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Abstract

This article focuses on two methods to approximate the loglikelihood function for univariate

diffusions: 1) the simulation approach using a modified Brownian bridge as the importance

sampler; and 2) the recent closed-form approach. For the case of constant volatility, we give a

theoretical justification of the modified Brownian bridge sampler by showing that it is exactly

a Brownian bridge. We also discuss computational issues in the simulation approach such as

accelerating numerical variance stabilizing transformation, computing derivatives of the simu-

lated loglikelihood, and choosing initial values of parameter estimates. The two approaches are

compared in the context of financial applications with annualized parameter values, where the

diffusion model has an unknown transition density and has no analytical variance stabilizing

transformation. The closed-form expansion, particularly the second-order closed-form, is found

to be computationally efficient and very accurate when the observation frequency is monthly

or higher. It is more accurate in the center than in the tail of the transition density. The

simulation approach combined with the variance stabilizing transformation is found to be more

reliable than the closed-form approach when the observation frequency is lower. Both methods

performs better when the volatility level is lower, but the simulation method is more robust to

the volatility nature of the diffusion model. When applied to two well known datasets of daily

observations, the two methods yield similar parameter estimates in both datasets but slightly

different loglikelihood in the case of higher volatility.
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1. INTRODUCTION

Discrete time series are often obtained by observing a continuous-time process at a discrete sequence

of observation times. It is natural to model a discrete time series by modeling the underlying process

as a continuous-time process. Diffusion processes are commonly used to model the underlying

process in economic and financial applications (see e.g. Sundaresan 2000). A univariate time-

homogeneous diffusion process can be described as a solution to a stochastic differential equation

(SDE) of the form

dXt = µ(Xt; θ) dt + σ(Xt; θ) dWt, 0 ≤ t ≤ T, (1)

where the drift µ and volatility σ are locally bounded Borel measurable functions, θ is a p × 1

parameter vector, and Wt is a standard Brownian motion. To be specific, we assume that the

process X is observed only at discrete time points ti = i∆, i = 0, . . . , n, giving observations xi,

i = 0, . . . , n. The aim is to estimate θ given these observations.

This article focuses on the maximum likelihood estimate (MLE) of the parameter θ in (1). We

refer to Sørensen (2004) and Aı̈t-Sahalia (2006) for more comprehensive reviews on other methods.

In order to obtain the MLE, it is necessary to have the transition density

pX(∆, x|x0; θ), (2)

that is, the conditional density of Xt+∆ = x given Xt = x0. By the Markov property, the loglikeli-

hood function is then

Ln(θ) =
n∑

i=1

lX(∆, xi|xi−1, θ), (3)

where lX = log pX , and the asymptotically irrelevant density of the initial observation x0 is disre-

garded. The transition density is known only in rare occasions where the SDE (1) has an analyti-

cally known solution. Examples of these rare occasions are geometric Brownian motion, Ornstein-

Uhlenbeck process, and Cox-Ingersoll-Ross (CIR) process (see e.g. Aı̈t-Sahalia 1999). In general,

an explicit solution to (1) is not available, so the likelihood must be approximated numerically.

An approximation of the likelihood relies on an approximation of the transition density pX or its

logarithm lX . An approximate MLE is then obtained by maximizing the approximated likelihood.
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A naive approximation of pX(∆, x|x0; θ) is the Euler (or Euler-Maruyama) scheme. The Euler

approximation is a first-order approximation

p
(1)
X (∆, x|x0; θ) = φ(x;m, v), (4)

where m = x0 + ∆µ(x0; θ), v = ∆σ2(x0; θ), and φ(·;m, v) is the normal density with mean m and

variance v. This approximation works well only when ∆, the transition interval, is sufficiently small.

More sophisticated approximation methods fall into three classes (Aı̈t-Sahalia 2002b; Sørensen

2004): 1) Data augmentation at unobserved time points (Pedersen 1995; Elerian 1999; Brandt and

Santa-Clara 2002b; Durham and Gallant 2002); 2) Closed-form expansion of the transition density

(Aı̈t-Sahalia 2002a, 2005); 3) Numerical solution to the Kolmogorov forward equation implied by

the transition density (Lo 1988). The data augmentation method utilizes the Euler scheme, with

the transition interval between augmented data made very small. Bekos, Papaspliopoulos, Roberts,

and Fearnhead (2006) recently developed an exact data augmentation approach which does not use

the Euler scheme. For a general class of diffusion processes, Bekos et al. (2006) simulates unobserved

data at random time skeletons from the exact distribution of the unknown transition density. This

approach will not be studied here. We limit the scope of this article to the aforementioned first two

classes and refer to them as the simulation approach and the closed-form approach, respectively.

A brief review of these two approaches are given in the next section.

Both the simulation approach and the closed-form approach are more amenable when the volatil-

ity σ is constant. It is possible, but not always, to transform a process to a new one with constant

volatility. This transformation is referred to as variance stabilization in introductory statistics. It

has been used in likelihood approaches to obtain better approximation of the likelihood (Shoji and

Ozaki 1998; Aı̈t-Sahalia 2002a; Durham and Gallant 2002). It has also been used in a Bayesian

context to break the dependency between missing paths and the volatility of the diffusions (Roberts

and Stramer 2001). The feasibility of this transformation is therefore important. Following the

definition of Aı̈t-Sahalia (2005) in a multivariate setting, a diffusion X is reducible if there exists

a one-to-one transformation Y = hθ(X) such that the volatility of Y is the identity matrix; It is

irreducible otherwise. We call a reducible diffusion X analytically reducible if hθ is available in

explicit form, and numerically reducible otherwise. Under appropriate regularity assumptions, a

one-dimensional diffusion X is always reducible, at least numerically, since there exists a one-to-one
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function h such that h′θ(x) = 1/σ(x, θ). By Itô’s formula, the transformed process Yt = hθ(Xt),

satisfies the SDE

dYt = µ̃(y; θ) dt + dWt, (5)

where

µ̃(Y, θ) =
µ{h−1

θ (Y ); θ}
σ{h−1

θ (Y ); θ}
− 1

2
σ′{h−1

θ (Y ); θ},

and σ′ denotes the derivative of σ with respect to x, and h−1
θ is the inverse function of hθ.

The simulation approach treats the problem as a missing data problem. It augments data

between two successive discretely observed values and uses importance sampling to integrate out

the augmented variables; see more details in Section 2.1. Using a CIR process, which is analytically

reducible, as the benchmark, Durham and Gallant (2002) find that a modified Brownian bridge

sampler combined with the variance stabilizing transformation leads to much better performance

than other samplers in the literature. A nice interpretation of the modified Brownian bridge

sampler is given by Chib and Shephard (2002). This sampler has been successfully used for general

multivariate diffusions in Golightly and Wilkinson (2005). However, a rigorous justification of the

modified Brownian sampler is missing in the literature.

Aı̈t-Sahalia (2002a) compared the results of Durham and Gallant (2002) to those of the closed-

form approach in terms of speed and accuracy and concluded that for monthly observations from the

CIR process, the closed-form approximation was the better in terms of the speed/accuracy trade-off.

Jensen and Poulsen (2002) also give numerical comparisons of transition density approximations,

including both the simulation approach and the closed-form approach. However, as with other

comparisons, the diffusion processes they used were all analytically reducible, and the simulation

approach could be greatly improved. To the best of our knowledge, there has been no comprehensive

comparison of the two methods for univariate diffusions which are only numerically reducible.

The goal of this article is three-fold. First, we supply a theoretical justification for the modified

Brownian bridge sampler of Durham and Gallant (2002) when the volatility is constant. Second,

we discuss some computational issues that have not been explicitly discussed in detail previously in

the numerical optimization of the simulation approach. In particular, we discuss how to accelerate

numerical transformations, compute derivatives of the simulated likelihood, and choose starting val-

ues. Finally, we compare the two approaches using a diffusion model which has unknown transition

4



density and is only numerically reducible.

The relative advantage and disadvantage of the two approaches in practice are discussed based

on results from a numerical study and real examples. The closed-form approach, both the first-

order and second-order, is always faster and can be extremely accurate when the transition interval

∆ is small. However, users are faced with the problem of “how small a ∆ is small”. It is not clear

how to assess the accuracy in a given problem. There is no known way, unless compared with the

simulation approach, to tell whether the approximation has been “sufficiently” accurate. On the

other hand, the simulation approach can always be made as accurate as desired provided sufficient

computing resource. But the issue is how much computing resource is available. The two methods

give similar parameter estimates from two well known datasets of daily observations, one being

the three-month treasury bill rate data and the other being the seven-day Eurodollar rate data.

Nevertheless, the maximized loglikelihoods are noticeable different for the Eurodollar data, which

has higher volatility than the treasury bill data. The closed-form approximation can be inaccurate

at the tails in the case of high volatility and larger ∆ values.

The rest of the paper is organized as follows. Section 2 reviews the simulation approximation

and the closed-form approximation of the likelihood. Section 3 presents justification of the modified

Brownian bridge sampler for reducible diffusion processes. Section 4 discusses computational issues.

Section 5 compares the logarithm of the transition density from the two approaches. Section 6

applies the two approaches to two well-known datasets. A discussion concludes in Section 7.

2. APPROXIMATING THE LIKELIHOOD

2.1 Simulation Approach

The simulation approach to approximating the transition density pX(∆, xi|xi−1, θ) is a data aug-

mentation approach. The interval [ti−1, ti) is partitioned into M subintervals ti−1 = τi,0 < τi,1 <

. . . < τi,M = ti, each with equal length δ = ∆/M , such that the first order Euler scheme is suffi-

ciently accurate. The observations at τi,1 < . . . < τi,M−1 are treated as missing observations. The

transition density can be expressed as

pX(∆, xi|xi−1; θ) =
∫ M−1∏

m=0

pX(δ, ui,m+1|ui,m; θ)dλ(ui,1, . . . , ui,M−1), (6)
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where ui,0 = xi−1, ui,M = xi, and λ denotes the Lebesgue measure. The integral in (6) is evaluated

using importance sampling (see, for example, Robert and Casella 2005):

pX(∆, xi|xi−1; θ) = Eq

[∏M−1
m=0 pX(δ, ui,m+1|ui,m; θ)

q(ui,1, . . . , ui,M−1)

]
, (7)

where q(ui,1, . . . , ui,M−1), is a density function on RM−1 referred to as an importance sampler.

Using the first-order Euler approximation (4) of each pX(δ, ui,m+1|ui,m; θ), the transition density

(6) is approximated by

p
(M,K)
X (∆, xi|xi−1, θ) =

1
K

K∑
k=1

∏M−1
m=0 p

(1)
X (δ, ui,k,m+1|ui,k,m; θ)

q(ui,k,1, . . . , ui,k,M−1)
, (8)

where ui,k,0 = xi−1, ui,k,M = xi, and ui,k = (ui,k,1, . . . , ui,k,M−1) is a random sample from the

importance sampler q for each k = 1, . . . ,K. The optimal importance sampler q is the conditional

joint density of the diffusion process at times τi,1 < . . . < τi,M−1 given Xi−1 = xi−1 and Xi = xi,

denoted by pX(u1, . . . , uM−1|xi−1, xi). This choice of q is not available as it depends on the unknown

transition density we are trying to approximate. Clearly, there are important rules about the

sampler q for the importance sampling scheme (8) to work well. One rule is that q should provide

a sufficiently good approximation to the target density pX(u1, . . . , uM−1|xi−1, xi). A second rule is

that sampling u = (u1, . . . , uM−1) from q can be done efficiently.

Various proposal densities q have been proposed in the literature. Pedersen (1995) used a

sampler constructed from simulating paths on each subinterval using the first-order Euler scheme,

in which case,

p
(M,K)
X (∆, xi|xi−1, θ) =

1
K

K∑
k=1

p
(1)
X (δ, ui,k,M |ui,k,M−1; θ). (9)

Although simulating from q can be done efficiently, Pedersen’s sampler ignores the end point infor-

mation xi = ui,M , and hence can be far away from the target density. Elerian, Chib, and Shephard

(2001) proposed sampling u from a multivariate Gaussian or Student-t distribution, which is based

on a second order Taylor expansion of the target density about its mode. This sampler provides

a better approximation to the target distribution but can be computational intensive, particularly

when M is large. Durham and Gallant (2002) used two additional samplers. The first one is the

Brownian bridge sampler, defined as the Euler approximation of the solution Ht to the SDE

dHt =
xi −Ht

ti − t
dt + σ(Ht) dWt, ti−1 ≤ t < ti, Hti−1 = xi−1. (10)
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When σ(·) is constant, Ht is a Brownian bridge on [ti−1, ti], starting at xi−1 and terminating at

xi. Choosing Ht as the underlying process is in line with the principal that an efficient proposal

sampler should depend on the end point xi. This sampler has been generalized to a multivariate

setting in Chib, Pitt, and Shephard (2004). The second additional sampler from Durham and

Gallant (2002) is called modified Brownian bridge sampler, defined by the recursion

um+1 = um +
uM − um

M −m
+

√
M −m− 1

M −m
δ1/2σ(um, θ)Zm, (11)

where Zm ∼ N(0, 1). While (11) is heuristically motivated in Durham and Gallant (2002) and

Chib and Shephard (2002), the relationship between the modified Brownian bridge proposal and the

underlying process Ht in (10) is missing. The simulation study in Durham and Gallant (2002) using

the CIR process shows that the modified Brownian bridge sampler outperforms other simulation-

based methods in the literature, and that transforming the model to unit volatility first provides

significant benefits. In Section 3 we show that the modified Brownian bridge sampler, when the

volatility σ is a constant, is in fact exactly a Brownian bridge.

2.2 Closed-form Approach

For univariate diffusion processes, Aı̈t-Sahalia (2002a) derived a sequence of closed-form expansions

for the transition density. Under certain regularity conditions, the sequence converges to the true

transition density as more correction terms are added for any fixed transition interval ∆ which

is smaller than a threshold ∆. This threshold ∆ depends on both the drift µ and the volatility

σ. Aı̈t-Sahalia (2005) extended the method to the multivariate setting, where a diffusion can be

irreducible. The expansion for irreducible diffusions can be particularly useful in the univariate

case when the variance stabilizing transformation is not analytically available. It is used in our

comparison study in the sequel.

For a reducible diffusion X, the crucial step of Aı̈t-Sahalia (2002a) is to find a closed-form

transition density expansion for the transformed process Y = hθ(X) based on a truncated Hermite

series. The closed-form transition density expansion for X is then obtained by a standard variable

transformation. The Hermite series approximation of the transition density of pY is

pY (∆, y|y0; θ) = ∆−1/2φ
(
∆−1/2(y − y0)

) ∞∑
j=0

ηj(∆, y0; θ)Hj

(
∆−1/2(y − y0)

)
, (12)
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where φ is the density of N(0, 1), Hj ’s are the Hermite polynomials, and Hermite coefficients

ηj(∆, y0; θ) =
1
j!

E
[
Hj

(
∆−1/2(y − y0)

)
|Yt = y0; θ

]
.

Aı̈t-Sahalia (2002a) suggested approximating the conditional expectation in ηj by a Taylor expan-

sion of order K in ∆ using the infinitesimal generator of Y . With the coefficient ηj ’s replaced

by their approximation, the terms in (12) can be gathered according to powers of ∆ to obtain a

closed-form expansion of the log of the transition density:

l
(K)
Y (∆, y|y0; θ) = −1

2
log(2π∆) +

C
(−1)
Y (y|y0)

∆
+

K∑
k=0

C
(k)
Y (y|y0; θ)

∆k

k!
, (13)

where C
(k)
Y ’s are the coefficients after the regathering. Aı̈t-Sahalia (2005) gives an alternative

approach to determine the coefficients C
(k)
Y by solving the Kolmogorov equations using (13) as the

postulated form of the solution. The partial differential equations are expressed in terms of ∆

and C
(k)
Y ’s on both sides. The coefficients C

(k)
Y ’s are determined by matching the coefficients of

∆k for k = −1, 0, 1, . . . ,K. Both approaches give the same expansion. Once (13) is available, the

closed-form expansion of the log transition density of X is then of the form

l
(K)
X (∆, x|x0; θ) = − log σ(x; θ)− 1

2
log(2π∆) +

C
(−1)
X (x|x0)

∆
+

K∑
k=0

C
(k)
X (x|x0; θ)

∆k

k!
. (14)

For irreducible diffusions, the idea of Aı̈t-Sahalia (2005) is to postulate a solution of form (14)

and determine the coefficients C
(k)
X ’s. The problem now is that these coefficients no longer have

explicit solutions. Let jk = 2(K − k). Aı̈t-Sahalia (2005) approaches the problem by deriving an

explicit Taylor approximation of order jk for C
(k)
X in terms of (x− x0),

C
(jk,k)
X (x|x0) =

jk∑
i=1

γk
i (x0)(x− x0)i.

The expansion order of C
(k)
X is chosen to be jk = 2(K − k) such that the approximation error due

to the Taylor expansion in (x−x0) is of the same order ∆K for each k. The coefficients γ
(k)
i ’s in the

Taylor expansion C
(jk,k)
X (x|x0), k = −1, 0, . . . ,K, are obtained from successively solving a system

of linear equations. The resulting expansion for the irreducible case is

l̃
(K)
X (∆, x|x0; θ) = − log σ(x; θ)− 1

2
log(2π∆) +

C
(j−1,−1)
X (x|x0)

∆
+

K∑
k=0

C
(jk,k)
X (x|x0; θ)

∆k

k!
. (15)

An expansion of the transition density pX can be obtained by exponentiating l̃KX , which guarantees

positivity.
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3. A JUSTIFICATION OF THE MODIFIED BROWNIAN BRIDGE SAMPLER

We show in Proposition 1 that when the volatility σ is constant, the modified Brownian bridge

sampler (11) is simply the exact Brownian bridge sampler. Simulating from the exact distribution

of the Brownian bridge, rather than from the Euler approximation to the Brownian bridge process,

may lead to better performance.

Proposition 1. Let q(u1, . . . , uM−1) be the joint density of the modified Brownian bridge sampler,

defined as in (11) with unit volatility. Then, q(u1, . . . , uM−1) is the same as the joint density of

a Brownian bridge with unit volatility at time points τi,1, . . . , τi,M−1, starting with u0 at ti−1 and

terminating with uM at ti.

Proof. Let fW |u0,uM
(u1, . . . , uM−1|u0, uM ) be the joint density of a Brownian bridge with unit

volatility on [ti−1, ti] with two endpoints u0 and uM at τi,1, . . . , τi,M−1. It is sufficient to show that

f is the same as q defined in (11). Rewrite fW |u0,uM
(u1, . . . , uM−1|u0, uM ) as

fW |u0,uM
(u1, . . . , uM−1|u0, uM ) =

M−2∏
m=0

fWm+1|Wm=um,WM=uM
(um+1|um, uM ). (16)

The joint distribution of (Wm+1,WM )T given Wm = um is Gaussian N(µ,Σ) with

µ =

 um

um

 , and Σ =

 δ δ

δ δ(M −m)

 .

Using the properties of a conditional multivariate normal distribution we obtain,

fWm+1|Wm=um,WM=uM
(um+1|um, uM ) = φ

(
um+1;um +

uM − um

M −m
,
M −m− 1

M −m
δ

)
.

Putting this back into (16) completes the proof.

The consistency and asymptotic normality of the simulated MLE using the modified Brownian

bridge importance sampler is conjectured to be true. However, a rigorous proof, which would

extend the results of Pedersen (1995) and Brandt and Santa-Clara (2002b), is not straightforward

and is worth further investigation.

4. COMPUTATIONAL ISSUES

In this section we discuss some computational issues in the simulation approach and provide some

simple but effective suggestions. To our knowledge, these issues have not been addressed in detail
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for this context in the literature. However, they are very important for practitioners applying

continuous time models to real data.

4.1 Faster Numerical Transformation

Transformation to unit volatility has been shown to be important for both the simulation method

and the closed-form method. When hθ(x) is not available in closed form, one has to resort to

numerically computing the forward transformation y = hθ(x) and the backward transformation

x = h−1
θ (y). This can be done on a fine grid of equally spaced x values, x1, . . . , xg, where g is the

size of the grid. The corresponding value of y1, . . . , yg can be computed from∫ x

c

1
σ(u, θ)

du,

where the constant c must be chosen to be smaller than x1. Since the grid of x is equally spaced,

the forward transformation for any value of x0 is very easy to find: locate the interval [xi, xi+1]

that contains x0 and do a linear interpolation between yi and yi+1. To compute the backward

transformation for any value of y0, one ends up with a bisection search to find the interval [yi, yi+1]

in which y0 falls and then interpolate between xi and xi+1. In the simulation approach, this

backward transformation is needed for every augmented data point, which slows the algorithm

down dramatically for large amount of augmentation.

A simple way to speed up the backward transformation is to compute a second grid for the

backward transformation with equally spaced values of y this time. Consider the grid values

y′1, . . . , y
′
g. The corresponding values of x′1, . . . , x

′
g can be computed from the first grid efficiently,

utilizing the monotonicity property of the transformation. Note that this only needs to be done

once for each evaluation of the likelihood. With this second grid, the backward transformation can

be computed as fast and easily as the forward transformation. The saving in computing time is

dramatic for large datasets, as the number of augmented points M and the number of importance

samples K increases.

4.2 Computing Derivatives of the Simulated loglikelihood

Derivatives of the loglikelihood are important for efficient maximization and evaluation of the

variance-covariance matrix of the MLE. Derivatives of the transition density are also necessary in
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derivative pricing in finance. For the simulated likelihood method, computing the derivatives of the

loglikelihood needs to be done numerically as well. Numerical differentiation requires evaluations of

the loglikelihood at the parameters and close-by values of the parameters. A naive implementation

would regenerate all the sample paths in each evaluation of the loglikelihood. This can be seen by

looking into an alternative expression of p
(M,K)
Y ,

p
(M,K)
Y (∆i, yi|yi−1, θ) =

1
K

K∑
k=1

GM (ui,k, µ̃, ti−1, ti)φ(uM ;u0,∆i), (17)

where

GM (ui,k, µ̃, ti−1, ti) = exp

{
M∑

m=1

µ̃(ui,k,m−1)(u,k,m − ui,k,m−1)−
1
2

M∑
m=1

µ̃2(ui,k,m−1)δ

}
. (18)

By the chain rule,

∂GM (u(θj), µ̃, ti−1, ti)
∂θ

=
M∑

m=0

∂GM (u, µ̃, ti−1, ti)
∂um

∂um

∂θj
+

∂GM (u, µ̃, ti−1, ti)
∂θj

. (19)

Clearly, ∂um/∂θj is complicated since um depends on yj = hθ(xj) for j = i − 1 and i where the

transform hθ has θ implicitly involved.

We propose a method to compute the derivatives without regenerating the sample paths. Con-

sider a Brownian bridge ũ = (ũ0, ũ1, . . . , ũM ) with volatility one starting with 0 at time ti−1 and

terminating with 0 at ti. As in Roberts and Stramer (2001), this Brownian bridge ũ is connected

to our sample path u through

um = um(θ) = ũm +
(M −m)yi−1 + myi

M
, m = 0, 1, . . . ,M.

Note that ũ is free of θ. Thus,

∂um

∂θj
=

M −m

M

∂yi−1

∂θj
+

m

M

∂yi

∂θj
, m = 0, . . . ,M.

The rest of the calculation is straightforward now. For example, let X be a CIR process defined by

µ(x; θ) = θ1 − θ2x,

σ(x; θ) = θ3
√

x,
(20)

where θ = (θ1, θ2, θ3)T . Then Yt = hθ(Xt) = 2
√

Xt/θ3 and

∂um

∂θ3
=

M −m

M

(−2√xi−1

θ2
3

)
+

m

M

(
−2

√
xi

θ2
3

)
.
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For analytically reducible cases, such as the CIR example, a closed-form expression for the deriva-

tives can be obtained given the simulated paths of ũ. For processes that are only numerically

reducible, ∂yi/∂θj would still need to be obtained numerically.

4.3 Choosing Starting Values of Estimates

Any iterative optimization routine needs good starting values, regardless of the methods we use to

compute the likelihood. Some results reported in the literature can not be reproduced unless a set

of deliberately chosen starting values are used. It is worth discussing the choice of starting values

explicitly in the univariate diffusion context.

Consider the general drift and diffusion model in Aı̈t-Sahalia (1996)

µ(x; θ) = α0 + α1x + α2x
2 + α3/x,

σ(x; θ) =
√

β0 + β1x + β2xβ3 ,
(21)

where θ = (α0, . . . , α3, β0, . . . , β3)T . Aı̈t-Sahalia (1996) gave a two-stage feasible generalized least

squares (FGLS) estimator from discretizing the continuous-time moments of the model. In the

first stage, a linear regression for the drift equation is fitted with the crude discretizing of the data,

E(∇xt|xt−1) = α0+α1xt−1+α2x
2
t−1+α3/xt−1, where∇xt = xt−xt−1; The squared residuals ε2t ’s are

used to fit the diffusion equation using non-linear least squares, E(ε2t |xt−1) = β0 +β1xt−1 +β2x
β3
t−1.

In the second stage, the fitted values from the diffusion equation are used to form weights to refit

the linear regression for the drift equation; The diffusion equation can also be updated based on

the updated squared residuals from the drift equation. This two stage FGLS estimator has built-in

discretization bias, which gets more severe for lower sampling frequencies. Nevertheless, it can be

used as a reasonable starting point for the maximization of the likelihood.

There are two potential problems with this two-stage FGLS procedure. First, in some range,

the best fitting diffusion model might give negative fitted values which cannot be used as weights.

Second, the non-linear least square estimation itself needs initial values. We propose the following

procedures to solve these issues. Instead of using the fitted values from the diffusion equation

as weights to update the parameters in the drift equation, we use the fitted values from a local

smoother which is readily available in most statistical software. This method provides robust

weights and, therefore, robust starting estimate for the drift parameters. To avoid finding initial
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values for non-linear least squares procedure, notice that for any fixed β3, the diffusion equation

is linear in the rest of the parameters. We can then work on a grid of values of β3, using a linear

regression to estimate β0, β1, and β2 for each β3. All these estimates can be used as starting values

for diffusion parameters. We can also evaluate the likelihood at each set of the starting values and

choose the one with the highest likelihood to start with. This method works well in the numerical

application in Section 6 with daily observations.

5. COMPARING LOG TRANSITION DENSITY

We now compare the logarithm of the transition density computed from both the simulation approx-

imation and the closed-form approximation. The first-order Euler approximation is also supplied in

the comparison to illustrate situations where it performs well. The benchmark model is the general

model (21) of Aı̈t-Sahalia (1996), denoted by GEN4 in Durham (2003). This model has unknown

transition density. It has non-linear drift and no closed-form variance stabilizing transformation.

The simulation approximation is implemented in C and interfaced to R (R Development Core Team

2006). The closed-form expansions are obtained in Mathematica and exported into R.

The performance of the simulation method obviously depends on M , the number of subintervals,

and K, the number of importance sampling paths. Increasing K reduces the variance of the

approximation for any fixed M . Increasing M reduces the bias for any fixed K. When M = 1, the

method reduces to the first-order Euler scheme. For the modified Brownian bridge sampler, Stramer

and Yan (2005) recently established the trade-off between M and K under a given computing

resource. The optimal resource allocation is shown to be M =
√

K for a given computing time,

and the approximation error is of order 1/M . Four values of M are used: 2, 4, 8, and 16, each with

the corresponding optimal K = M2.

The performance of the simulation approach also depends on whether or not transforming the

process to one with unit variance. As the variance stabilizing transformation is only numerically

available, we also consider the widely used log transformation as a comprise. The log transformation

turns out to give reasonably good results which are much better than those without transforma-

tion. The simulation approximation without transformation, with numerically variance stabilizing

transformation, and with log transformation are all reported.
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The closed-form approximations we use are of the first order and the second order, obtained from

Mathematica by solving the Kolmogorov equations in Aı̈t-Sahalia (2005). A Mathematica module

is available at request. For a model as complex as model (21), the first and second order closed-form

approximation generated 34 and 207 lines of Fortran code from Mathematica, respectively.

To make the comparison of practical interest, we use the estimated models from Durham (2003)

for two well-known datasets: daily three-month treasury bill rate and daily seven-day Eurodollar

rate; see more details about the data in Section 6. Durham (2003) illustrated that these two series

behave very differently, with the Eurodollar rate exhibiting much higher volatility than the treasury

bill rate. The parameters used are the estimates of the GEN4 model taken from Table 3 and Table

4 of Durham (2003), albeit this model was not found to be superior to the alternative model with

constant drift (model GEN1 in Durham 2003). The parameters for the two models are presented

in Table 1, labeled as low volatility and high volatility, respectively. For each model, we conduct

our comparison for four levels of transition interval ∆: 1/52, 1/12, 1/4, and 1/2, corresponding to

weekly, monthly, quarterly, and semi-annual observations, respectively. This is different from the

existing literature which has mostly considered ∆ = 1/12.

[Table 1 about here.]

Two issues needs to be clarified before we present the comparison results. The first issue is,

as the true density is unknown, how to assess the approximation error. This issue is approached

by using the limit of the log density obtained in the simulation approximation with very large M

and K as a substitute. These values are chosen to be M = 256 and K = M2, combined with the

numerical variance stabilizing transformation. Since the simulation approximation is stochastic,

the limit was computed as the mean of 64 replications to ensure a good estimate of this limit. We

use the term “pseudo approximate errors” to denote the approximate errors obtained using this

estimated limit in place of the unknown truth. The second issue is how to choose the initial state

x0 and the range of x to do the comparison. We choose the initial state x0 to be the median of

the observed daily three-month treasure bill rate and seven-day Eurodallor rate, respectively. The

range of the current state x is different under different observation frequency. We limit our attention

to the interior 95% of the ∆-ahead transition distribution starting from x0. The two endpoints of

the range are chosen to be the 2.5 and 97.5 percentiles of 100,000 simulated observations from the
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transition distribution. We then compare the approximations at 40 equally spaced points including

the two endpoints in this range.

Figures 1–3 illustrate the comparison of pseudo approximation error of the log-transition-density

for the low volatility model, where the simulation approach uses no transformation, numerical vari-

ance stabilizing transformation, and log transformation, respectively. The initial state is x0 = 6.076.

Each column in these figures has the same ∆. The (blue) dashed lines and the (green) long-dashed

lines give respectively the pseudo approximation error of the first-order and second-order closed-

form approach, which are the same within each column. Unlike the closed-form approximation

approach, the approximation from the simulation approach is stochastic. We plot the pseudo ap-

proximation errors of 100 replicates in gray lines, their median in solid lines, and their 25th and

75th percentiles in dotted lines. The pseudo approximation errors of the first-order Euler scheme

are plotted in (red) dot-dashed lines.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

Several observations can be made from Figures 1–3. Both approaches give better approximation

than the first-order Euler scheme. By construction, the transition interval ∆ is important for

the performance of the closed-form approach. For this low volatility model, the second-order

closed-form approximation is extremely accurate for all ∆ values. The first-order closed-form

approximation is very accurate for ∆ as big as 1/4 (observation frequency as low as quarterly), as

the maximum pseudo error within the comparison range is only 0.05 at the right tail. At ∆ = 1/2

(semi-annual observation), the first-order closed-form approximation is very accurate in the center

part but is not as accurate at the tail of the distribution. For the simulation approach, we see

that the benefit of variance stabilizing transformation is striking by comparing the ranges of the

pseudo errors in Figure 1 and 2. For a fixed configuration of ∆, M , and K, transformation results

in dramatic reduction in the variation and bias of the simulated log density. With reasonably

small values of M and K, the simulation approach using variance stabilizing transformation can

have lower pseudo approximation error than the first-order closed-form approach, particularly at
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the tails of the transition distribution and for bigger ∆ values. The simulation approach with

no transformation, however, can only beat the first-order closed-form approach with much larger

values of M and K. For example, compare the approximation error of the log density for ∆ = 1/2

at these two configurations: (M,K) = (4, 16) with transformation and (M,K) = (16, 256) without

transformation. The approximation errors under the two settings are comparable. However, the

one with transformation uses much less computing resource. The simulation approximation with

log transformation yields accuracy in the middle of the other two versions. For all versions of

simulation approach, given ∆, one can see that, increasing M and K reduces the approximation

bias and variance, particularly at the tails.

Figures 4–6 illustrate the same comparison for the high volatility model. The initial state is

x0 = 8.111. Similar observations can be made about the importance of transformation, transition

interval, the number of auxiliary points M , and the number of sampled paths K. Some further

observations are induced by the high volatility nature of the model. The difference between the

two methods is visible even for ∆ = 1/52 (weekly observations). The second-order closed-form

approximation is still very accurate for weekly data. As ∆ increases (or as the observation fre-

quency decreases), the pseudo approximation error of the closed-form approach, both first-order

and second-order, gets larger relative to the simulation approach with the numerical variance sta-

bilizing transformation. This is particularly true at the tails of the density for larger ∆. The

properties of the simulation approach is, in contrast, not constrained by ∆ from its construction,

as long as M and K is sufficiently large. The simulation approximation is hence more robust to ∆

and the volatility nature of the model.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

For both cases of low volatility and high volatility investigated here, it is interesting to note

that the log transformation produces reasonably good comprises to the numerical variance stabi-

lizing transformation. Therefore, log transformation may be used as a simpler alternative to the

numerical transformation for positive processes which are only numerically reducible. It has the
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advantage that the derivatives are easier to evaluate than those from the numerical transformation.

These computational and numerical advantages are obtained without too much loss in accuracy,

making log transformation an important tool in analyzing positive diffusions. As pointed out by an

anonymous referee, this observation is not completely surprising because it is clear from the con-

struction of the simulation approach that it is likely to perform better when the diffusion process

is more slowly varying.

The two approaches differ substantially in their computational cost. On the log scales, Figure 7

presents the accuracy and speed comparison of the two approaches. Both low volatility and high

volatility cases are presented. The computation is done on a Linux machine with a 2.4GHz CPU.

Simulation approaches with no transformation, numerical transformation, and log transformation

are all reported, from the top to the bottom. For each approach, the four points in each plot

correspond to ∆ values of 1/52, 1/12, 1/4, and 1/2, respectively, from the bottom up. The first-

order closed-form approximation is very efficient in time, but the pseudo approximation error can

be high, particularly in the high volatility case. The second-order closed-form approximation is

extremely accurate in the low volatility case and for smaller ∆ values. Its computational cost is

less than the simulation method with (M,K) = (4, 16) using the numerical transformation, but

gives more accuracy in the interior 95% of the density. The high uniform absolute approximation

error of the closed-form approach is essentially caused by the discrepancy at the right tail of the

distribution. These observations raise the question of how to assess whether or not a “sufficiently

accurate” closed-form approximation has been obtained for a given problem. At this point, there

is no clear answer to this question.

[Figure 7 about here.]

We end this section with an artificial CIR example, a special case of model (21). The variance

stabilizing transformation is analytically available, but we apply the two approximation approaches

as if the analytical transformation is not known. True approximation errors can be computed in

this case since the true density is known. This example confirms the finding that the closed-

form approximation can give inaccurate result compared to the simulation approach when ∆ is

big. Consider the CIR model of (20) with θ = (0.3, 0.6, 0.5)T . This model specifies a high mean

reverting process, with unconditional mean 0.5. We compare the approximation errors from the
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two approaches in Figure 8 for ∆ values at 1/12, 1/4, 1/2, and 1. The simulation approach uses

numerical variance stabilizing transformation and takes (M,K) at (8, 64) and (32, 1024). It is

interesting to note where closed-form approach stop being accurate. In the case when ∆ = 1/2 or

1, the closed-form approach is seen to perform not as well at the two tails of the density. The caution

here is that the closed-form approximation is developed assuming that ∆ is small. This raises the

question of “how small is small”. For financial data, daily data (probably weekly and monthly)

can be considered to have small ∆, and the closed-form approach works well elegantly. But for low

frequency data from other fields (Taylor, Cumberland, and Sy 1994), there is not much existing

empirical studies to give guidelines. In that case, the simulation approach is more robust and can

be trusted with larger M and K values. Low frequency data usually have fewer observations, which

implies that the computation with large M and K can be practically affordable.

[Figure 8 about here.]

6. APPLICATIONS

We now apply the simulation approximation, the closed-form approximation, and the first-order

Euler approximation to the two well known datasets in the finance literature: daily three-month

treasury bill rate and daily seven-day Eurodollar rate. The treasury bill rate has much lower

volatility than the Eurodollar rate. They have been analyzed by Durham (2003) using the simulated

MLE. To have more control over the comparison, we use our own implementation of the simulation

approach and the results are only slightly different from Durham (2003).

6.1 Daily Three-month Treasury Bill Rate

The three-month treasury bill rate data consists of 7,555 daily observations spans from January 4,

1965 to July 28, 1995. We use ∆ = 1/252 to correspond to daily observations. Two models are

fitted: a full model (21) of Aı̈t-Sahalia (1996) and a constrained model of (21) with α1 = α2 =

α3 = 0. We denote them by GEN4 and GEN1, respectively, as in Durham (2003). The simulation

approach uses the numerical variance stabilizing transformation, and (M,K) is chosen to be (8, 64).

The approximated loglikelihood function is maximized using the Nelder-Mead algorithm, which

does not require gradient and is found to give the most robust results. The variance matrices of
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the estimates are obtained by inverting the negative Hessian matrix of the loglikelihood function

at the maximum. The results are presented in Table 2.

[Table 2 about here.]

Both methods gives similar parameter estimates and maximum loglikelihood for both GEN1

and GEN4. GEN1 is preferred to GEN4 in terms of AIC or SBC, since the increase in loglikelihood

brought by GEN4 does not compensate the model complexity. As noticed in Durham (2003),

the process of treasury bill rate has low volatility. Therefore, not surprisingly, the first-order

Euler approximation also gives very close parameter estimates and maximum loglikelihood. The

estimated diffusion function of GEN1 from the three methods are compared in Figure 9. They are

very close to one another.

[Figure 9 about here.]

In our experiment, we noticed that the standard errors for parameter estimates can be difficult

to obtain with smaller M and K in the simulation approach. Numerically differentiating the

loglikelihood function is already a difficult problem for the simulation approach. (Aı̈t-Sahalia

2002b). Numerically computing the variance stabilizing transformation makes the problem even

harder. Closed-form approximation clearly has an advantage here.

To have a better idea on the computational cost of the two methods in practice, we summarize

the time consumed in seconds for 100 evaluations of the loglikelihood for this dataset in Table 3.

Maximizing the loglikelihood can involve thousands of evaluations of the loglikelihood. Given the

similar estimation results in Table 2, the time consumed by the first-order closed-form approxima-

tion is much shorter than other approximations.

[Table 3 about here.]

6.2 Daily Seven-day Eurodollar Rate

The Eurodollar rate data consists of 5,505 daily observations of the seven-day Eurodollar deposit

spot rate from June 1, 1973 to February 25, 1995. We did the same comparison as for the treasury

bill rate data. The results are compared in Table 4.
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[Table 4 about here.]

The same conclusion of Durham (2003) is obtained from the closed-form approximation ap-

proach: The GEN1 model is preferred to the GEN4 model. In contrast to the case of the treasure

bill rate data, where all approximations lead to close MLEs and loglikelihood, the Eurodollar

data reveals how these methods can yield noticeably different results. We first notice that the

maximized loglikelihood are different across different approximation methods. For example, for

the GEN1 model, the simulation approach using numerical transformation with (M,K) = (8, 64)

yields −941, the first-order closed-form yields −961, the second-order closed-form yields −951, and

the first-order Euler scheme yields −1003.3. These differences indicate that the problem is difficult.

The maximized loglikelihood from first-order and second-order closed-form approximations differ

by about 10 points. The second-order closed-form result is closer to the simulation result than the

first-order, but still with a difference of about 10 points. Put in the context of likelihood ratio, a 10

point difference could be a significant difference. We also note that the parameter estimates for the

GEN4 model from all approximations are noticeably different in β2 and β3, even after considering

their standard errors. For example, the point estimate of β3 is 4.221 with standard error 0.024

from the simulation approach, but 4.011 with standard error 0.034 from the second-order closed-

form. Although the difference may not be of practical significance, they are 2 standard errors

apart from each other. Given all these different results, how would one choose among them? A

simple but computing intensive solution is to increase M and K and see what happens. We tried

(M,K) = (16, 256) and the result does not differ much from that with (M,K) = (8, 64). Therefore,

for this more difficult problem, the simulation method has an advantage in that it gives a way to

assess the accuracy against itself and against the closed-form method. This example suggests that,

even for daily observations, the approximated loglikelihood can have a significant difference across

different approximations for large dataset. These differences may be caused by the performance

of the closed-form method at the tails of the transition density. Large dataset and heavy tailed

transition density increase the frequency of extreme observations.

The estimated diffusion function in the GEN1 model from the three methods are plotted in

Figure 9. They are quite close for the majority of the span of the data: The 5th and 95th sample

percentiles are 3.168 and 15.589.
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It is worth noting that these parameter estimates are quite different from those in Aı̈t-Sahalia

(1996), which were obtained by minimizing the distance between the parametric marginal density

to a nonparametric density estimate. Aı̈t-Sahalia (1996) imposes stationarity conditions that puts

restrictions on the possible shape of the drift (see also Jones 2003, p.794). When the maximum

likelihood without constraints is used, the closed-form approach of Aı̈t-Sahalia (2005) gives close

results to those from the simulation approach (Durham 2003), at least in the preferred GEN1

model.

7. DISCUSSION

In this paper we focus on the simulation method (Durham and Gallant 2002) to approximate the

likelihood of discretely observed diffusion processes and compared it to the closed-form approx-

imation (Aı̈t-Sahalia 2005). The theoretical justification of using the modified Brownian bridge

sampler proposed by Durham and Gallant (2002) in the simulated method has not been discussed

before in the literature. For the case of constant volatility, we provide a rigorous justification for the

advantage of using the modified Brownian bridge sampler over Euler approximation to a Brownian

bridge diffusion process. For the case of non-constant volatility, further research is ongoing.

Our simulation study illustrates the importance of transforming the process of interest to one

with constant volatility. Durham and Gallant (2002) has established this importance with the CIR

process, where such a transformation is analytically available. In general, when this transformation

cannot be done analytically, the gain in accuracy is well worth the cost of numerical transformation.

We illustrate this point from a different angle in Figure 10, where the simulation methods with

and without transformation are calibrated such that they use approximately the same computing

time. Pseudo approximation errors of three implementations (top to bottom: no transformation,

numerical transformation, and log transformation) are compared at various transition interval ∆

for the low volatility model in Table 1. The configuration is similar to those illustrated in Figure 1–

3. The three methods used 65, 62, and 65 seconds to evaluate the log density at 40 points for

100 replicates, respectively. The method with numerical transformation has much better accuracy.

Note that the method with numerical transformation used (M,K) = (16, 256) while the method

without transformation used (M,K) = (20, 400). Since the numerical transformation only needs
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to compute the transformation grid once for each loglikelihood evaluation (see Section 4), this

fixed cost takes an even smaller proportion of computing time for larger datasets. We therefore

suggest that transforming to constant volatility be done whenever possible for univariate diffusions.

The Brownian bridge sample, however, is general and can provide reasonably accurate results even

without transformation. This is particularly important for irreducible multivariate diffusions.

[Figure 10 about here.]

Our comparison of the simulation method and the closed-form method has two distinguish-

ing features. First, the benchmarking process (21) has unknown transition density and has no

closed-form variance stabilizing transformation. Second, the simulation approach uses the modified

Brownian bridge sampler which has been shown to be more efficient than other samplers. Based on

the following observations from our study, the two approaches are practically complement to each

other in terms of accuracy and computing speed.

The simulation approximation is stochastic. For the one-dimensional case, it should be applied

with transforming the process to one with unit volatility for more accurate approximation. The

simulation method is robust to the size of ∆. The approximation error can be controlled by

increasing the number of subintervals M and the number of simulated sample paths K. For large

values of M and K, the approximation is known to converge to the unknown truth. The issue

is how much computing resources one can afford. For a given amount of computing resource, the

optimal allocation of M and K is such that K = M2 (Stramer and Yan 2005). The choice of M can

be done by trial-and-error until an acceptable accuracy is obtained. The final approximation can

be used to check the performance of closed-form approximation when the true transition density is

unknown. This approach is simple to implement and is no stranger to many practitioners. It can

be easily enhanced using various numerical techniques (Brandt and Santa-Clara 2002a). Compared

to the closed-form approach, it is at a disadvantage in speed and accuracy for small ∆ values. As

illustrated in Section 5, these small ∆ values covers monthly observations, and even quarterly data if

the volatility is low. Another disadvantage is that it can be difficult differentiating the loglikelihood

or transition density, which is important in maximizing the likelihood, getting standard errors of

the estimates, and applications such as pricing derivatives. The difficulty roots in the fact that the
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approximated density is not smooth. The problem gets even harder when the variance stabilizing

transformation is not available in closed-form and has to be computed numerically.

The closed-form approximation works well for smaller ∆ values. The first-order approximation

is very fast and the second-order approximation can be extremely accurate for small transition

interval ∆. It has the advantage of being non-stochastic, which makes it easy to differentiate

the loglikelihood or the transition density. Expressions of the closed-forms can be obtained with

software which can do symbolic calculation and export the generated code in Fortran or C format.

A Mathematica module has been written for this purpose. One critical drawback of the closed-

form approximation is that it is very difficult to assess the accuracy for a given problem. The

method can only be applied to small values of ∆ as it is a Taylor series expansion near ∆ = 0.

Increasing the order of approximation does not necessarily solve this problem. The theory (Aı̈t-

Sahalia 2002a) guarantees its convergence to the true density for ∆ ∈ (0,∆) under appropriate

conditions. This threshold ∆ depends on both the drift and the volatility. The determination of

the threshold ∆, however, can be difficult in practice. The question of “how small a ∆ is small”

can practically be answered with extensive comparison studies using the simulation method. Our

numerical illustration shows a higher volatility model demands a smaller ∆ for the closed-form

approximation to work well. From a practical point of view, we are fortunate that financial data

often has monthly or higher frequency, that is ∆ ≤ 1/12, but in other applications, for example,

longitudinal AIDS data (Taylor et al. 1994), where the observation frequency is low, one should be

cautious and should check the approximation against the simulation method. For a given value of

transition interval ∆, our simulation results suggest that the closed-form approximation have larger

errors further in the tails. The study only compares the log transition densities over the interior

95% of the distribution. As pointed out by a referee, for a dataset of 5000 observations, about

250 will occur outside of this region, which may lead to a fair amount of error in the loglikelihood.

Therefore, when the tail of the transition density gets heavier, the performance of the closed-form

approximation deteriorates and needs to be watched for.

The extension of the modified Brownian bridge to multivariate diffusions has been applied in

Golightly and Wilkinson (2005). The closed-form approximation for general multivariate diffusions

is in Aı̈t-Sahalia (2005). A comparison study of the two different approaches in the multivariate
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setting will be interesting.
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Figure 1: Pseudo approximation error comparison with the simulation approach using no trans-
formation: low volatility case. The initial state is x0 = 6.076. The (blue) dashed lines are the
first-order closed-form approximation. The (green) long-dashed lines are the second-order closed-
form approximation. The gray lines are 100 replicates of the simulation approximation. The solid
lines are the median, and the dotted lines are the 25th and 75th percentiles of 100 replicates. The
(red) dot-dashed lines are the first-order Euler approximation.
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Figure 2: Pseudo approximation error comparison with the simulation approach using numerical
variance stabilizing transformation: low volatility case. The initial state is x0 = 6.076. The
(blue) dashed lines are the first-order closed-form approximation. The (green) long-dashed lines
are the second-order closed-form approximation. The gray lines are 100 replicates of the simulation
approximation. The solid lines are the median, and the dotted lines are the 25th and 75th percentiles
of 100 replicates. The (red) dot-dashed lines are the first-order Euler approximation.
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Figure 3: Pseudo approximation error comparison with the simulation approach using log trans-
formation: low volatility case. The initial state is x0 = 6.076. The (blue) dashed lines are the
first-order closed-form approximation. The (green) long-dashed lines are the second-order closed-
form approximation. The gray lines are 100 replicates of the simulation approximation. The solid
lines are the median, and the dotted lines are the 25th and 75th percentiles of 100 replicates. The
(red) dot-dashed lines are the first-order Euler approximation.
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Figure 4: Pseudo approximation error comparison with the simulation approach using no trans-
formation: high volatility case. The initial state is x0 = 8.111. The (blue) dashed lines are the
first-order closed-form approximation. The (green) long-dashed lines are the second-order closed-
form approximation. The gray lines are 100 replicates of the simulation approximation. The solid
lines are the median, and the dotted lines are the 25th and 75th percentiles of 100 replicates. The
(red) dot-dashed lines are the first-order Euler approximation.

30



7.0 7.5 8.0 8.5 9.0 9.5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

delta = 1/52, M = 2, K = 4

lo
g 

de
ns

ity

6 7 8 9 10 11

−
0.

15
−

0.
10

−
0.

05
0.

00

delta = 1/12, M = 2, K = 4

lo
g 

de
ns

ity

6 8 10 12 14

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

delta = 1/4, M = 2, K = 4

lo
g 

de
ns

ity

4 6 8 10 12 14 16

−
1.

0
−

0.
5

0.
0

delta = 1/2, M = 2, K = 4

lo
g 

de
ns

ity

7.0 7.5 8.0 8.5 9.0 9.5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

delta = 1/52, M = 4, K = 16

lo
g 

de
ns

ity

6 7 8 9 10 11

−
0.

15
−

0.
10

−
0.

05
0.

00

delta = 1/12, M = 4, K = 16

lo
g 

de
ns

ity

6 8 10 12 14

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

delta = 1/4, M = 4, K = 16

lo
g 

de
ns

ity

4 6 8 10 12 14 16

−
1.

0
−

0.
5

0.
0

delta = 1/2, M = 4, K = 16

lo
g 

de
ns

ity

7.0 7.5 8.0 8.5 9.0 9.5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

delta = 1/52, M = 8, K = 64

lo
g 

de
ns

ity

6 7 8 9 10 11

−
0.

15
−

0.
10

−
0.

05
0.

00

delta = 1/12, M = 8, K = 64

lo
g 

de
ns

ity

6 8 10 12 14

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

delta = 1/4, M = 8, K = 64

lo
g 

de
ns

ity

4 6 8 10 12 14 16

−
1.

0
−

0.
5

0.
0

delta = 1/2, M = 8, K = 64

lo
g 

de
ns

ity

7.0 7.5 8.0 8.5 9.0 9.5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

delta = 1/52, M = 16, K = 256

lo
g 

de
ns

ity

6 7 8 9 10 11

−
0.

15
−

0.
10

−
0.

05
0.

00

delta = 1/12, M = 16, K = 256

lo
g 

de
ns

ity

6 8 10 12 14

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

delta = 1/4, M = 16, K = 256

lo
g 

de
ns

ity

4 6 8 10 12 14 16

−
1.

0
−

0.
5

0.
0

delta = 1/2, M = 16, K = 256

lo
g 

de
ns

ity

Figure 5: Pseudo approximation error comparison with the simulation approach using numerical
variance stabilizing transformation: high volatility case. The initial state is x0 = 8.111. The
(blue) dashed lines are the first-order closed-form approximation. The (green) long-dashed lines
are the second-order closed-form approximation. The gray lines are 100 replicates of the simulation
approximation. The solid lines are the median, and the dotted lines are the 25th and 75th percentiles
of 100 replicates. The (red) dot-dashed lines are the first-order Euler approximation.
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Figure 6: Pseudo approximation error comparison with the simulation approach using log trans-
formation: high volatility case. The initial state is x0 = 8.111. The (blue) dashed lines are the
first-order closed-form approximation. The (green) long-dashed lines are the second-order closed-
form approximation. The gray lines are 100 replicates of the simulation approximation. The solid
lines are the median, and the dotted lines are the 25th and 75th percentiles of 100 replicates. The
(red) dot-dashed lines are the first-order Euler approximation.
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Figure 7: Accuracy and speed of different approximation methods for the log transition density.
The four points for each method correspond to ∆ values of 1/52, 1/12, 1/4, and 1/2, respectively,
from the bottom up. The reported times are the averages of 100 replication of evaluating the log
density at 40 points in the interior 95% of the ∆-ahead transition distribution starting from x0.
The reported uniform absolute errors are the average of the maximum absolute errors from the 100
replications.

33



0.4 0.5 0.6 0.7

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

delta = 1/12, M = 8, K = 64

lo
g 

de
ns

ity

0.2 0.3 0.4 0.5 0.6 0.7 0.8
−

0.
15

−
0.

05
0.

05
0.

15
delta = 1/4, M = 8, K = 64

lo
g 

de
ns

ity
0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4

delta = 1/2, M = 8, K = 64

lo
g 

de
ns

ity

0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

delta = 1, M = 8, K = 64

lo
g 

de
ns

ity

0.4 0.5 0.6 0.7

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

delta = 1/12, M = 32, K = 1024

lo
g 

de
ns

ity

0.2 0.3 0.4 0.5 0.6 0.7 0.8

−
0.

15
−

0.
05

0.
05

0.
15

delta = 1/4, M = 32, K = 1024

lo
g 

de
ns

ity

0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
delta = 1/2, M = 32, K = 1024

lo
g 

de
ns

ity
0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

delta = 1, M = 32, K = 1024

lo
g 

de
ns

ity

Figure 8: Approximation error comparison with the simulation approach using numerical variance
stabilizing transformation: artificial CIR case. The initial state is x0 = 0.5. The (blue) dashed lines
are the first-order closed-form approximation. The (green) long-dashed lines are the second-order
closed-form approximation. The gray lines are 100 replicates of the simulation approximation. The
solid lines are the median, and the dotted lines are the 25th and 75th percentiles of 100 replicates.
The (red) dot-dashed lines are the first-order Euler approximation.
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Figure 9: Comparison of the estimated diffusion function of the GEN1 model for the treasury bill
rate and Eurodollar rate. The solid line is from the simulation method. The (blue) dashed line and
(green) dot-dashed line are first-order and second-order closed-form approximation, respectively.
The (red) dotted line is from the first-order Euler approximation.
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Figure 10: Pseudo approximation error comparison with given computing time. The three rows from
top to bottom correspond to no transformation, numerical transformation, and log transformation,
respectively. The initial state is x0 = 6.076. The gray lines are 100 replicates of the simulation
approximation. The solid lines are the median, and the dotted lines are the 25th and 75th percentiles
of 100 replicates.
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Table 1: Model parameters for the log-transition-density comparison.
Model α0 α1 α2 α3 β0 β1 β2 β3

Low volatility −3.3157 0.7328 −0.0503 6.2555 0.3667 −0.0275 0.0030 3.3732
High volatility −28.8908 5.6030 −0.3119 52.4248 −5.3686 2.2718 0.0013 4.2011

Table 2: Parameter estimates and standard errors from three methods for the daily observations
of the three-month treasury bill rate. The simulation method uses (M,K) = (8, 64).

Method Ln α0 α1 α2 α3 β0 β1 β2 × 103 β3

Model GEN1
Simulation 7813.85 0.344 0.389 −0.035 3.270 3.356

0.203 0.112 0.032 0.184 0.024
Closed-Form 1 7813.90 0.341 0.382 −0.033 3.224 3.361

0.203 0.112 0.032 0.180 0.024
Closed-Form 2 7813.87 0.343 0.365 −0.026 3.057 3.380

0.203 0.112 0.032 0.165 0.023
Euler 7817.63 0.341 0.204 0.032 1.929 3.551

0.203 0.120 0.034 0.078 0.021
Model GEN4

Simulation 7814.41 −3.851 0.826 −0.055 7.196 0.358 −0.023 2.999 3.387
10.383 1.780 0.094 18.572 0.112 0.032 0.160 0.023

Closed-Form 1 7814.46 −2.980 0.673 −0.047 5.710 0.361 −0.025 3.041 3.382
10.376 1.779 0.094 18.560 0.112 0.032 0.164 0.023

Closed-Form 2 7814.41 −3.148 0.707 −0.049 5.946 0.360 −0.024 3.035 3.383
10.390 1.781 0.094 18.586 0.112 0.032 0.163 0.023

Euler 7817.91 −0.969 0.422 −0.040 1.305 0.332 −0.015 2.833 3.408
10.362 1.777 0.094 18.529 0.114 0.032 0.146 0.023

Table 3: Time consumed in seconds for 100 evaluations of the loglikelihood. The simulation method
uses (M,K) = (8, 64). The numerical transformation uses 100 grid points.

Dataset Nobs Closed-form Simulation

1st-order 2nd-order No transform Numerical transform Log transform

Treasure-Bill 7555 7.5 103.6 728.3 1361.1 898.1
Eurodollar 5505 5.6 76.6 533.4 992.1 646.4
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Table 4: Parameter estimates and standard errors from three methods for the daily observations
of the seven-day Eurodollar rate. The simulation method uses (M,K) = (8, 64).

Method Ln α0 α1 α2 α3 β0 β1 β2 × 103 β3

Model GEN1
Simulation −941.20 2.109 −5.506 2.319 1.276 4.238

0.693 0.532 0.150 0.045 0.024
Closed-Form 1 −961.26 2.046 −4.911 2.202 1.252 4.255

0.710 0.569 0.156 0.041 0.023
Closed-Form 2 −950.93 2.071 −4.625 2.078 1.908 4.098

0.704 0.540 0.151 0.115 0.029
Euler −1003.33 2.102 −5.438 2.339 2.259 3.990

0.714 0.550 0.152 0.181 0.035
Model GEN4

Simulation −938.80 −29.073 5.581 −0.306 53.273 −5.473 2.308 1.335 4.221
26.313 4.046 0.186 49.806 0.538 0.151 0.051 0.024

Closed-Form 1 −958.71 −30.217 5.656 −0.301 55.896 −4.888 2.199 1.256 4.254
26.710 4.099 0.189 50.731 0.575 0.157 0.041 0.024

Closed-Form 2 −948.45 −35.386 6.646 −0.358 63.843 −4.369 1.990 2.418 4.011
26.293 4.033 0.185 49.951 0.552 0.155 0.188 0.034

Euler −999.60 −16.448 3.471 −0.202 31.226 −5.944 2.512 1.269 4.204
26.553 4.046 0.184 50.598 0.547 0.151 0.047 0.025
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