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1 Introduction

Let X (t) be a p-dimensional stationary linear process defined on a countable
Abelian group H, i.e.

X (t) = W (t) ∗ U (t) =
∑
k∈H

W (k) U (t− k) , (1)

where for all t, k ∈ H, t − k = t + (−k), where + denotes the commutative
group operation and −k the inverse of k, U (t) = (U1(t), · · · , Uq(t))

T (the
superscript T denotes transposition) is an iid q-dimensional random series
that is of zero mean and has finite, positive-definite covariance matrix. (A
better way is to write W ∗ U(t) instead of the notation W (t) ∗ U(t), which,
however, we follow here as it is more commonly adopted in the statistical liter-
ature.) We shall adopt the natural condition (i) that the coefficient sequence
W (t), t ∈ H, is assumed to be square-summable, i.e.,

∑
t∈H ‖W (t)‖2 < ∞,

where ‖ · ‖ denotes the L2-norm. The random vectors X’s generally repre-
sent some observed data whereas the random vectors U ’s are referred to as
stochastic errors or noises postulated to generate the observed data accord-
ing to the specification (1). Model (1) includes many interesting stochastic
processes. For example, it includes time series where the index set is Z, the
set of integers equipped with the usual addition as the commutative group
operation. Other significant examples include random fields where the index
set is Z2, the two-dimensional integer lattice equipped with vector addition
as the commutative group operation.

A fundamental question is whether such a representation is essentially
unique. The uniqueness question is an important question in the statistical
inference of stochastic process; see, e.g., Donoho (1981), Lii and Rosenblatt
(1982) and Rosenblatt (1985). In the one-dimensional case, it is well-known
that for Gaussian X, the moving-average representation is generally non-
unique (see, e.g., Lii and Rosenblatt, 1982 and Findley, 1986.) But, inter-
estingly, for non-Gaussian 1-dimensional X, Findley (1986, 1990) and Cheng
(1992) have established uniqueness under various conditions. Cheng (1992)
proved uniqueness under the minimal condition that

ŵ (γ) 6= 0, dγ (a.e.)

where, in the case H = Z, ŵ(λ) =
∑
m

Wm exp(imλ) is the Fourier transform

of w (t) , also known as the transfer function in time series; see Definition 1
below for the more general definition.
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We consider the case that U and X are multidimensional, non-Gaussian
processes. Under various conditions on the inter-component dependence
structure of U(t), we will give an affirmative answer to the uniqueness ques-
tion under the additional mild regularity conditions that (ii) the transfer
function is of full-rank and (iii) the dimension of X is not smaller than that
of U . Indeed, regularity conditions (i)-(iii) guarantee that equation (1) can
be inverted to obtain U(t) = G(t)∗X(t), for some square-summable G, which
we will refer to as the (generalized) invertibility of the model. The (general-
ized) invertibility condition differs from the ordinary invertibility condition
for time series (see Definition 3.1.4 in Brockwell and Davis, 1991) in that the
latter condition requires that G be one-sided, i.e. G(k) = 0 for negative k
so that the noise terms U(t) can be recovered from current and past data.
Henceforth, by invertibility we mean generalized invertibility. It is clear that
condition (iii) is generally required for the invertibility of model (1) to hold.
We shall furthermore show that conditions (i)-(iii) imply that the dimension
of U occurring in a moving-average representation of X is unique.

This paper is organized as follows. We give a short discussion of Fourier
analysis on groups in Section 2. In Section 3, we prove the invertibility of
the model under conditions (i)-(iii). The uniqueness of the moving-average
representation is discussed in Section 4, under the additional condition that
U(t) consists of iid components. The iid-component assumption is relaxed to
independent but non-identically distributed components in Section 5, at the
expense of requiring that there exists an integer r ≥ 3 such that the rth cu-
mulant of each component of U(t) is non-zero. See Jammalamadaka, Rao and
Terdik (2004) for the definition and properties of cumulants of multivariate
processes. Then in section 6, we consider the case of dependent components
of U(t). We impose the dependence condition that a certain matrix of rth or-
der cumulants is non-singular, where r ≥ 3, and that any two non-zero linear
combinations of U(t) are stochastically dependent. These inter-component
dependence conditions are rather mild as, e.g., they are valid for multivari-
ate t-distributions. Under these inter-component dependence conditions and
conditions (i)-(iii), we show that the moving-average representation is unique
up to some shift in the index and an invertible multiplicative factor. It is
pertinent to note that if the components of U(t) are independent, the moving-
average representation is, however, unique up to component-specific shifts in
the index and component-specific non-zero multiplicative factors.
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2 Fourier Analysis on Groups

Here we give a brief introduction to Fourier analysis on groups. We refer the
reader to Rudin (1962) for details.

Let G be a locally compact Abelian group, on which there exists a non-
negative regular measure m, the Haar measure on G. This measure is non-
degenerate, i.e. not identically 0, translation invariant, and it is unique up
to a multiplicative positive constant. If f and g are measurable functions on
G, then the convolution f ∗ g is

(f ∗ g) (x) =

∫
G

f (x− y) g (y) dy,

defined when the above integral is absolutely integrable. Here dy is the Haar
measure on G.

A character on G is a continuous homomorphism of G into the multi-
plicative group of complex numbers of modulus 1. We denote Ĝ the set of
all characters on G. It is an Abelian group under pointwise multiplication.
i.e. (γ1γ2) (g) = γ1 (g) γ2 (g) for γ1, γ2 ∈ Ĝ, g ∈ G. It is customary to write

(g, γ) = γ (g). The topology on Ĝ is induced by the topology of uniform
convergence on compact subsets of G. Hence a neighborhood basis of 0 is
given by sets of the form {γ : |(g, γ)− 1| < ε for all g ∈ K} where K is a

compact set of G and ε > 0. Ĝ is called the dual group of G. It is also a
locally compact Abelian group, and hence endowed with a Haar measure.
The Pontryagin duality theorem states that the dual group of Ĝ is G. If G
is a discrete group, then it can be shown that Ĝ is compact. Also, if G is
compact, then Ĝ is discrete. The Fourier transform of f ∈ L1 (G) is defined
by

f̂ (γ) =

∫
G

f (x) (−x, γ) dx.

Note that if G is a discrete group, then the Haar measure of any single point
is assigned to be 1. In this case the Fourier transform is

f̂ (γ) =
∑
x∈G

f (x) (−x, γ) .

The Fourier transform of f ∗ g is f̂ ĝ. i.e.

f̂ ∗ g (γ) = f̂ (γ) ĝ (γ) .
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The Haar measure on Ĝ can be normalized so that the following inversion
formula is valid for certain class of functions f. (It includes functions f which

are continuous, with f̂ ∈ L1 (G) .)

f (x) =

∫
bG f̂ (γ) (x, γ) dγ, x ∈ G.

Examples:

1. The additive group R of the real numbers, with the natural topology
of the real line. The dual group is R itself. If we equip G = R with
the Haar measure 1

2π
dx where dx is the Lebesgue measure (the factor

1
2π

is the normalized factor to make the inversion formula true), and

the Lebesgue measure dy on Ĝ = R, then the Fourier transform is

f̂ (y) =
1

2π

∫
R

f (x) e−iyxdx,

and the Fourier inversion formula is

f (x) =

∫
R

f̂ (y) eixydy.

2. The additive group Z of integers. The dual group is T, the additive
group of real numbers modulo 2π, endowed with the natural topol-
ogy. The Haar measure on Z is the counting measure, and the Fourier
transform is

f̂ (λ) =
∞∑

n=−∞

f (n) e−inλ

for λ ∈ [0, 2π] . The Fourier inversion is

f (n) =
1

2π

∫ 2π

0

f̂ (λ) einλdλ.

3. The case of Z2 is subsumed by the general case of G1 ⊕G2, the direct
sum of two locally compact Abelian groups G1 and G2. The topology
on G1⊕G2 is the product topology and the Haar measure is the prod-
uct measure of the Haar measures on G1 and G2. The dual group is
identified with Ĝ1 ⊕ Ĝ2 through

((x1, x2) , (γ1, γ2)) = (x1, γ1) (x2, γ2)
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for x1 ∈ G1, x2 ∈ G2, γ1 ∈ Ĝ1, γ2 ∈ Ĝ2. The Fourier transform is

f̂ (γ1, γ2) =

∫
G1⊕G2

f (x1, x2) ((−x1,−x2) , (γ1, γ2)) dx1dx2.

The Fourier inversion is

f (x1, x2) =

∫
bG1⊕ bG2

f̂ (γ1, γ2) ((x1, x2) , (γ1, γ2)) dγ1dγ2.

Definition 1. Let H be a countable Abelian group, and Ĥ the dual group of
H. Let W (t) be p× q constant matrices defined on t ∈ H. The p× q matrix
transfer function is defined by

ŵ(λ) =
∑
t∈H

W (t) (−t, λ)

for λ ∈ Ĥ.

We note that W (t), t ∈ H can be recovered from its transfer function ŵ
by the Fourier inversion formula, under suitable regularity conditions.

3 Invertibility

The following lemma states the invertibility of model (1) and the uniqueness
of the dimension of error process U in the moving-average representation
under some mild regularity conditions.

Lemma 2. Let X(t) = W (t) ∗ U (t) , with the dimension of X being p and
that of U being q. Assume that (i) the coefficient sequence W is square-
summable, (ii) the p × q matrix transfer function ŵ(λ) is of full-rank for

almost all λ ∈ Ĥ (w.r.t. the Haar measure), and (iii) q ≤ p. Then there
exists a square-summable sequence G(t), t ∈ H such that U(t) = G(t) ∗X(t).
Furthermore, the dimension q is uniquely determined.

Proof. Let U denote the Hilbert space consisting of series of the form
∑

j∈H D(j)U(j)

where D’s are q × q real-valued matrices, and
∑

j ‖D(j)‖2 < ∞. For any

V, W ∈ U , the inner product < U, V >= E(V T W ). Let X be the space
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spanned by K(t)X(t), t ∈ H where K’s are arbitrary real-valued q × p ma-
trices. Clearly, X ⊆ U . We prove the existence of G such that U = G ∗ X
by showing that U = X . It suffices to show that any U(t) belongs to X .
Consider an U(t) and subtract from it its projection on X . Write the differ-
ence as

∑
j∈H D(j)U(j) which is orthogonal to all K(t)X(t), t ∈ Z with K(t)

being arbitrary. Hence we have, for any s ∈ H,
∑

D(j)E(U(j)X(s)T ) = 0,
implying that

∑
D(j)ΛW T (s − j) = 0 where Λ is the covariance matrix of

U(t). Note that Λ is positive definite. It is then readily seen that, for any

character λ, D̂ ∗W T (λ) =
∑

s∈H(−s, λ)
∑

D(j)ΛW T (s − j) = 0, where we
abuse the notation D to stand for the sequence (D(j)Λ, j ∈ H). That is,

D̂(λ)ŵT (λ) = 0, by the convolution theorem. Because ŵT (λ) is of full rank

almost everywhere, D̂(λ) = 0 almost everywhere, and hence D = 0 so that
U(t) belongs to X . This completes the proof that U = X . We now prove the
uniqueness of q, the dimension of the noise terms. Let FX() and FU() be the
spectral distribution functions of X and U respectively, and FUX() be the co-
spectrum of U and X. Because X(t) = W (t)∗U (t) , and U(t) = G (t)∗X (t),
it follows that (c.f. Theorem 9, p.58 of Hannan, 1970, which can be extended
to the current setting)

FX(λ) = ŵ(λ)FU(λ)ŵ∗(λ) (2)

FUX(λ) = FU(λ)ŵ∗(λ), (3)

FU(λ) = ĝ(λ)FX(λ)ĝ∗(λ). (4)

FXU(λ) = FX(λ)ĝ∗(λ). (5)

where the superscript ∗ denotes transposition combined with complex con-
jugation, and ŵ(λ) is the Fourier transform of W , etc. Suppose that X(t) =
W (t)∗U (t) and X(t) = W ′ (t)∗U ′ (t) , where the dimension of U(t) is q and
that of U ′ is q′. Moreover, the transfer functions are assumed to be of full
rank. But then an analogue to (4) for the second moving-average representa-
tion of X yields that FU ′(λ) = ĝ′(λ)FX(λ)(ĝ′)∗(λ) = ĝ′(λ)ŵ(λ)FU(λ)ŵ∗(λ)(ĝ′)∗(λ),
implying that the rank of FU ′(λ) is not greater than that of FU(λ). By
symmetry, these two ranks must be equal so that q = rank{FU(λ)} =
rank{FU ′(λ)} = q′. Note that the assumption that U(t) has a finite, positive-
definite covariance matrix implies the equalities q = rank{FU(λ) and rank{FU ′(λ)} =
q′. Recall the iid nature of U and U ′ implies that their spectral distribution
functions are constant.
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4 Uniqueness

Recall that X (t) and U (t) are p− and q−dimensional respectively, and the
matrices W (t) are p × q. For a matrix W (t) , Wij (t) represents the (i, j)
entry, Wi (t) the ith row, and W j (t) the jth column of W (t) . Similarly,
Ui(t) is the ith component of U(t). The moving-average representation (1) is
not unique as alternative representations can be obtained by (a) permuting
the components of the noise terms, (b) shifting the components of the U ’s
systematically, (c) multiplying the components by a scaler and dividing the
corresponding coefficients by the same constant, and (d) combinations of
these procedures. We shall show that under conditions (i)-(iii) and the non-
Gaussianity of X the moving-average representation defined by (1) is unique
up to variations induced by (a)-(d).

THEOREM 3. Let

X (t) = W (t) ∗ U (t) = W ′ (t) ∗ U ′ (t) t ∈ H

where all components of U (t) , U ′ (t) are i.i.d., H is a countable Abelian
group, and conditions (i)-(iii) in Lemma 2 hold. If some component of
X (t) is non-Gaussian, then there exist a permutation π of the set of in-
tegers {1, 2, · · · , q}, non-zero scalers βi and integers m(i) for i = 1, · · · , q
such that for all t

U ′
i(t) = Uπ(i)(t + m(i))/βi, (6)

W ′,i(t) = βiW
π(i)(t−m(i)). (7)

Proof. Let

X (t) =
∑

k

W (k) U (t− k) =
∑

k

W ′ (k) U ′ (t− k)

It follows from Lemma 1 that model (1) is invertible, so we can express

U (t) =
∑

k

C (k) U ′ (t− k) (8)

and

U ′ (t) =
∑

k

D (k) U (t− k) (9)
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where C (k) and D (k) are q×q square-summable matrices. We can construct
independent q−dimensional random vectors Z (s, t) , s, t ∈ H on a certain
probability space with all components Zm (s, t) , 1 ≤ m ≤ q i.i.d. and have
the same probability distribution as Ui (s− t) . Now define q−dimensional
random vectors Y (t) , t ∈ H so that the ith component is

Yi (t) =
∑

1≤m≤q,k∈H

Dim (k) Zm (t, k) .

Then for any 1 ≤ i ≤ q, t ∈ H, Yi (t) have the same distribution as the
components of U ′

i (t). Define V (t) so that the ith component is

Vi (t) =
∑

1≤l≤q,n

Cil (n) Yl (t− n) =
∑

1≤l,m≤q,n,k

Cil (n) Dlm (k) Zm (t− n, k) ,

(10)
where the indices n and k range over the group H. Then the components
Vi (t) have the same distribution as the components of Z. Hence, V (t) and
U(t) have identical distribution. X (t) having a non-Gaussian component
implies that Ui (t) is non-Gaussian, and consequently Zm (s, t) , Vi (t) are all
non-Gaussian. Consider E

(
Vi (t)

2) on the two sides of (10) , we obtain∑
n,k

‖(C (n) D (k))i‖
2 = 1

where the subscript means the ith row of the matrix. Consequently the dot
products of the ith row of C (n) and the jth column of D (k) satisfy∑

1≤j≤q,n,k

(C (n) D (k))2
ij =

∑
1≤j≤q,n,k

(
Ci (n) ·Dj (k)

)2
= 1. (11)

Since Vi (t) and Zm (s, t) are non-Gaussian and identically distributed, in view
of (11) and (10) we can apply Theorem 5.6.1 of Kagan et. al. (1973) and
conclude that for each 1 ≤ i ≤ q there exist integers n (i) , k (i) , 1 ≤ j (i) ≤ q
such that

Ci (n (i)) ·Dj(i) (k (i)) = 1 (12)

and
Ci (n) ·Dj (k) = 0 (13)

for (n, k, j) 6= (n (i) , k (i) , j (i)) . Hence, equation (10) becomes

Vi(t) = Zj(i)(t− n(i), k(i)).
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Because for fixed t, Vi(t), 1 ≤ i ≤ q, are independent, the triples (j(i), n(i), k(i))
are distinct for different i. Let C be the q × q matrix whose ith row equals
Ci(n(i)) and D the q × q matrix whose ith column equals Dj(i)(k(i)). It can
be readily checked by (12-13) that CD equals the q × q identity matrix. In
particular, D is invertible and (13) implies that Ci(t) = 0 unless t = n(i) for
1 ≤ i ≤ q. Equation (8) entails that Ui(t + n(i)) = Ci(n(i))U ′(t), 1 ≤ i ≤ q.
It follows from the independence of Ui(t + n(i)), 1 ≤ i ≤ q, Theorem 3.1.1
of Kagan et al. (1973) and the non-Gaussianity of U ’s that Ci(n(i)) are
orthogonal vectors each of which has only one non-zero element. Conse-
quently, there exist a permutation γ of {1, 2, · · · , q}, and constants αi such
that Ui(t) = αiU

′
γ(i)(t − n(i)). Clearly, αi are non-zero as the U ’s are non-

degenerate. Let π be the inverse permutation of γ. We have

X(t) =
∑

k

W (k)U(t− k)

=
∑

k,1≤i≤q

W i(k)Ui(t− k)

=
∑
k,i

W i(k)αiU
′
γ(i)(t− n(i)− k)

=
∑
k,i

W i(k − n(i))αiU
′
γ(i)(t− k)

=
∑
k,i

W π(i)(k − n(π(i)))απ(i)U
′
i(t− k),

from which (7) follows, where βi = απ(i) and m(i) = n(π(i)). Similarly
obtained is (6).

We note that m(i) in the preceding theorem need not be identical, as
demonstrated by the following example.

Example

Let

X(t) =

(
2 0
0 0

)
U (t) +

(
1 0
0 1

)
U (t + 1) +

(
0 0
0 1

2

)
U (t + 2) .

Then clearly for U ′
1 (t) = U1 (t− 1) and U ′

2 (t) = U2 (t + 1) , (i.e. m(1) = −1
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and m(2) = 1) we have

X (t) =

(
0 0
0 1

)
U ′ (t) +

(
2 0
0 1

2

)
U ′ (t + 1) +

(
1 0
0 0

)
U ′ (t + 2) .

It is easily seen that

U (t) =

(
0 0
0 1

)
X (t− 1)+

(
1
2

0
0 −1

2

)
X (t)+

(
−1

4
0

0 1
4

)
X (t + 1)+ .....

5 Extension to Non-identically-distributed Com-

ponents

The assumption that the components of U(t) are iid is quite strong. Here,
we extend the unique-representation result to the case of independent but
possibly non-identically-distributed components, by adapting the cumulant
techniques in Findley (1986, 1990). Suppose that X is non-Gaussian, has
finite rth moments where r is an integer greater than two, and that the rth
cumulants of X(t) are not identically zero. Then, so is the rth cumulant
of some component of U(t) by the independent-component assumption, al-
though it is not a priori true that each component of U(t) must have non-zero
rth cumulant. If some component of U(t) is Gaussian, the moving-average
representation will not be unique. Thus, we need to impose in the following
theorem the stronger condition that all components of U(t) have a non-zero
rth cumulant.

THEOREM 4. Let

X (t) = W (t) ∗ U (t) = W ′ (t) ∗ U ′ (t) t ∈ H

where U (t) has independent components and so has U ′ (t), and H is a count-
able Abelian group. Assume conditions (i)-(iii) in Lemma 2 hold. Assume
further that there is an even integer m such that U (t) and U ′ (t) have finite
moments up to order m, and that there is an integer 3 ≤ r ≤ m such that the
rth cumulants of each component of U(t) are non-zero. Then, the conclusions
of Theorem 3 are valid, i.e. equations (6) and (7) hold.

Proof. For ease of exposition, we give the proof for the case when H = Z, as
the proof for the general case is similar. It follows from the first part of the
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proof of Theorem 3 that

U ′ (t) =
∑

j

D (j) U (t− j) ,

where D (j) is an q×q matrix for each j, and U (t) , U ′ (t) are q−vectors. Note

that it can be seen from the proof of Lemma 2 that D̂ (λ) =
∑

j D (j) e−iλj

is non-singular for each 0 ≤ λ ≤ 2π, which holds because D̂(λ) = ĝ′(λ)ŵ(λ),
a product of two full-rank matrices. That ĝ′(λ) is of full-rank can be argued
as follows. Equation (2) implies that FX(λ) is of rank q for all λ, so that
(4) implies that ĝ(λ) is of full-rank, hence so is ĝ′(λ). Let ` 6= 0, then by
independence of U ′ (t) for any m (can take the value 0 or `), the cumulant

cum (U ′ (t) , U ′ (t + `) , ..., U ′ (t + `) , U ′ (t + m)) = 0

where U ′ (t + `) is repeated r − 2 times. By Lemma 5 below we can expand
in terms of U and we getX
j1,..,jr

cum (D (j1) U (t− j1) , D (j2) U (t + `− j2) , ..., D (jr−1) U (t + `− jr−1) , D (jr) U (t + m− jr)) = 0

Hence
X

j1,..,jr

cum

„
(D1(j1) · U (t − j1) , ..., Dq(j1) · U (t − j1)), (D1(j2) · U (t + ` − j2) , ..., Dq (j2) · U (t + ` − j2) ,

...,
`
D1(jr−1

´
· U

`
t + ` − jr−1

´
, ..., Dq

`
jr−1

´
· U

`
t + ` − jr−1

´
, (D1(jr) · U (t + m − jr) , ..., Dq (jr) U (t + m − jr))

«
= 0

According to Jammalamadaka, Rao and Terdik (p.7, 2004) there are nr

components in the above cumulant, each one is of the formX
j1,..,jr

cum
`
Di1 (j1) · U (t− j1) , Di2 (j2) · U (t + `− j2) , ..., Dir−1 (jr−1) · U (t + `− jr−1) , Dir (jr) · U (t + m− jr)

´
= 0

for some 1 ≤ i1, i2, ...ir ≤ q, where · denotes the inner product. Since U (i)′ s
are independent for different i, any non-zero term in the above sum must
have t− j1, t + `− j2, ..., t + `− jr−1, t + m− jr all agree, hence it is reduced
toX

j

cum
`
Di1 (j) · U (t− j) , Di2 (j + `) · U (t− j) , ..., Dir−1 (j + `) · U (t− j) , Dir (j + m) · U (t− j)

´
= 0.

The above cumulant consists of linear combination of terms cum (Uk1(t) , Uk2 (t) , ..., Ukr (t))
for 1 ≤ k1, k2, · · · , kr ≤ q. Because of the independent-component assump-
tion, the only non-zero terms are ci = cum (Ui (t) , Ui(t) , ..., Ui (t)) where
i = 1, 2, ..., q. Hence for each 1 ≤ i1, i2, ..., ir ≤ q we get∑

j,1≤k≤q

Di1k (j) Di2k (j + `) ...Dir−1k (j + `) Dirk (j + m) ck = 0. (14)
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Let’s denote

fi1,i2,...,ir−1 (j) = (Di11 (j) Di21 (j + `) ...Dir−11 (j + `) , ..., Di1q (j) Di2q (j + `) ...Dir−1q (j + `))T

and
hir (j) = (Dir1 (−j) c1, Dir2 (−j) c2, ..., Dirn (−j) cn)T .

Define
(f ∗ h) (t) =

∑
j

f (j) · h (t− j) .

Equation (14) is equivalent to(
fi1,i2,...,ir−1 ∗ hir

)
(−m) = 0.

Let
f̂ (λ) =

∑
j

f (j) e−iλj

which is again a q-vector, and it is readily seen that

(̂f ∗ g) (λ) = f̂ (λ) · ĝ (λ) .

Hence
(
fi1,i2,...,ir−1 ∗ hir

)
(−m) = 0 for all m implies that the product f̂i1,i2,...,ir−1 (λ)·

ĥir (λ) = 0 for all λ. This is true for all 1 ≤ ir ≤ q. Let diag(c1, c2, · · · , cq)
denote a diagonal matrix with c’s being its diagonal elements. Now for

each λ the matrix diag(1/c1, 1/c2, · · · , 1/cq)
(
ĥ1 (λ) , ĥ2 (λ) , ..., ĥq (λ)

)
is non-

singular as it equals the transpose of D̂(−λ), implying that

f̂i1,i2,...,ir−1 (λ) = 0 for all λ.

Hence fi1,i2,...,ir−1 (j) = 0 for all j, i.e. for each 1 ≤ k ≤ q and for all
1 ≤ i1, ..., ir−1 ≤ q, l 6= 0

Di1k (j) Di2k (j + `) ...Dir−1k (j + `) = 0. (15)

The non-singularity of D̂(λ) entails that for each i there exists ji such that
the column Di (ji) is not a zero vector. By (15) it follows that Di (k) = 0 for
any k 6= ji. Now the representation of U ′ is

U ′
i(t) =

∑
k

Dik (jk) Uk (t− jk) .

13



Thanks to Theorem 3.1.1 of Kagan et al. (1973), the independence of U ′
i ,

and the non-Gaussianity and independence of Uk’s imply that there is only
one non-zero Dik for each k. The conclusion of the theorem can then be
obtained by adapting the arguments at the end of Theorem 3.

The following lemma is used to justify the convergence of an infinite sum
of cumulant terms.

Lemma 5. Let U (t) and U ′ (t) satisfy the same properties as in the previous
theorem. Then

cum

(∑
k

D (k) U (t− k) , U ′ (s1) , ..., U ′ (sr−1)

)
=

∑
k

D (k) cum (U (t− k) , U ′ (s1) , ..., U ′ (sr−1))

Proof. Let m be an even integer such that U (t) and U ′ (t) have finite mo-

ments up to order m, and U ′ (t) =
∞∑

k=0

D (k) U (t− k) where D (k) is square

summable. We assume that the sum is one-sided for ease of notations. We
will first show that given ε > 0, there exists N such that

E

∣∣∣∣∣
(∑

k≥N

D (k) U (t− k)

)∣∣∣∣∣
p

< ε (16)

for all p = 2, 3, · · · , m.
First assume p is even. Using the fact that U (t) are independent for dif-

ferent t and that E (Ui (t)) = 0, we obtain E
(∑

j,N≤k≤M Dij (k) Uj (t− k)
)p

equals to a finite sum of terms whose number of terms is independent of N
and M and where each term is, up to a multiplicative constant, a product of
terms of the form∑
1≤ji,··· ,jq≤q,N≤k≤M

Dij1 (k) · · ·Dijq (k) E
(
Uj1 (t− k) · · ·Ujr1

(t− k)
)
· · ·E

(
Ujrs+1 (t− k) · · ·Ujq (t− k)

)
,

with at least two terms inside each expectation. To see this, first, let’s

14



consider the case that p = 4. Then

E

˛̨̨̨
˛̨
0@ X

N≤k≤M

Dij (k) Uj (t − k)

1A˛̨̨̨
˛̨
4

=
X

1≤j1,··· ,j4≤q,N≤ki≤M

Dij1 (k1) Dij2 (k2) Dij3 (k3) Dij4 (k4) E
“

Uj1 (t − k1) Uj2 (t − k2) Uj3 (t − k3) Uj4 (t − k4)
”

=
X

1≤j1,··· ,j4≤q,N≤k≤M

Dij1 (k) Dij2 (k) Dij3 (k) Dij4 (k) E
“

Uj1 (t − k) Uj2 (t − k) Uj3 (t − k) Uj4 (t − k)
”

+

0@ X
1≤j1,j2≤q,N≤k1≤M

Dij1 (k1) Dij2 (k1) E
“

Uj1 (t − k1) Uj2 (t − k1)
”1A

×

0@ X
1≤j3,j4≤q,N≤k2≤M

Dij3 (k2) Dij4 (k2) E
“

Uj3 (t − k2) Uj4 (t − k2)
”1A

−
X

1≤j1,··· ,j4≤q,N≤k≤M

Dij1 (k) Dij2 (k) Dij3 (k) Dij4 (k) E
“

Uj1 (t − k) Uj2 (t − k)
”

E
“

Uj3 (t − k) Uj4 (t − k)
”

We need to include the last term because in the product term of the second
last line we include terms with k1 = k2, which are absent in the original
expression. The computations for larger p is similar. Since D (k) is square
summable and all the expectations are finite and have the same value for all
k, we can make each such sum small by choosing N large enough. Hence we
obtain (16).

If p is odd, then we can apply the above result to p− 1, p + 1 separately.
Write

p =

(
p− 1

2

)
+

(
p + 1

2

)
,

and apply Holder’s inequality we get (16).
To prove the convergence of the infinite sum of cumulants we need to

show that given ε > 0, there exists N such that∣∣∣∣∣cum

(∑
k≥N

D (k) U (t− k) , U ′ (s1) , ..., U ′ (sr−1)

)∣∣∣∣∣ < ε. (17)

Note that the cumulant for any random variables Y1, Y2, ..., Yr can be ex-
pressed in terms of moments:

cum (Y1, Y2, ..., Yr) =
∑

(−1)`−1 (`− 1)!

(
E

(∏
j∈ν1

Yj

)
....E

(∏
j∈ν`

Yj

))
where the summation extends over all partitions (ν1, ..., ν`) , ` = 1, 2, ..., r, of
(1, 2, ..., r) . Thus to prove (17) it suffices to prove that for any i = 1, 2, ..., q,

E

(∣∣∣∣∣
(∑

k≥N

Dij (k) Uj (t− k)

)
f1f2 · · · fp

∣∣∣∣∣
)

< ε

15



where E
(
|fi|`

)
< ∞ for all i = 1, · · · , p, ` = 2, · · · , m. Here p > 1 since

E (Ui) = E (U ′
i) = 0. Also, p ≤ r− 1. By the generalized Holder’s inequality,

E

(∣∣∣∣∣
(∑

k≥N

D (k) U (t− k)

)
f1f2 · · · fp

∣∣∣∣∣
)

≤

E

∣∣∣∣∣∣
(∑

k≥N

D (k) U (t− k)

)p+1
∣∣∣∣∣∣
1/(1+p) (

E
(
|f1|1+p))1/(1+p) · · ·

(
E
(
|fi|1+p))1/(1+p)

.

By (16) the first term on the right hand side can be made arbitrarily small
by choosing N large enough, hence we obtain the desired conclusion.

6 Dependent Components

The results obtained so far establish that, under mild regularity conditions,
the moving-average representation of a non-Gaussian linear process is unique
up to some translation in the index and some multiplicative constant, both of
which may be component specific. That the index can be shifted differently
for different components without affecting the probabilistic structure of the
underlying process is tied to the fact that the components of each noise
term are independent. Intuitively, if the components of each noise term
are jointly dependent, then any component-specific shifts in the index will
alter the probabilistic structure of the underlying process. In this section,
we consider the case when the (vector) noise terms contain dependent and
possibly non-identically distributed components. We impose two conditions
on the between-component dependence structure of the noise terms plus other
mild regularity conditions to show that a non-Gaussian linear process admits
a unique moving-average representation up to a shift in the index (being
identical for all components) and a multiplicative invertible matrix. The
dependence conditions to be imposed are rather mild as we shall show below
that they are satisfied by, e.g., multivariate t-distributions.

Before we introduce the dependence conditions, first consider the follow-
ing definition for the noise term in some moving-average representation.

Definition 6. Let U(t) be q−dimensional random vectors that are inde-
pendent and identically distributed. Let r ≥ 3 be an integer and K =

16



(k3, k4, ..., kr) be a multi-index, and 1 ≤ ki ≤ q for all 3 ≤ i ≤ r. Then the ma-
trix BK is the q×q matrix where the (i, j)th entry of BK is αijK =cum(Ui, Uj, Uk3 , Uk4 , ..., Ukr) .

Note that BK is a zero matrix for any Gaussian distribution. We shall
impose the following two conditions on the noise process in some moving-
average representation of the observed process:
(D1) The noise process {U(t)} admits an invertible BK for some K with an
r ≥ 3.
(D2) Any two linear combinations of U(t) with non-zero coefficients must be
stochastically dependent.

THEOREM 7. Let

X (t) = W (t) ∗ U (t) = W ′ (t) ∗ U ′ (t) t ∈ H

where U (t) satisfies condition (D1), for some r ≥ 3, and (D2), and H is a
countable Abelian group. Assume conditions (i)-(iii) in Lemma 2 hold, and
there is an even integer m ≥ r such that U (t) and U ′ (t) have finite moments
up to order m Then, there exists a c ∈ H and an invertible matrix Q such
that for all t ∈ H,

U ′(t) = Q−1U(t + c), (18)

W ′(t) = W (t− c)Q. (19)

Proof. The proof of Theorem 3 implies the validity of the relationship be-
tween the two noise processes stated in equation (9). The rest of the proof
follows from Theorem 8 and Theorem 12 below. (Note that the conditions
of Theorem 8 hold, thanks to (D1) and the arguments in the beginning of
the proof of Theorem 4.)

Example
We now exhibit an example that satisfies conditions (D1) and (D2). Let U

be a random variable whose distribution is identical to that of the noise terms
U(t). Suppose that U =

√
λZ where Z has a multivariate normal distribution

N(0, Σ), where Σ is a positive-definite matrix, and λ is a positive random
variable with finite, positive variance. This example includes multivariate t-
distributions if the reciprocal of λ has a normalized Gamma distribution. The
cumulants can be calculated by using a conditioning argument (Brillinger,
1969) that for any (scalar) random variables X1, X2, · · · , Xm and Y , we have

cum(X1, X2, · · · , Xm) =
∑

π

cum(cum(Xπ1 |Y ), · · · , cum(Xπb
|Y )),

17



where the sum is over all partitions π of the set of integers {1, 2, · · · , m},
Xπj

denotes the set of Xk where k ∈ πj ⊆ {1, 2, · · · , m} with πj being an
element of the partition π. Simplification can be further achieved by using
the result that for multivariate normal distributions, cumulants of order 3 or
higher vanish.

We now show that any two non-trivial linear combinations of U must be
dependent. Consider γT U and βT U where both γ and β are non-zero. We
shall prove that they are stochastically dependent by contradiction. Suppose
these two linear combinations of U are independent. Then by the conditional
cumulant formula,

0 = cum(γT U, βT U) = cum(cum(γT U |λ), cum(βT U |λ))+cum(cum(γT U, βT U |λ)) = γT ΣβE(λ).

So, γT Σβ = 0 as E(λ) > 0. (Here, we have made use of the fact that
first-order cumulants are first moments.) But we also have, via conditioning,

0 = cum(γT U, γT U, βT U, βT U)

= cum(λ, λ){γT ΣγβT Σβ + 2(γT Σβ)2}
= var(λ)γT ΣγβT Σβ,

implying that either γ or β must be zero, deriving a contradiction. Hence,
any two non-trivial linear combinations of U are dependent.

Next, we show that B1,1 is invertible where we write B1,1 for B(1,1).
It is clear that B1,1 is a symmetric matrix, so it suffices to show that the
quadratic form γT B1,1γ is positive for any non-zero vector γ. But γT B1,1γ =
cum(γT U, γT U, eT

1 U, eT
1 U) where e1 = (1, 0, · · · , 0)T , i.e., its first component

is 1 and other components are zero. Using the conditional cumulant formula,
we have γT B1,1γ = varλ{γT ΣγeT

1 Σe1 + 2(γT Σe1)
2} which is strictly positive

for any non-zero γ. Hence, B1,1 is invertible. �
We now state two theorems needed in the proof of Theorem 7, which

are also of some independent interest. Both theorems concerns the moving-
average structure of an iid process. The first result states that under some
regularity conditions (mainly D1), a possibly infinite moving-average repre-
sentation of an iid process is, in fact, a finite moving-average representation.
We will further prove in the second result that with the additional condition
(D2), any moving-average representation of an iid process is trivial, i.e. the
process is identical to the noise process, up to some shift in the index and a
multiplicative invertible matrix.

18



THEOREM 8. Let

U ′ (t) = D (t) ∗ U (t) t ∈ H

where U (t) , U ′ (t) are q−dimensional random vectors that are iid respectively
and there is an even integer m such that U (t) and U ′ (t) have finite moments
up to order m. Here D (t) is a sequence of square summable matrices, and
H is a countable Abelian group. Assume that

1. D̂ (λ) =
∑

t∈H D (t) (−t, λ) is non-singular for almost all λ ∈ Ĥ.

2. Condition (D1) holds for the process {U(t)}, for some multi-index K
with m ≥ r ≥ 3.

Then there exists at most q non-zero matrices D (t) in the above rep-
resentation.

We need two lemmas for the proof of the theorem.

Lemma 9. Let aij, ui ∈ Rn, where 1 ≤ i ≤ n, j ∈ N such that
∑

j aij → ui in
Rn. If u1, u2, · · · , un are linearly independent, then there exist j1, j2, · · · , jn ∈
N such that a1j1 , a2j2 , · · · , anjn are linearly independent.

Proof. Since u1, u2, · · · , un are linearly independent in Rn, we have

det (u1, u2, · · · , un) 6= 0.

Hence there exists M > 0 such that

det

(
M∑

j1=1

a1j1 ,

M∑
j2=1

a2j2 , · · · ,

M∑
jn=1

anjn

)
6= 0.

By the multi-linearity of the determinant we obtain∑
1≤j1,j2,··· ,jn≤M

det (a1j1 , a2j2 , · · · , anjn) 6= 0.

It follows that one of the determinants det (a1j1 , a2j2 , · · · , anjn) 6= 0.

19



Lemma 10. Let M1, ...,Mn be m×m matrices, then∣∣∣∣∣∣∣∣
a11M1 a12M2 .... a1nMn

a21M1 a22M2 .... a2nMn

........ ........ .... ........
an1M1 an2M2 .... annMn

∣∣∣∣∣∣∣∣ = (det A)m det M1... det Mn

where A =


a11 a12 .... a1n

a21 a22 .... a2n

.... .... .... ....
an1 an2 .... ann

 .

Proof. We will prove by induction on n. It is clearly true for n = 1. Assume
it is true for n. We may assume a11 6= 0, then˛̨̨̨
˛̨̨̨
˛

a11M1 a12M2 .... a1nMn a1,n+1Mn+1

a21M1 a22M2 .... a2nMn a2,n+1Mn+1

........ ........ .... ........ ...........
an1M1 an2M2 .... annMn an,n+1Mn+1

an+1,1M1 an+1,2M2 .... an+1,nMn an+1,n+1Mn+1

˛̨̨̨
˛̨̨̨
˛

=

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨

a11M1 a12M2 .... a1nMn a1,n+1Mn+1

0

„
−

a21a12

a11
+ a22

«
M2 ....

„
−

a21a1n

a11
+ a2n

«
Mn

„
−

a21a1,n+1

a11
+ a2,n+1

«
Mn+1

........ ........ .... ........ ...........

0

„
−

an1a12

a11
+ an2

«
M2 ....

„
−

an1a1n

a11
+ ann

«
Mn

„
−

an1a1,n+1

a11
+ an,n+1

«
Mn+1

0

„
−

an+1,1a12

a11
+ an+1,2

«
M2 ....

„
−

an+1,1a1n

a11
+ an+1,n

«
Mn

„
−

an+1,1a1,n+1

a11
+ an+1,n+1

«
Mn+1

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨

= am
11 det M1

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

„
−

a21a12

a11
+ a22

«
M2 ....

„
−

a21a1n

a11
+ a2n

«
Mn

„
−

a21a1,n+1

a11
+ a2,n+1

«
Mn+1

........ .... ........ ...........„
−

an1a12

a11
+ an2

«
M2 ....

„
−

an1a1n

a11
+ ann

«
Mn

„
−

an1a1,n+1

a11
+ an,n+1

«
Mn+1„

−
an+1,1a12

a11
+ an+1,2

«
M2 ....

„
−

an+1,1a1n

a11
+ an+1,n

«
Mn

„
−

an+1,1a1,n+1

a11
+ an+1,n+1

«
Mn+1

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

= am
11 det M1 det M2... det Mn+1

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

„
−

a21a12

a11
+ a22

«
....

„
−

a21a1n

a11
+ a2n

« „
−

a21a1,n+1

a11
+ a2,n+1

«
........ .... ........ ...........„

−
an1a12

a11
+ an2

«
....

„
−

an1a1n

a11
+ ann

« „
−

an1a1,n+1

a11
+ an,n+1

«
„
−

an+1,1a12

a11
+ an+1,2

«
....

„
−

an+1,1a1n

a11
+ an+1,n

« „
−

an+1,1a1,n+1

a11
+ an+1,n+1

«

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

m

= det M1 det M2... det Mn+1

˛̨̨̨
˛̨̨̨
˛

a11 a12 .... a1n a1,n+1

a21 a22 .... a2n a2,n+1

.... .... .... .... ......
an1 an2 .... ann an,n+1

an+1,1 an+1,2 .... an+1,n an+1,n+1

˛̨̨̨
˛̨̨̨
˛

m

= (det A)m det M1... det Mn+1.
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Proof of theorem 8. We will only give the proof when H = Z here. The
proof is similar for the general case of a countable Abelian group H. Since
D̂ (λ) is non-singular, by lemma 9 there exists n linearly independent column
vectors Di (ti) , i = 1, 2, ..., n where the integers ti may be repeated. Let
t 6= ti, 1 ≤ i ≤ q, and w arbitrary, by independence of U (t) we have

cum (U ′(t) , U ′ (s2) , · · · , U ′ (sr−1) , U ′ (w)) = 0

where sj ∈ {t1, · · · , tq}, j = 2, · · · , r − 1 and they may be repeated. Since
U ′ (t) = D (t) ∗ U (t) , by lemma 5 we obtain

X
j1,j2...,,jr∈Z

cum (D (j1) U (t− j1) , D (j2) U (s2 − j2) , ..., D (jr−1) U (sr−1 − jr−1) , D (jr) U (w − jr)) = 0.

According to Jammalamadaka, Rao and Terdik (2004, p.7) there are qr com-
ponents in the each of the above cumulants that are indexed by (i1, i2, ..., ir) ,
where 1 ≤ ik ≤ q for each k = 1, ..., r. Each component equals 0 from above,
hence∑
j1,j2,...,jr∈Z

cum (Di1 (j1) · U (t− j1) , Di2 (j2) · U (s2 − j2) , ..., Dir (jr) · U (w − jr)) = 0.

Since U (t)′ s are independent for different t, any non-zero term in the above
sum must have t − j1, s2 − j2, ..., sr−1 − jr−1, w − jr all agree, which is then
reduced to∑

j∈Z

cum (Di1 (t− j) · U (j) , Di2 (s2 − j) · U (j) , ..., Dir (w − j) · U (j)) = 0.

Expanding the above summation we get∑
j,1≤k1,k2,...,kr≤q

Di1k1 (t− j) Di2k2 (s2 − j) ...Dir−1kr−1 (sr−1 − j) Dirkr (w − j) αk1k2...kr = 0.

(20)
where αk1k2...kr = cum (Uk1 , Uk2 , ..., Ukr) . For each (i1, i2, ..., ir−1) where 1 ≤
ik ≤ q for k = 1, ..., r − 1, j ∈ Z, we define a q−vector

fi1,i2,...,ir−1 (j) =

 P
1≤k1,..,kr−1≤q Di1k1 (t− j) ...Dir−1kr−1 (sr−1 − j) αk1k2..kr−11, .........,P

1≤k1,..,kr−1≤q Di1k1 (t− j) ...Dir−1kr−1 (sr−1 − j) αk1k2..kr−1q

!T

.

For each 1 ≤ ir ≤ q, j ∈ Z, define

gir (j) = (Dir1 (j) , ..., Dirq (j))T .
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Also define
(f ∗ g) (w) =

∑
j

f (j) · g (w − j) .

It is not hard to see that (20) is equivalent to(
fi1,i2,...,ir−1 ∗ gir

)
(w) = 0.

Let
f̂ (λ) =

∑
j

f (j) e−iλj

which is again a q-vector, it is readily seen that

(̂f ∗ g) (λ) = f̂ (λ) · ĝ (λ) .

Hence
(
fi1,i2,...,ir−1 ∗ gir

)
(w) = 0 for all w implies that f̂i1,i2,...,ir−1 (λ)·ĝir (λ) =

0 for almost all λ. This is true for all 1 ≤ ir ≤ q. Now for each λ by assumption
the matrix (ĝ1 (λ) , ĝ2 (λ) , ..., ĝq (λ)) = D̂ (λ)T is non-singular. Therefore

f̂i1,i2,...,ir−1 (λ) = 0 for almost all λ.

Hence fi1,i2,...,ir−1 (j) = 0 for all j, which implies that for each t 6∈ {t1, · · · , tq}, 1 ≤
i1, i2, · · · , ir−1 ≤ q, and 1 ≤ k ≤ q,∑

1≤k1,k2,··· ,kr−1≤q

Di1k1 (t) Di2k2 (tk2) · · ·Dir−1kr−1

(
tkr−1

)
αkk1k2···kr−1 = 0.

For each 1 ≤ i1 ≤ q, define a qr−1−vector

vi1 = (xT
i1
, xT

i1
, · · · , xT

i1
)T ,

where xi1 = (Di11 (t) , Di12 (t) , · · · , Di1q (t))T is repeated qr−2 times. Also
define (writing Dkl for Dkl(tl) henceforth)

ui2···ir−1k =
(
Di2k2 · · ·Dir−1kr−1αkk1k2···kr−1

)
where the row vectors are indexed by 1 ≤ i2, · · · , ir−1, k ≤ q. There are
qr−1 components in each vector and indexed by (k1, k2, · · · , kr−1) . The above
summation implies that the inner product

vi1 · ui2···ir−1k = 0
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for all 1 ≤ i1, i2, · · · , ir−1, k ≤ q. For each 1 ≤ i1 ≤ q, there are qr−1 equa-
tions, indexed by i2, · · · , ir−1, k. Each equation has qr−1 terms, indexed by
(k1, k2, · · · , kr−1) . Let

U =
(
ui2···ir−1k

)
which is a qr−1×qr−1 matrix where the rows are indexed by i2, · · · , ir−1, k, and
the columns are indexed by k1, k2, · · · , kr−1. Consider a block of q columns,
where k2, · · · , kr−1 remain fixed and 1 ≤ k1 ≤ q. For these columns we
consider a block of q rows that i2, · · · , ir−1 remains fixed and 1 ≤ k ≤ q. It
is not hard to see that such a q × q block is of the form

Di2k2 · · ·Dir−1kr−1


α11k2···kr−1 α12k2···kr−1 · · · α1nk2···kr−1

α21k2···kr−1 α22k2···kr−1 · · · α2nk2···kr−1

· · · · · · · · · · · ·
αn1k2···kr−1 αn2k2···kr−1 · · · αnnk2···kr−1

 = DIKBK

where I = (i2, i3, · · · , ir−1) , K = (k2, k3, · · · , kr−1) are multi-indices, and BK

is a q × q matrix. Hence

U =


DI1K1BK1 DI1K2BK2 · · · DI1Kl

BKl

DI2K1BK1 DI2K2BK2 · · · DI2Kl
BKl

· · · · · · · · · · · ·
DIlK1BK1 DIlK2BK2 · · · DIlKl

BKl


where l = qr−2, Ij, Km runs through all multi-indices. Then the equation
Uvi1 = 0 is equivalent to the equations

l∑
i=1

DIjKi
wi = 0, j = 1, 2, · · · , l,

where wi = BKi
xi1 . Let

D =


DI1K1 DI1K2 · · · DI1Kl

DI2K1 DI2K2 · · · DI2Kl

· · · · · · · · · · · ·
DIlK1 DIlK2 · · · DIlKl

 .

We claim that D is invertible. Hence, wi = 0 for all i. Consequently, the
invertibility of some BK implies that xi1 = (Di11(t), Di12(t), · · · , Di1q(t))

T =
0. It follows that D (t) = 0 for all t 6= tj, j = 1, · · · , q. We conclude that

U ′ (t) =

q∑
j=1

D (tj) U (t− tj) .
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To complete the proof, it remains to prove that D is invertible. We require
the following lemma.

Lemma 11. Let I = (i2, i3, · · · , ir−1) , K = (k2, k3, · · · , kr−1) , DIK = Di2k2 · · ·Dir−1kr−1

where Ij, Km runs through all 1 ≤ ip, k` ≤ q,∣∣∣∣∣∣∣∣
DI1K1 DI1K2 · · · DI1Kl

DI2K1 DI2K2 · · · DI2Kl

· · · · · · · · · · · ·
DIlK1 DIlK2 · · · DIlKl

∣∣∣∣∣∣∣∣ = (det D)nr−3(r−2) ,

where D is the q × q matrix whose (i, j)th element is Dij.

Proof. We prove by induction on r. Note that the determinant is of dimension
qr−2×qr−2. If r = 3, then the above determinant is det D. Assume the formula
is true for r. When r is increased by 1, there will be one more index. The
determinant is ∣∣∣∣∣∣∣∣

DI1K1D DI1K2D · · · DI1Kl
D

DI2K1D DI2K2D · · · DI2Kl
D

· · · · · · · · · · · ·
DIlK1D DIlK2D · · · DIlKl

D

∣∣∣∣∣∣∣∣ ,
which upon applying Lemma 10 we obtain∣∣∣∣∣∣∣∣

DI1K1 DI1K2 · · · DI1Kl

DI2K1 DI2K2 · · · DI2Kl

· · · · · · · · · · · ·
DIlK1 DIlK2 · · · DIlKl

∣∣∣∣∣∣∣∣
q

(det D)qr−2

= (det D)q(qr−3(r−2))+qr−2

= (det D)nr−2(r−1)

which is the required conclusion.

Now, the invertibility of D follows from the preceding lemma and the
fact that D is invertible, according to lemma 9. This completes the proof of
Theorem 8

THEOREM 12. With the same notations and assumptions as in Theorem
8, we assume further that there exist no two non-zero vectors α and β such
that αT U(t) is stochastically independent of βT U(t). Then there is only one
non-zero matrix D (t) in U ′ (t) = D (t) ∗ U (t) .
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Proof. We shall prove by contradiction. Suppose there is more than one
non-zero matrix. Then there are integers q > p such that D(p), D(p +
1), · · · , D(q) are the only possibly non-zero matrices, and that D(p), D(q)
are non-zero. Since U ′(t + q) is independent of U ′(t + p), D(q)U(t) is inde-
pendent of D(p)U(t). As D(q) and D(p) each contains a non-zero row vector,
we derive a contradiction to the assumption that no two non-trivial linear
combinations of U(t) are stochastically independent of each other.
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