in R, with the options nterms= r2, max.term= 2.

Next, we set B = αH where α is the coefficient matrix from the preceding projection pursuit.

The idea is to approximate the nonlinear function f(·) by projection-pursuit regression. And

HX is used as the regressor in order to ensure that B is orthogonal to D, as required by model

identifiability of the PLRR model.
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3 Asymptotic Properties of the Estimator

We first derive the asymptotic distribution for f̂ (and f̂ ′) with the parameters B,C and D

assumed known. Indeed, the proof shows that the same result applies if these parameters are

known up to an error of order op{(Thr2)−1/2+h2}. The latter convergence rate holds if B̂, Ĉ and

D̂ differ from the corresponding true values by an error of OP (1/
√

T ) and Thr2+4 = O(1). It is

shown that f̂ is asymptotically normal with a bias of order h2 with the rate of convergence being

OP {(Thr2)−1/2}. Hence the optimal bandwidth according to the mean integrated squared error

(MISE) criterion is of the order O(T−1/(r2+4)) where r2 is the rank of B. Then we show that if B̂,

Ĉ and D̂ have convergence rate of OP (T−1/2), then under suitable conditions, these estimators

are asymptotically normal. In summary, under some suitable conditions, the bandwidth can

be chosen to ensure both the asymptotic normality of B̂, Ĉ and D̂, as well as the (Thr2)−1/2

convergence rate of f̂ , at the expense of under-smoothing f̂ . That is, the bandwidth is of smaller

order compared to the rate O(T−1/(r2+4)), the optimal order for estimating f according to the

MISE criterion.

Initially, we consider the independent case for ease of exposition, and show at the end of the

section how to extend the results to the case of dependent variables with suitable mixing rates.

The proofs in Appendix C make use of some techniques in Carroll et al. (1997).

3.1 Asymptotic Distribution of the Nonparametric part

Let g(·) = g(·;B) be the marginal density of U = BX. Denote by C0, B0 and f0 the true

parameters and the true function, respectively. Also, let U0 = B0X and g0(·) = g(·;B0) be the

pdf of U0. Define the r2 × r2 matrices k2, ν2, scalar ν0, r1 × 1 vector k2,f0,h and m×m matrix

Σ(u) by the following formulas:

k2 =
∫

wwT K(w)dw; (7)

ν0 =
∫

K2(w)dw; (8)

ν2 =
∫

wwT K2(w)dw; (9)

k2,f0,h(u) = h2

∫
(Ir1 ⊗ wT )f ′′0 (u)wK(w)dw; (10)

Σ(u) = Cov(Y |U0 = u). (11)

where w denotes an r2-dimensional vector and the integrals are over Rr2 . The (r1r2)×r2 matrix

f ′′0 (u) consists of the second derivatives of f0 (see (C.7) for the definition). Because of the
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identification conditions, we require C and B, up to permutations of X and Y , to be of the form

C =

 I

C∗

 , and B = (I, B∗). (12)

Condition 1:

(i) The matrix CT
0 C0 is positive definite.

(ii) The marginal density of B0X is positive and continuous at the point u.

(iii) The function f0(·) and its second derivatives are bounded and uniformly Lipschitz contin-

uous; i.e., for some D, ||f ′′0 (u)− f ′′0 (v)|| ≤ D||u− v|| for all u and v, where D is a positive

number.

(iv) The matrices ν0C
T
0 Σ(u)C0 and ν2⊗CT

0 Σ(u)C0 are finite and positive definite at u. Denote

f̄i = f̄i(u) = f0(u) + f ′0(u)(Ui − u) and V1 =
√

hX∗
1q1(f̄1, Y1)Kh(U1 − u), where

X∗
1 =

 Ir1(
U1−u

h

)
⊗ Ir1

 ,

and q1(x, y) = 2CT (y − Cx). Assume E(Vi1Vj1Vl1Vm1) < ∞ for all i, j, l, and m, where

Vi1 is the ith element of the V1.

(v) The kernel K is a non-degenerate symmetric density function with bounded first derivative

and bounded support.

Condition 1(i) ensures the validity of (12) and Condition 1(v) can be relaxed at the expense

of more complex conditions.

Theorem 3.1 Assume that {Yi, Xi, i = 1, 2, · · · , T} are i.i.d. random vectors, and the band-

width h satisfies the condition that as T → ∞, h → 0, Thr2 → ∞, Thr2+4 = O(1). Under

Condition 1, as T →∞,

(Thr2)1/2

 f̂(u)− f0(u)

h{vec[f̂ ′(u)− f ′0(u)]}

− 1
2

 k2,f0,h(u)

0

 (13)

is asymptotically normal with mean zero and the block diagonal covariance matrix

Σg0(u) ≡

 Σ11 0

0 Σ22

 (14)
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where

Σ11 = ν0(CT
0 C0)−1CT

0 Σ(u)C0(CT
0 C0)−1/g0(u)

Σ22 = (k−1
2 ν2k

−1
2 )⊗ ((CT

0 C0)−1(CT
0 Σ(u)C0)(CT

0 C0)−1)/g0(u).

Followings are several remarks which aim to clarify the use of the preceding theorem.

1. Note that if h = O(T−1/r) with r2 < r ≤ r2+4, then the bandwidth condition of Theorem

3.1 are satisfied.

2. Theorem 3.1 indicates that the local polynomial fit for the jth component of f0(u) has

the squared asymptotic bias and covariance matrix respectively as:

squared bias ≈ k2
2,f0,h,j(u)/4, (15)

covariance matrix ≈ 1
Thr2

Σf0,j,j(u) (16)

The optimal bandwidth for estimating the fj,0(u) can be determined by minimizing the asymp-

totic mean integrated square error (AMISE), to be defined below. For a given function ω(·) with

compact support, the AMISE with weight g0(·)w(·) equals, up to a negligible term,

AMISE =
∫

E[
m∑

j=1

(f̂j(u)− fj,0(u))2]g0(u)w(u)du

≈ 1
4

m∑
j=1

∫
k2

2,f0,h,jg0(u)w(u)du +
m∑

j=1

1
Thr2

∫
Σf0,j,j(u)g0(u)w(u)du

=
h4

4

∫ m∑
j=1

[∫
(eT

j ⊗ wT )f ′′0 (u)wk(w)dw

]2

g(u)w(u)du

+
1

Thr2
ν0

m∑
j=1

eT
j (CT

0 C0)−1CT
0

∫
Σ(u)w(u)duC0(CT

0 C0)−1ej .

where ej denote the unit column vector with 1 in the jth position. Consequently, the optimal

bandwidth minimizing the AMISE is OP (T−1/(r2+4)); specifically

hopt = T−1/(r2+4)

r2ν0
∑

j eT
j (CT

0 C0)−1CT
0

∫
Σ(u)w(u)duC0(CT

0 C0)−1ej∫ ∑
j

[∫
(eT

j ⊗ wT )f ′′0 (u)wk(w)dw
]2

g0(u)w(u)du


1/(r2+4)

.

This result suggests that when we do a search for the optimal bandwidth over a grid, the

grid for higher ranks r2 may be set by rescaling the grid for r2 = 1 by a factor of the order

T 1/5−1/(r2+4), which is done in the numerical analysis below. This is motivated by the following
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consideration. Let h(r) be the optimal bandwidth with r2 = r. Then h(r) = Op(T−1/(r+4)) =

Op(T−1/5 ∗ T 1/5−1/(r+4)) = T 1/5−1/(r+4)Op(h(1)), were the true r2 = 1.

3.2 Asymptotic Distribution of the Parametric Part

We will assume that vec(B̂∗), vec(Ĉ∗) and vec(D̂) are within some T−1/2-neighborhood of

their corresponding true values, i.e., vec(B̂∗ − B∗
0) = Op(T−1/2), etc. Let εt = Yt − C0{D0X +

f0(B0Xt)}, R = D0X and U = B0X. Denote by A−1 the inverse of a square matrix A. The

following conditions will be needed below.

Condition 2:

(i) The function f ′′0 (·) is continuous in u ∈ D, a compact set, which is the support of the

random variable U0.

(ii) The density of U0 has continuous second derivatives on the set D.

(iii) The conditional density of Ut = B0Xt given Yt exists and is uniformly bounded.

(iv) All moments of the error εt exist, i.e., E(|ε|k) < ∞ for k ≥ 0.

(v) The matrix Q defined in Theorem 3.2 is invertible.

Again, these conditions can be relaxed at the expense of more complex conditions.

Theorem 3.2 Let the coefficient matrices B̂∗ and Ĉ∗ be the estimators satisfying the normal-

ization conditions (12), and B̂ and D̂ satisfy the constraints D̂B̂T = 0. Assume Conditions 1

and 2 hold and Th4 → 0, lnT/(Thr2) → 0 and T 1−δhr2 →∞ for some arbitrary but fixed δ > 0.

Then, as T →∞,

T 1/2


vec(B̂∗ −B∗

0)

vec(Ĉ∗ − C∗
0 )

vec(D̂ −D0)

 D−→ N(0,PPPT ) (17)

where, by an abuse of notation, X is partitioned as

 X1

X2

 with X1 being of dimensional r2 and

corresponding to the components of X whose coefficients in the indices are fixed according to the

constraint (12); similarly partitioned are Xt =

 X1t

X2t

; D = (D1, D2) and D0 = (D10, D20);

P = Var{g0(U)[Λ− E(Λ|U)C0(C
T
0 C0)

−1CT
0 ]ε};
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Λ =


(X2 ⊗ Ir2)f

′T
0 (B0X)CT

0

0r1(m−r1)×r1 , f0(B0X)⊗ Im−r1

X ⊗ CT
0

 ;

Q1 = E[g(U)ΛC0f
′
0(U)(XT

2 ⊗ Ir2)]− E[g(U)ΛC0f
′
0(U)E(XT

2 ⊗ Ir2 |U)];

Q2 = E

g(U)Λ

 0r1×r1(m−r1)

(RT + fT
0 (U))⊗ Im−r1

− E

g(U)ΛC0(C
T
0 C0)

−1CT
0

 0r1×r1(m−r1)

(E(RT |U) + fT
0 (U))⊗ Im−r1

 ;

Q3 = E[g(U)Λ(XT ⊗ C0)]− E[g(U)ΛC0(C
T
0 C0)

−1CT
0 E(XT ⊗ C|U)];

Q = (Q1, Q2, Q3);

P = Q−1(I −HT (HQ−1HT )−1HQ−1), where H = [(Ir2 ⊗D20)Kr2,n−r2 , 0r2×r1,(m−r1)×r1
, B0 ⊗

Ir1 ]; the commutation matrix Kp,q is a matrix consisting of ones and zeroes such that, for

any p × q matrix M , Kp,qvec(M) = vec(MT ); see (Turkington, 2002, p. 30). Specifically,

Kp,q = [Ip ⊗ eq
1, Ip ⊗ eq

2, · · · , Ip ⊗ eq
q] where eq

i is the i-th column vector of Iq, the q × q identity

matrix.

Remark: The condition T 1−δhr2 → ∞ for some arbitrary but fixed δ > 0 implies the

validity of (4.5) in Masry (1996) which is required by Lemma 1 of Li and Chan (2001).

Note that if h = O(T−1/r) with 4 > r ≥ r2, then the bandwidth condition in Theorem 3.2

holds. In particular, the asymptotic normality result for the parameter estimates obtains only

for r2 ≤ 3. It is of interest to further investigate the limiting distribution for dimensions higher

than 3.

We now consider how to relax the i.i.d. assumption. Let Fb
a be the σ-algebra of events

generated by the random variables {Yt, Xt, a ≤ t ≤ b} and L2(Fb
a) denote the collection of

all second-order stationary random variables which are Fb
a-measurable. The stationary process

{Yt, Xt} is strongly mixing (Rosenblatt, 1956) if

sup
A∈F0

−∞
B∈F∞k

|P (A ∩B)− P (A)P (B)| = α(k) → 0 as k →∞.

The coefficients α(k) are known as the strong mixing coefficients.

Condition 3:

(i) |gX1,Xl+1
(u, v; l)−gX1(u)gXl+1

(v)| < A1 < ∞ for all l ≥ 1 where gX1(u) and gX1,Xl+1
(u, v; l)

denote, respectively, the probability density of B0X1 and of (B0X1, B0Xl+1).

(ii) The process {Yi, Xi} is strongly mixing with
∑∞

j=1 ja[α(j)]1−2/v < ∞ for some v > 2 and

a > 1− 2/v.
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(iii) The conditional density fUt|Yt
(u|y) of Ut given Yt exists and is bounded, i.e., fUt|Yt

(u|y) ≤

C1 < ∞ for some C1.

(iv) The conditional density f(Ut,Ut+l)|(Yt,Yt+l) of (Ut, Ut+l) given (Yt, Yt+l) exists and is bounded,

i.e., there exists C2 such that, for all l ≥ 1,

f(Ut,Ut+l)|(Yt,Yt+l)((u, v)|(y1, y2)) ≤ C2 < ∞.

Theorem 3.1 continues to hold in the dependent case if we assume Condition 3 in addition to

the conditions in Theorem 3.1. The proof of Theorem 3.1 has to be modified as follows. Replace

E(WT ) by

ET =
hr2

√
Thr2

T∑
i=1

X∗
i E[q1(f̄i, Yi − CDXi)|Ui]

so that WT − ET is the sum of a martingale difference sequence, and that (C.13) continues to

hold under Condition 3. Similarly Theorem 3.2 continues to hold if we assume that in addition

to the conditions in Theorem 3.2, Condition 3 holds.

4 Simulation Study

We report some simulation results checking the empirical performance of the estimation

scheme proposed in § 2. The simulation model has the following specification: m = n = 4 and

r1 = r2 = 2, with

C =


1.0 0.0

0.0 1.0

1.0 1.0

1.0 −1.0

 ;D =

 5.0 −5.0 0.0 5.0

−5.0 −5.0 5.0 0.0

 ;B =

 1.0 0.0 1.0 −1.0

0.0 1.0 1.0 1.0

 .

The normalization constraints on C and B fix 8 of the 24 parameters. The X’s are independent

and identically distributed with the four components of X independent and marginally from

the uniform U(0, 1)/sqrt3 distribution. Recall that U = BX. The two nonlinear functions

f1(u1, u2) and f2(u1, u2) are defined by the formulas f1 = sin(π(u1−a)/(b−a))−0.6 sin(π
√

3u2)

and f2 = 2 cos(π
√

3u2) where a =
√

3/2− 1.645/
√

12 and b =
√

3/2 + 1.645/
√

12 are chosen to

ensure that the design is relatively thick in the tails (Carroll et al., 1997). The errors are assumed

to be normally distributed, uncorrelated over time and also contemporaneously uncorrelated,

and with identical noise variance equal to 0.01 (standard deviation being approximately 0.1).
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While the consistency of the rank estimators has not been established, we conjecture that the

rank estimators are consistent under suitable regularity conditions, which seems to be supported

by the simulation results reported below. We simulated data with sample size T = 50, 100 and

200 from the above model, and estimated the ranks by minimizing the criterion function defined

by (6) with r1 and r2 between 1 to 4, and the bandwidth parameter being selected from 0.05,

0.1 to 0.5 with increment equal to 0.1. Each experiment was replicated 100 times. Table 1

reports the frequencies of each combination of ranks that were selected. Note that for T = 50,

the ranks were correctly selected 70 times out of 100, and for T = 100, the ranks were correctly

estimated 95 times out of 100 times, and then 99 times out of 100 times when T = 200. Hence,

the results provide some empirical evidence that the ranks can be consistently estimated by

the proposed method. In practice, semiparametric analysis of a high-dimensional multivariate

system generally requires larger sample size than 50 so the case of T = 50 is included mainly

for checking the performance of the estimation scheme for the case of low data-per-parameter

ratio.

We have also checked the accuracy of the asymptotic normality distributional result for

the estimators of B̂, Ĉ and D̂. Specifically, we construct 95% confidence intervals for each

free parameter according to Theorem 3.2 and compute their empirical coverage rates of the

intervals. For T = 200, the average empirical coverage rates for the coefficients of B,C and D

were 93.5%, 94.8% and 91.7% respectively, and these coverage rates became 98.0%, 95.5% and

97% respectively when T = 300, with all experiments replicated 200 times. Thus, the empirical

coverage rates were close to their nominal values.

5 Hong Kong Pollution Data

We now illustrate our approach with a real dataset collected for studying the effects of

pollutant and weather on circulatory and respiratory diseases. The pollutant and weather data

are the daily average levels of Sulphur Dioxide (S, (µg/m−3), log-transformed), Nitrogen Dioxide

(N, (µg/m−3)), respirable suspended Particulates (P, (µg/m−3), log-transformed), Ozone (O,

(µg/m−3), square-root transformed) Temperature (T (◦C)) and relative Humidity (H (%)).

The data were collected daily in Hong Kong from January 1st, 1994, to December 31st, 1995,

and have been analyzed before by Xia et al. (2002), Cai et al. (2000) and Fan and Zhang

(1999). However, previous studies mainly focused on analyzing the effects of pollutants and

weather on daily number of daily hospital admissions of patients suffering from circulatory and
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respiratory problems. Here, we focus on the underlying temporal dynamics of the pollutants

and its interactions with weather.

The scatter diagrams of pairs of the 6 variables are displayed in Figure 1, which indicate the

contemporaneous relationships between the variables. These relationships mostly appear to be

linear, but there are appreciable curvature in the scatter diagrams between Temperature and

some of the pollutant variables, and less so between Humidity and the pollutant variables. The

extents of temporal dependence in these variables are summarized by the correlation functions

that are plotted in Figure 2. Except for Sulphur Dioxide, the other three pollutants (Nitro-

gen Dioxide, Particulates and Ozone) are highly seasonal and significantly auto-correlated and

cross-correlated over time, and so are Temperature and Humidity. The auto-correlation func-

tion of Temperature appears to decay linearly initially and hence Temperature appears to be

nonstationary. The multivariate nonlinear structure of this dataset has earlier been explored

by Chan and Li (2002) who fitted a SPARR model with the response variables consisting of

the four pollutant variables (S, N, P, O) and the covariates being the lags 1, 2 and 7 of the

response variables, as well as current Temperature and its lag 1, and current Humidity and its

lag 1. Lags 1 and 2 of the response variables are included in the regressors to model short-term

memory of the system and lag 7 for possible weekly effects; weekly effects may be appreciable as

Hong Kong is a very busy and densely populated city. Using a criterion function analogous to

the objective function defined by (6), Chan and Li (2002) estimated a SPARR model with the

ranks r1 = r2 = 2 for the Hong Kong pollution data. The fitted SPARR model suggests some

piecewise linear structure in the data.

As Figure 1 suggests that the dynamics of the system is largely linear except that the pollu-

tants may relate nonlinearly with Temperature, and possibly less so with Humidity, the PLRR

model may be appropriate for this dataset. Using the same set of 16-dimensional covariates

used by Chan and Li (2002), we estimated the ranks using the criterion function defined by

(6). The left side of Table 2 suggests that while the objective function is strictly minimized

when r1 = 4 and r2 = 1. The combination r1 = 3 and r2 = 1 is very competitive and since for

r2 = 1, the objective function drops precipitously from r2 = 1 to r2 = 3 and the decrease in the

objective function from r2 = 3 to r2 = 4 is relatively small, we choose the ranks to be r1 = 3 and

r2 = 1. This represents a simplification over the SPARR model fitted by Chan and Li (2002) as

the nonlinear factor now depends on a 1-dimensional index as compared to the 2-dimensional
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arguments for the nonlinear functions of the fitted SPARR model.

However, for the fitted PLRR model with r1 = 3 and r2 = 1, all the coefficients in Ĉ, B̂

and D̂ (not reproduced here for saving space) related to lags 2 and 7 of the response variables

were found to be insignificant, with individual 5% significance level. We subsequently trimmed

the 16-dimensional covariate to an 8-dimensional covariate vector consisting of the lag 1 of the

response variables, Temperature and its lag 1, and Humidity and its lag 1. The right panel

of Table 2 reports the corresponding criterion function for the refined PLRR model with the

8-dimensional covariate, for 1 ≤ r1 ≤ 4 and 1 ≤ r2 ≤ 4. Notice for r1 = 4 and r2 = 3, 4, the

objective function cannot be computed as normalization for Ĉ or B̂ cannot be done. Again, the

ranks r1 = 3 and r2 = 1 provide arguably the best estimates and the corresponding estimates of

C,D and B with their standard errors enclosed in parentheses are reported below (significant

estimates are bold-faced, standard errors of those estimates subject to normalization constraints

are undefined and hence marked as NAs):

Ĉ =



S 0.000 1.000 0.000

s.e. (NA) (NA) (NA)

N 1.000 0.000 -0.000

s.e. (NA) (NA) (NA)

P 0.799 -0.005 0.271

s.e. (0.036) (0.043) (0.041)

O 0.000 0.000 1.000

s.e. (NA) (NA) (NA)



D̂ =



S − lag1 N − lag1 P − lag1 O − lag1 T T − lag1 H H − lag1

row1 -0.042 0.460 0.231 -0.162 -0.053 -0.131 0.029 -0.146

s.e. (0.173) (0.224) (0.291) (0.190) (0.108) (0.127) (0.196) (0.229)

row2 0.608 -0.108 0.089 -0.306 0.003 -0.072 0.079 -0.095

s.e. (0.327) (0.418) (0.533) (0.363) (0.133) (0.178) (0.362) (0.408)

row3 -0.108 0.253 -0.005 0.360 0.035 0.135 -0.598 0.203

s.e. (0.049) (0.063) (0.065) (0.062) (0.105) (0.105) (0.056) (0.063)
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B̂ =


S − lag1 N − lag1 P − lag1 O − lag1 T T − lag1 H H − lag1

row1 0.022 -0.042 -0.024 0.287 1.000 -0.951 -0.010 -0.011

s.e. (0.289) (0.370) (0.478) (0.340) (NA) (0.198) (0.318) (0.354)


The nonlinear function depends on a single index BXt, but only the coefficients of tempera-

ture and its lag 1 appear to be significant in B. Interestingly, upon suppressing the insignificant

coefficients, BXt essentially becomes the first difference of Temperature. Figure 3 displays the

scatter plots of f(U) versus U = BXt, suggesting minor curvature in the first component that

resembles saturation effects at both tails; the second and third components of f appear to be

piecewise linear functions. For the linear factors DXt, its first component essentially depends on

lag 1 of Nitrogen Dioxide, the second component on the lag 1 of Sulphur Dioxide and the third

component depends on lags 1 of Nitrogen Dioxide and Ozone, as well as Humidity and its lag 1.

Figure 4 displays the cross- and auto-correlation of the residuals, indicating non-zero contempo-

raneous correlations but the cross- and autocorrelations are generally insignificant, suggesting

that the PLRR model provides a good fit to the data.

In summary, the fitted PLRR model suggests that over the study period (i) Sulphur Dioxide

depended linearly on its lag 1 and nonlinearly on the first difference of Temperature, (ii) Nitro-

gen Dioxide depended linearly on its lag 1 and somewhat nonlinearly on the first difference of

Temperature, (iii) Particulate depended linearly on lag 1 of Sulphur Dioxide, lag 1 of Nitrogen

Dioxide, lag 1 of Ozone, Humidity and its lag 1, and nonlinearly on the first difference of Tem-

perature, and (iv) Ozone depended linearly on the lag 1 of Nitrogen Dioxide, lag 1 of Ozone,

Humidity and its lag 1, and nonlinearly on the first difference of Temperature. The nonlinear

effect of Temperature was strongest on Ozone, with Ozone reducing sharply when the weather

cooled down substantially from the previous day.

6 Conclusion

The above analysis with the Hong Kong pollution data illustrates the potential usefulness

of PLRR model in eliciting the linear and nonlinear regression structure. The estimation of

the PLRR models requires computing an objective function that comprises many local sum of

squares, and hence is computer-intensive. Further research is required to expedite the computa-

tion efforts to facilitate this approach for very large datasets. Another interesting issue concerns

the exploration of adopting different approaches for decomposing a nonlinear regression function

into a sum of linear and nonlinear parts. Here, we impose the orthogonality condition between
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the indices in the nonlinear part and those in the linear part. But the question remains whether

other approaches may be applied to effect the decomposition of the nonlinear function into a

linear part and another nonlinear part.
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A Identifiability of the PLRR model

Assume conditions (i) to (iii) hold. It follows from the proof of of the identifiability of the

SPARR model given in Li and Chan (2001) that both C and the sum DX + f(BX) are unique.

Thus, it remains to prove that the decomposition of the sum into linear and nonlinear parts

satisfying conditions (i) to (iii) is unique. Suppose that we have two such decompositions so

that DX +f(BX) = D̃+ f̃(B̃X), ∀X. We shall prove that the two decompositions are identical.

Let D ⊂ Rn be a vector subspace of the row space of D, the vector subspace spanned by the

row vectors of D, and D̃ be that of D̃. Let (D + D̃)⊥ be the space orthogonal to the direct

sum D + D̃. For any X ∈ Rn, there exist X1 ∈ D̃, X2 ∈ D and X3 ∈ (D + D̃)⊥ such that

X = X1 + X2 + X3. Consequently, B̃X1 = 0 and BX2 = 0. Then,

f̃(B̃X) + D̃X = f̃(B̃(X2 + X3)) + D̃X

= f(B(X2 + X3)) + D(X2 + X3)− D̃(X2 + X3) + D̃X

= f(BX3) + D(X2 + X3) + D̃X1

= f̃(B̃X3) + D̃(X1 + X3) + DX2. (A.1)

If D + D̃ contains D̃ as a proper subset, then (D + D̃)⊥ is a proper subspace of B, in which

case there exist a positive integer k < r2, a r2 × k matrix B1 and a k × n matrix B2 such that

B̃X3 = B1B2X. Letting f̌ be the function defined by f̌(·) = f(B1·), we have f̃(B̃X3) = f̌(B2X),

resulting in a decomposition with a nonlinear part whose argument is of lower dimension than

that of B̃, contradicting condition (i). Hence, D + D̃ = D̃. Similarly, D + D̃ = D hence D = D̃.

Consequently, B = B̃, hence B = B̃ by condition (iii).

Recall that B = (I,B∗). Partition D, D̃ and X accordingly as D = (D1, D2), D̃ = (D̃1, D̃2)

and X = (X1, X2). Letting X2 = 0, the equality DX + f(BX) = D̃X + f̃(BX) entails that

D1X1 + f(X1) = D̃1X1 + f̃(X1), (A.2)
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for all X1 ∈ Rr2 . In other words, f and f̃ differ additively by some linear function. Hence,

DX + f(BX) = D̃X + f̃(BX)

⇒ DX + f(BX) = D̃X + (D1 − D̃1)BX + f(BX)

⇒ DX = D̃X + (D1 − D̃1)(X1 + B∗X2)

⇒ (D2 − D̃2)X2 = (D1 − D̃1)B∗X2.

Since this is true for all X2, D2 − D̃2 = (D1 − D̃1)B∗. Condition (ii) implies that 0 = DBT =

D1 + D2B
∗T so that D1 = −D2B

∗T . Therefore, D2− D̃2 = (D1− D̃1)B∗ = −(D2− D̃2)B∗T B∗,

so (D2 − D̃2)(I + B∗T B∗) = 0 implying that D2 = D̃2 because I + B∗T B∗ is invertible. Thus,

D = D̃. This completes the proof of the model identifiability under conditions (i) to (iii).

B Some Formulas Useful for Implementing Steps 1 to 3.

We recall some well-known results that will be needed later; see (Reinsel and Velu, 1998,

p. 4–6) and Wand (2002). For any matrices A,B, C of appropriate dimensions that make the

operations below well-defined, we have

vec(ABC) = (CT ⊗A)vec(B)

= (I ⊗AB)vec(C)

= (CT BT ⊗ I)vec(A)

tr(ABCBT ) = (vec(B))T (CT ⊗A)vec(B)
∂tr(CZ)

∂C
= ZT

∂tr(CXXT CT )
∂C

= 2CXXT ,
∂tr(CXXT CT )

∂CT
= 2XXT CT

Theorem B.1 Let B∗ minimize
∑

i tr((Yi−AiBXi)T Wi(Yi−AiBXi)). Then the normal equa-

tion is given by

∑
i

(AT
i WiYiX

T
i −AT

i WiAiBXiX
T
i ) = 0.

Alternatively,

∑
i

(XiX
T
i ⊗ (AT

i WiAi))vec(B) =
∑

i

vec(AT
i WiYiX

T
i ).
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Proof:

g(B) = tr((Yi −AiBXi)T Wi(Yi −AiBXi))

= tr(Y T
i WiYi − 2Y T

i WiAiBXi + (AiBXi)T Wi(AiBXi))

= constant− 2tr(BXiY
T
i WiAi) + tr(XT

i BT AT
i WiAiBXi)

= constant− g1(B)− g2(B).

Observe that

∂g1(B)/∂B = −2AT
i WiYiX

T
i ;

g2(B) = tr(XT
i BT AT

i WiAiBXi)

= tr(AT
i WiAiBXiX

T
i BT )

= (vec(B))T (XiX
T
i ⊗AT

i WiAi)vec(B),

∂g2(B)/∂vec(B) = 2(XiX
T
i ⊗AT

i WiAi)vec(B),

∂g2(B)/∂B = 2AT
i WiAiBXiX

T
i .

Therefore,

∂g(B)/∂B = −2AT
i WiYiX

T
i + 2AT

i WiAiBXiX
T
i .

Theorem B.2 Let B minimize
∑

i tr((Yi−ABXi)T (Yi−ABXi)) subject to the linear constraints

BCT = 0, where A is m× r, B is r×n and C is s×n. Then the solution satisfies the following

equation:

[
∑

i

(XiX
T
i )⊗ (AT A)]vec(B) =

∑
i

vec(AT YiX
T
i ),

(C ⊗ Ir)vec(B) = 0.

We now state the updating formulas for the iterative estimation scheme, one component at a

time, as solutions of some linear least squares problem (the components that not being updated

are set as their most recent values in the iteration):
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• Update {A0t, A1t} by minimizing

∑
t

∑
i6=t

||Yi − C[DXi + A0t + A1tB(Xi −Xt)]||2Kh(B(Xi −Xt))

=
∑

t

∑
i6=t

||Yi − CDXi − C[A0t + A1tB(Xi −Xt)]||2Kh(B(Xi −Xt))

=
∑

t

∑
i6=t

||Y ∗
i − C[A0t + A1tB(Xi −Xt)]||2Kh(B(Xi −Xt))

where Y ∗
i = Yi − CDXi

=
∑
t,i6=t

||Y ∗
it − C[A0tK

1/2
h (B(Xi −Xt)) + A1t(BX)∗it]||2

where Y ∗
it = Y ∗

i K
1/2
h (B(Xi −Xt)), (BX)∗it = B(Xi −Xt)K

1/2
h (B(Xi −Xt))

=
∑
t,i6=t

||Y ∗
it − C

(A0t, A1t)

 K
1/2
h (B(Xi −Xt))

(BX)∗it

 ||2.
• Update B by minimizing

∑
t

∑
i6=t

||Yi − C[DXi + A0t + A1tB(Xi −Xt)]||2Kh(B(Xi −Xt))

=
∑

t

∑
i6=t

||Y ∗
i − CA0t − CA1tB(Xi −Xt)||2Kh(B(Xi −Xt))

where Y ∗
i = Yi − CDXi

=
∑
t,i6=t

||Y ∗
it − CA1tBX∗

it||2

where Y ∗
it = Y ∗

i K
1/2
h (), X∗

it = (Xi −Xt)K
1/2
h ()

=
∑
t,i6=t

||Y ∗
it − C1tBX∗

it||2

where C1t = CA1t.

• Update C by minimizing

∑
t

∑
i6=t

||Yi − C[DXi + A0t + A1tB(Xi −Xt)]||2Kh(B(Xi −Xt))

=
∑
t,i6=t

||Y ∗
i − CX∗

it||2

where Y ∗
it = YiK

1/2
h ()

X∗
it = [DXi + A0t + A1tB(Xi −Xt)]K

1/2
h ().

20



• Update D by minimizing∑
t

∑
i6=t

||Yi − C[A0t + A1tB(Xi −Xt)]− CDXi||2Kh(B(Xi −Xt))

=
∑
t,i6=t

||Y ∗
it − CDX∗

it||2

subject to DBT = 0 where

Y ∗
it = (Yi − C[A0t + A1tB(Xi −Xt)]) ∗K

1/2
h (B(Xi −Xt)),

X∗
it = Xi ∗K

1/2
h (B(Xi −Xt)).

C Proofs of Theorems 3.1 and 3.2

To save space, routine calculations are omitted from the proofs; see Li (2000) for details.

Proof of Theorem 3.1:

We will prove something stronger than Theorem 3.1, with B, C and D deviating from

their true values by an error of order o{(Thr2)−1/2 + h2}. Let cT = (Thr2)−1/2, u = Bx and

Ui = BXi and

X∗
i =

 Ir1(
Ui−u

h

)
⊗ Ir1

 , A∗ =

 c−1
T {A0 − f0(u)}

c−1
T h{vec(A1 − f ′0(u))}

 .

Recall f̄i = f̄i(u) = f0(u) + f ′0(u)(Ui − u).

Since

A0 + A1(U − u)

= A0 + vec(A1(U − u))

= (Ir1 , (U − u)T ⊗ Ir1)

 A0

vec(A1)


= cT (Ir1 , (

U − u

h
)T ⊗ Ir1)

 c−1
T (A0 − f0(u))

c−1
T h(vec(A1 − f ′0(u)))

 + f0(u) + f ′0(u)(U − u)

= cT X∗T
i A∗ + f̄i,

the objective function for estimating (f0(u), f ′0(u)) can be written as

−
∑

i

tr[{Yi − C(DXi + cT X∗T
i A∗ + f̄i)}{Yi − C(DXi + cT X∗T

i A∗ + f̄i)}T ]Kh(B(Xi − x)).(C.1)
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Consider the normalized function

lT (A∗) = −hr2
∑

i

tr[{Yi − C(DXi + cT X∗T
i A∗ + f̄i)}{Yi − C(DXi + cT X∗T

i A∗ + f̄i)}T

−{Yi − C(DXi + f̄i)}{Yi − C(DXi + f̄i)}T ]Kh(B(Xi − x))

which is maximized by Â∗. By Taylor expansion and after some algebra, we have

lT (A∗) =
T∑

i=1

hr2 [(cT X∗T
i A∗)T q1(f̄i, Yi − CDXi) +

1
2
(cT X∗T

i A∗)T q2(f̄i, Yi − CDXi)(cT X∗T
i A∗)]Kh(Ui − u)

= A∗T WT +
1
2
A∗T FT A∗

where

q1(x, y) = − ∂

∂x
tr[(y − Cx)(y − Cx)T ] = 2CT (y − Cx)

q2(x, y) =
∂

∂xT
q1(x, y) = −2CT C < 0

and

WT = hr2cT

T∑
i=1

X∗
i q1(f̄i, Yi − CDXi)Kh(Ui − u), (C.2)

FT = hr2c2
T

T∑
i=1

X∗
i q2(f̄i, Yi − CDXi)X∗T

i Kh(Ui − u). (C.3)

It can be shown (Li, 2000) that

FT = −F + oP (1), (C.4)

where

F = F (u) = 2g0(u)

 CT
0 C0 0

0 k2 ⊗ CT
0 C0

 . (C.5)

Therefore,

Â∗ = F−1WT + oP (1). (C.6)

Hence the asymptotic normality of Â∗ will follow from that of WT . Since WT is a sum of

i.i.d. random vectors, we need to compute the first two moments and check conditions for the
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Central Limit Theorem. First, we consider the Taylor expansion of f0 = (fj0). It follows from

condition 1(iii) and the intermediate value theorem that

f0(U) = f0(u) + f ′0(u)(U − u) +
1
2
(Ir1 ⊗ (U − u)T )f ′′0 (ζ)(U − u).

where f ′′j0(ζ) is an r2 × r2 matrix,

f ′′0 (ζ) ≡ (f
′′T
0,1 (ζ1), · · · , f

′′T
0,r1

(ζr2))
T

is an r1r2 × r2 matrix, and ζ’s are some ”intermediate” points between u and U . Note that

when u coincides with U so that ζ = u, then

f ′′0 (u) ≡ (f
′′T
0,1 (u), · · · , f

′′T
0,r1

(u))T . (C.7)

This will be used in the derivation of EWT below. From the definition of WT , we have,

EWT = hr2cT E(
T∑

i=1

X∗
i q1(f̄i, Yi − CDXi)Kh(Ui − u))

= c−1
T E{X∗2CT [C0f0(B0X)− Cf̄ ]Kh(U − u)}

= c−1
T E{X∗2CT C[f0(B0X)− f0(BX) + f0(U)− f0(u)

−f ′0(u)(U − u)]Kh(U − u) + O(||C − C0||) + O(||D −D0||)}

because f̄ = f0(u) + f ′0(u)(U − u) and condition 1(iii)

= c−1
T g0(u)

 CT
0 C0k2,f0,h

0

 + O(c−1
T ||B −B0||) + O(c−1

T ||C − C0||+ T−1||D −D0||)

+o(h2c−1
T ). (C.8)

The variance of WT equals

Var(WT )

= hr2Var[X∗q1(f̄ , Y − CDX)Kh(U − u)]

= 4g0(u)

 ν0C
T
0 Σ(u)C0 0

0 ν2 ⊗ CT
0 Σ(u)C0

 + O(h2 + ||C − C0||+ ||B −B0||+ ||D −D0||)

≡ W + o(1),

where

W = 4g0(u)

 ν0C
T
0 Σ(u)C0 0

0 ν2 ⊗ CT
0 Σ(u)C0

 . (C.9)
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Under Condition 1, it can be verified that the central limit theorem (Hamilton, 1994, p.194)

holds for {WT }, i.e.,

WT − E(WT ) D−→ N(0,W ) (C.10)

Therefore,

F−1WT − F−1EWT
D−→ N(0, F−1WF−1), (C.11)

or,

Â∗ − F−1EWT
D−→ N(0, F−1WF−1), (C.12)

or,

c−1
T

 [A0 − f0(u)]

h{vec[A1 − f ′0(u)]}

− 1
2
c−1
T

 (CT
0 C0)−1 0

0 (k2 ⊗ CT
0 C0)−1

  CT
0 C0k2,f0,h

0


+ oP (c−1

T h2) + oP (1) D−→ N(0, F−1WF−1).

This completes the proof of Theorem 3.1. �

Proof of Theorem 3.2:

We adopt the same notations as defined in the preceding proof.

Claim 1: (a) Assume B0, C0 and D0 are known, we have

sup
u∈D

||

 f̂(u)− f0(u)

hvec[f̂ ′(u)− f ′0(u)]

− cT F−1WT ||

= OP (cT h2 + cT

√
lnT

Thr2
). (C.13)

(b) For general B, C and D, we have

sup
u∈D

||

 f̂(u;B∗, C∗, D)− f0(u)

hvec[f̂ ′(u;B∗, C∗, D)− f ′0(u)]

 ||

= OP (h2 + cT ||B∗ −B∗
0 ||+ cT ||C∗ − C∗

0 ||+ cT ||D −D0||+ cT

√
lnT

Thr2
). (C.14)

Proof: First of all, by using Theorem 2 of Masry (1996) and the fact that (Li, 2000) EFT =

−F + o(1), we have

FT (u) = EFT (u) + OP (

√
lnT

Thr2
)

= −F (u) + OP (h2 + ||B∗ −B∗
0 ||+ ||C∗ − C∗

0 ||+ ||D −D0||+
√

lnT

Thr2
)
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uniformly in u ∈ D, where FT (u) and F (u) are defined in (C.4) and (C.5) except that we here

stress the dependence on u. There are two cases.

(a) For known B0 and C0, we have

0 = WT + DT A∗

= WT −D[1 + OP (h2 +

√
lnT

Thr2
)]A∗

implying that

A∗ = D−1WT + OP [h2 +

√
lnT

Thr2
)]. (C.15)

Multiplying cT on both sides of (C.15), we obtain the result in (C.13).

(b) For unknown B∗
0 and C∗

0 , via (C.8) and Theorem 2 in Masry (1996), we have

cT WT = cT [(WT − EWT ) + EWT ]

= h2 + cT

√
lnT/(Thr2),

hence (C.14).

Claim 2:

f̂(u0; B̂∗, Ĉ∗, D̂)− f0(u0)

= (CT
0 C0)−1 T−1

∑
i C

T
0 {Yi − C0[D0Xi + f0(u0) + f ′0(u0)(Ui − u0)]}Kh(Ui − u0)

g(u0)

−f ′0(u0)E(XT
2 ⊗ Ir2 |U = u0)vec(B̂∗ −B∗

0)

−(CT
0 C0)−1CT

0

 0r1×r1(m−r1)

{E(RT |U = u0) + fT
0 (u0)} ⊗ Im−r1

 vec(Ĉ∗ − C∗
0 )

−(CT
0 C0)−1CT

0 E(XT ⊗ C0|U = u0)vec(D̂ −D0)

+op(T−1/2), (C.16)

where we recall that R = D0X.

Proof: Let a = f0(u0) and b = hvec[f ′0(u0)]. The local linear estimates â = f̂0(u0; B̂∗, Ĉ∗, D̂)

and b̂ = hvec[f̂ ′0(u0; B̂∗, Ĉ∗, D̂)] solve the following equation

0 =
1
T

∑
i

 Ir1

( Ûi−u0
h )⊗ Ir1

 ĈT (Yi − Ĉ{D̂Xi + Ir1 â + [(
Ûi − u0

h
)T ⊗ Ir1 ]b̂})Kh(Ûi − u0).

Via Taylor expansion, we obtain

0 =
1
T

∑
i

 Ir1

(Ui−u0
h )⊗ Ir1

 CT
0 (Yi − C0{Ri + Ir1a + [(

Ui − u0

h
)T ⊗ Ir1 ]b})Kh(Ui − u0)
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− 1
T

∑
i

 Ir1

(Ui−u0
h )⊗ Ir1

 CT
0 C0[Ir1 , (

Ui − u0

h
)T ⊗ Ir1 ]

 â− a

b̂− b

 Kh(Ui − u0)

− 1
T

∑
i

 Ir1

(Ui−u0
h )⊗ Ir1

 CT
0 C0f

′
0(u0)(XT

2i ⊗ Ir2)vec(B̂∗ −B∗
0)Kh(Ui − u0)

+
1
T

∑
i

 Ir1

(Ui−u0
h )⊗ Ir1

 CT
0 (Yi − C0{Ri + Ir1a + [(

Ui − u0

h
)T ⊗ Ir1 ]b)})K

′T
h (Ui − u0)

×[(X2i − x0)T ⊗ Ir2 ]vec(B̂∗ −B∗
0)

− 1
T

∑
i

 Ir1

(Ui−u0
h )⊗ Ir1

 CT
0

 0r1×r1(m−r1)

{fT
0 (u0) + RT

i } ⊗ Im−r1

 vec(Ĉ∗ − C∗
0 )Kh(Ui − u0)

+
1
T

∑
i

 Ir1

(Ui−u0
h )⊗ Ir1

 [(Yi − C0{Ri + Ir1a + [(
Ui − u0

h
)T ⊗ Ir1 ]b})T ⊗ Ir1 ]

×Kh(Ui − u0)vec(Ĉ∗T − C∗T
0 )

− 1
T

∑
i

 Ir1

(Ui−u0
h )⊗ Ir1

 CT
0 (XT

i ⊗ C0)vec(D̂ −D0)Kh(Ui − u0)

+Op(
1
T

) + OP (
h2

√
T

+
cT ||B̂∗ −B∗

0 ||√
T

+
cT ||Ĉ∗ − C∗

0 ||√
T

+
cT

√
lnT/(Thr2)√

T
),

where the first remainder term comes from the second order expansion of the parametric

part in the Taylor expansion, while the second remainder term comes from the cross product

of the parametric part and nonparametric part of the second order expansion in the Taylor

expansion. The sum of remainder terms is oP (1/
√

T ) under the conditions h → 0, Thr2 → ∞

and lnT/(Thr2) → 0. Moreover, it follows from Lemma 1 of Li and Chan (2001) with p = 0 and

K ′
h replacing Kh that (recall Xt is partitioned as

 X1t

X2t

 with X1t being r2 dimensional.)

T−1
∑

t

(Yt − C0a− C0DXt)K ′
h(Ut − u0)[(X2t − x0)T ⊗ Ir2 ]vec(B̂∗ −B∗

0)

= OP (h/
√

T +
√

lnT/(T
√

hr2)) = oP (1/
√

T ). (C.17)

Similarly, we have

T−1
∑

t

[(Yt − C0a− C0DXt)T ⊗ Ir1 ]Kh(Ui − u0)vec(Ĉ∗T − C∗T
0 )

= OP (h/
√

T +
√

lnT/(T
√

hr2)) = oP (1/
√

T )
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under the conditions that h → 0 and lnT/(Thr2) → 0. Hence,

0 = T−1
∑

i

CT
0 {Yi − C0[Ri + f0(u0) + f ′0(u0)(Ui − u0)]}Kh(Ui − u0)− g(u0)CT

0 C0(â− a0)

− g(u0)CT
0 C0f

′
0(u0)E[XT

2 ⊗ Ir2 |U = u0]vec(B̂∗ −B∗)

− g(u0)CT
0

 0r1×r1(m−r1)

{fT
0 (u0) + E(RT |U = u0)} ⊗ Im−r1

 vec(Ĉ∗ − C∗
0 )

− g(u0)CT
0 E(XT ⊗ C0|U = u0)vec(D̂ −D0) + op(T−1/2)

Because â = f̂(u0;h, B̂∗, Ĉ∗) and a0 = f0(u0), the above equation implies that

f̂(u0;h, B̂∗, Ĉ∗)− f0(u0)

= (CT
0 C0)−1 T−1

∑
i C

T
0 {Yi − C0[f0(u0) + f ′0(u0)(Ui − u0)]}Kh(Ui − u0)

g(u0)

−f ′0(u0)E[XT
2 ⊗ Ir2 |U = u0]vec(B̂∗ −B∗

0)

−(CT
0 C0)−1CT

0

 0r1×r1(m−r1)

{fT
0 (u0) + E(RT |U = u0)} ⊗ Im−r1

 vec(Ĉ∗ − C∗
0 )

−(CT
0 C0)−1CT

0 E(XT ⊗ C0|U = u0)vec(D̂ −D0) + op(T−1/2).

This completes the proof of Claim 2. �

Claim 3:

f̂(B̂Xi; B̂∗, Ĉ∗, D̂)− f0(B0Xi)

= f ′0(B0Xi)(XT
2i ⊗ Ir2)vec(B̂∗ −B∗

0) + f̂(B0Xi; B̂∗, Ĉ∗, D̂)− f0(B0Xi)

+oP (T−1/2). (C.18)

Proof: After some algebra, it can be shown that

f̂(B̂Xi; B̂∗, Ĉ∗, D̂)− f0(B0Xi)

= f̂(B̂Xi; B̂∗, Ĉ∗, D̂)− f̂(B0Xi; B̂∗, Ĉ∗, D̂) + f̂(B0Xi; B̂∗, Ĉ∗, D̂)− f0(B0Xi)

= f̂ ′(B0Xi; B̂∗, Ĉ∗, D̂)(B̂∗ −B∗
0)X2i + f̂(B0Xi; B̂∗, Ĉ∗, D̂)− f0(B0Xi) + op(T−1/2)

= f ′0(B0Xi)(XT
2i ⊗ Ir2)vec(B̂∗ −B∗

0) + f̂(B0Xi; B̂∗, Ĉ∗, D̂)− f0(B0Xi) + oP (T−1/2).

�

To prove Theorem 3.2, recall that (B̂∗, Ĉ∗, D̂) maximizes the objective function defined by

−
∑

t

∑
i

||Yi − C[DXt + f̂(BXt;B∗, C∗, D) + f̂ ′(BXt;B∗, C∗, D)B(Xi −Xt)]||2Kh[B(Xi −Xt)],
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where D and B are subject to the constraints that DBT = 0. The constrained optimization

problem can be turned into an unconstrained optimization via the Lagrangian approach, i.e.,

the objective function becomes

−
∑

t

∑
i

||Yi − C[DXt + f̂(BXt;B∗, C∗, D) + f̂ ′(BXt;B∗, C∗, D)B(Xi −Xt)]||2Kh[B(Xi −Xt)]

+λT DBT , (C.19)

where λ is the Lagrange multiplier; see Aitchison and Silvey (1958). For simplicity, write

θ = (B∗, C∗, D) and h(θ) = DBT . Let

Λ̂i,t =


(X2t ⊗ Ir2)f̂

′T (B̂Xt; B̂∗, Ĉ∗, D̂)ĈT + [(X2i −X2t)⊗ f̂
′T (B̂Xt; B̂∗, Ĉ∗, D̂)]ĈT

0r1(m−r1)×r1
,−[D̂Xt + f̂(B̂Xt; B̂∗, Ĉ∗, D̂) + f̂ ′(B̂Xt; B̂∗, Ĉ∗, D̂)B̂(Xi −Xt)]⊗ Im−r1

Xt ⊗ ĈT

 ,

Λi,t =


(X2t ⊗ Ir2)f

′T
0 (B0Xt)CT

0 + [(X2i −X2t)⊗ f
′T
0 (B0Xt)]CT

0

0r1(m−r1)×r1
, [Rt + f0(B0Xt) + f ′0(B0Xt)B0(Xi −Xt)]⊗ Im−r1

Xt ⊗ CT
0

 ,

Λt =


(X2t ⊗ Ir2)f

′T
0 (B0Xt)CT

0

0r1(m−r1)×r1
, [Rt + f0(B0Xt)]⊗ Im−r1

Xt ⊗ CT
0

 .

Taking the first derivative of the objective function with respect to θ, and via Taylor expan-

sion we have

0 =
1√
T 3

∑
t,i

Λ̂i,t{Yi − Ĉ[D̂Xt + f̂(B̂Xt; B̂∗, Ĉ∗) + f̂ ′(B̂Xt; B̂∗, Ĉ∗)B̂(Xi −Xt)]}Kh[B̂(Xi −Xt)]

+h′(θ̂)λ̂ + oP (1/
√

T )

=
1√
T 3

∑
t,i

Λi,t{Yi − C0[D0Xt + f0(B0Xt) + f ′0(B0Xt)B0(Xi −Xt)]}Kh[B0(Xi −Xt)]

− 1√
T 3

∑
t,i

Λi,tC0[f̂(B̂Xt; B̂∗, Ĉ∗, D̂)− f0(B0Xt)]Kh[B0(Xi −Xt)]

− 1√
T 3

∑
t,i

Λi,t

 0r1×r1(m−r1)

[D0Xt + f0(B0Xt) + f ′0(B0Xt)B0(Xi −Xt)]T ⊗ Im−r1

 vec(Ĉ∗ − C∗
0 )

×Kh[B0(Xi −Xt)]

− 1√
T 3

∑
t,i

Λi,t(XT
t ⊗ C0)vec(D̂ −D)×Kh[B0(Xi −Xt)]
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+h′(θ̂)λ̂ + oP (1). (C.20)

On the other hand, the first derivative of the objective function w.r.t. λ yields the constraints

h(θ̂) = 0. It follows from Claims 1-3 that

0 =
1√
T 3

∑
t,i

Λi,t{Yi − C0[f0(Ut) + f ′0(Ut)B0(Xi −Xt)]}Kh[B0(Xi −Xt)]

− 1√
T 3

∑
t,i

Λi,tC0f
′
0(Ut)(XT

2t ⊗ Ir2)vec(B̂∗ −B∗
0)Kh[B0(Xi −Xt)]

− 1√
T 3

∑
t,i

Λi,tC0((CT
0 C0)−1CT

0 [g(Ut)T ]−1
∑

j

{Yj − C0[D0Xj + f0(Uj)

+f ′0(Uj)B0(Xj −Xt)]}Kh[B0(Xj −Xi)])Kh[B0(Xi −Xt)]

+
1√
T 3

∑
t,i

Λi,tC0f
′
0(Ut)E(XT

2 ⊗ Ir2 |Ut)vec(B̂∗ −B∗
0)Kh[B0(Xi −Xt)]

+
1√
T 3

∑
t,i

Λi,tC0(CT
0 C0)−1CT

0

 0r1×r1(m−r1)

{fT
0 (Ut) + E(RT |Ut)} ⊗ Im−r1

 vec(Ĉ∗ − C∗
0 )Kh[B0(Xi −Xt)]

− 1√
T 3

∑
t,i

Λi,t

 0r1×r1(m−r1)

[Rt + f0(Ut) + f ′0(Ut)B0(Xi −Xt)]T ⊗ Im−r1

 vec(Ĉ∗ − C∗
0 )

×Kh[B0(Xi −Xt)]

+
1√
T 3

∑
t,i

Λi,tC0(CT
0 C0)−1CT

0 E(XT ⊗ C0|Ut)vec(D̂ −D0)

− 1√
T 3

∑
t,i

Λi,t{XT
i ⊗ C0}vec(D̂ −D0) + h′(θ̂)λ̂ + oP (1). (C.21)

Upon conditioning each summand given Ut and using the technique of the proof of (48) in
Carroll et al. (1995), it can be shown that (C.21) becomes

0 =
1√
T

∑
t

g(Ut)[Λt − E(Λ|Ut)C0(C
T
0 C0)

−1CT
0 ]εt

−
√

T{E[g(U)ΛC0f
′
0(U)(XT

2 ⊗ Ir2)]− E[g(U)ΛC0f
′
0(U)E(XT

2 ⊗ Ir2 |U)]}

×vec(B̂∗ −B∗
0 )

−
√

T

E

g(U)Λ

 0r1×r1(m−r1)

{RT + fT
0 (U)} ⊗ Im−r1

− E

g(U)ΛC0(C
T
0 C0)

−1CT
0

 0r1×r1(m−r1)

(E(RT |U) + fT
0 (U))⊗ Im−r1


×vec(Ĉ∗ − C∗

0 )

−
√

T{E[g(U)ΛXT ⊗ C0)]− E[g(U)ΛC0(C
T
0 C0)

−1CT
0 E(XT ⊗ C|U)]}

×vec(D̂ −D0) + h′(θ0)
√

T λ̂ + oP (1).

Also, the constraints h(θ̂) = 0 can be linearized as (h′(θ0))T
√

T (θ̂−θ0)+oP (1) = 0. Write H =

(h′(θ0))T , and it can be shown by routine calculus that H = [(Ir2⊗D20)Kr2,n−r2 , 0r2×r1,(m−r1)×r1
, B0⊗
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Ir1 ] where D0 = [D10, D20] is partitioned such that D10 is of dimension r1 × r2. Hence Q −HT

−H 0

  θ̂ − θ0

λ̂

 =

 1√
T

∑
t g(Ut)[Λt − E(Λ|Ut)C0(CT

0 C0)−1CT
0 ]εt

0

 + oP (1),

(C.22)

from which (17) can be readily derived. �

References

Aitchison, J. and Silvey, S. D. (1958), “Maximum-likelihood estimation of parameters subject

to restraints,” Annals of Statistics, 29, 813–828.

Cai, Z., Fan, J., and Yao, Q. (2000), “Functional-coefficient regression models for nonlinear time

series,” Journal of the American Statistical Association, 95, 941–956.

Carroll, R. J., Fan, J., Gijbels, I., and Wand, M. P. (1995), “Generalized partially linear single-

index models,” Discussion Paper #9506, Institute of Statistics, Catholic University of Lou-

vain, Louvain-la-Neuve, Belgium.

— (1997), “Generalized partially linear single-index models,” Journal of the American Statistical

Association, 92, 477–489.

Chan, K. S. and Li, M. C. (2002), “Discussion of a paper by Xia, Y. et al.” Journal of the Royal

Statistical Society, B, 64, 395–396.

Eubank, R. L. (1988), Spline smoothing and nonparametric regression, New York: Marcek

Dekker.

Fan, J. and Gijbels, I. (1996), Local polynomial modeling and its applications, London: Chapman

and Hall.

Fan, J. and Zhang, W. Y. (1999), “Statistical estimation in varying coefficient models,” Annals

of Statistics, 27, 1491–1518.

Friedman, J. H. and Stuetzle, W. (1981), “Projection pursuit regression,” Journal of the Amer-

ican Statistical Association, 76, 817–823.

30



Hamilton, J. D. (1994), Time Series Analysis, Princeton, New Jersey: Princeton University

Press.

Hastie, T. J. and Tibshirani, R. J. (1990), Generalized Additive Models, London: Chapman and

Hall.

Li, K. C. (1992), “On principal hessian directions for data visualization and dimension reduction:

another application of stein’s lemma,” Journal of the American Statistical Association, 87,

1025–1039.

Li, M.-C. (2000), “Multivariate non-linear time series modeling,” Unpublished PhD Thesis, The

University of Iowa.

Li, M.-C. and Chan, K. S. (2001), “Semiparametric reduced-rank regression,” Technical Report,

The University of Iowa, Department of Statistics and Actuarial Science.

Masry, E. (1996), “Multivariate local polynomial regression for time series: uniform strong

consistency and rates,” Journal of Time Series Analysis, 17, 571–599.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992), Numerical Recipes

in C: The Art of Scientific Computing, second ed. Cambridge University Press, Cambridge.

Reinsel, G. C. and Velu, R. (1998), Multivariate-Reduced rank regression, New York: Springer-

Verlag.

Rosenblatt, M. (1956), “A central limit theorem and strong mixing conditions,” Proc. Nat. Acad.

Sci., 4, 43–47.

Ruppert, D. and Wand, M. P. (1994), “Multivariate locally weighted least squares regression,”

Annals of Statistics, 22, 1346–1370.

Turkington, D. A. (2002), Matrix calculus and zero-one matrices, Cambridge: Cambridge Uni-

versity Press.

Venables, W. N. and Ripley, B. D. (2002), Modern Applied Statistics with S, New York: Springer.

Wand, M. P. (2002), “Vector differential calculus in statistics,” The American Statistician, 56,

55–62.

31



Xia, Y., Tong, H., and Li, W. K. (1999), “On extended partially linear single-index models,”

Biometrika, 86, 831–842.

Xia, Y., Tong, H., Li, W. K., and Zhu, L. (2002), “An adaptive estimation of dimension reduction

space (with Discussion),” Journal of the Royal Statistical Society, B, 64, 363 – 410.

32



Table 1: Frequency for estimating r1=rank(C) and r2=rank(B) for the simulated plsparr model.

T=50 T=100 T=200

r1/r2 1 2 3 4 1 2 3 4 1 2 3 4

1 0 0 0 0 0 0 0 0 0 0 0 0

2 15 70 0 0 0 95 0 0 0 99 0 0

3 5 10 0 0 0 5 0 0 0 1 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Objective function for selecting r1=rank(C) and r2=rank(B) of the PLRR model for

the Hong Kong pollution data. The objective function is defined by (6) divided by
∑

t ‖Yt‖2.

16-dimensional covariate 8-dimensional covariate

r1/r2 1 2 3 4 1 2 3 4

1 .614 (.1) .610 (.747) .603 (.583) .616 (.492) .616 (.05) .618 (.747) .615 (1.17) .626 (.820)

2 .504 (.2) .505 (.374) .501 (.583) .525 (.492) .508 (.2) .495 (.374) .515 (.583) .523 (.492)

3 .457 (.4) .456 (.623) .464 (.437) .486 (.655) .469 (.4) .472 (.498) .475 (.437) .518 (.820)

4 .443 (.3) .444 (.374) .460 (.437) .479 (.492) .441 (.3) .457 (.498) NA NA
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Figure 1: Scatter diagrams of the pollutant and weather variables.
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Figure 2: Cross- and Auto-correlation of the pollutant and weather variables.
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Figure 3: Cross- and Auto-correlation of the residuals from the PLRR model with r1 = 3 and

r2 = 1 fitted to the Hong Kong pollution data.
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Figure 4: Scatter diagrams of f(U) versus U = BXt, for the PLRR model with r1 = 3 and

r2 = 1 fitted to the Hong Kong pollution data.
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