
On Bayesian analysis of non-linear continuous-time autoregression

models

O. Stramer∗ and G.O. Roberts†

January 19, 2004

Abstract

This paper introduces a method for performing fully Bayesian inference for non-linear conditional auto-

regressive continuous-time models, based on a finite skeleton of observations. Our approach uses MCMC

and involves imputing data from times at which observations are not made. It uses a reparameterisation

technique for the missing data, and due to the non-Markovian nature of the models, it is necessary to

adopt an overlapping blocks scheme for sequentially updating segments of missing data. We illustrate

the methodology using both simulated data and a data set from the S & P 500 index.

1 Introduction

We consider modeling a class of continuous-time non-linear autoregressive models, with ad-

ditive noise of constant instantaneous variance, called the NLCAR(p) models. A NLCAR(p)

process, is defined in Tsai & Chan (2000) to be a solution of the p-th order linear differential

equation

dX (p−1)(t) = g(X(t); θ)dt + σdW (t), (1)

where X(t) = (X(t), X (1)(t), . . .X (p−1)(t))′, g(X(t), θ) is the drift, θ and σ > 0 are param-

eters, and W (t) is a standard Brownian motion. We assume that X(0) = (x0, x1, . . . , xp−1)

and define X (0)(t) to be X(t).

In particular this class includes continuous-time linear autoregressive (CAR) models and

continuous-time threshold autoregressive (CTAR) models, defined in Brockwell(1994).

We consider modeling time series data obtained from sampling an underlying NLCAR

process X(t). We assume that the data are obtained from sampling X(t) at discrete times

0 = t0 < t1 < . . . < tN . (i.e. X(ti) = yi for i = 0, . . . , N).
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The likelihood function of discrete-time data sampled from a NLCAR continuous-time

process is usually unavailable. Some classical approaches for the inference of CTAR processes

had been proposed in the literature (Tong and Yeung, 1991 and Brockwell, 1994). All

methods involve assuming that the likelihood of the observations is Gaussian, and it is

therefore of value to find methodology which can work with the exact likelihood.

If sufficiently fine data is available, then at least for known σ, its likelihood can be

approximated by the Girsanov’s formula, as we shall see in (5). However the data may not

be sufficiently fine for the likelihood to be well-approximated.

This problem can be thought of as a missing data problem, and a natural and generally

well-understood Bayesian solution to this problem is to use data augmentation (Tanner &

Wong, 1987). Data-augmentation successively imputes missing data and updates parameters

(θ, σ) from their conditional distribution given the augmented dataset. Recent papers which

have applied this strategy in practice include Elerian et al. (2001), Eraker (2001), and Eraker

et al. (2002).

However in the present context, due to very high posterior correlation between missing

path and the volatility σ of the diffusion, data-augmentation can lead to arbitrary poor

convergence properties. See Elerian et al. (2001), and Roberts & Stramer (2001) for p = 1.

In Roberts & Stramer (2001), a data reparameterisation scheme which breaks down de-

pendency between the transformed missing paths and the volatility for p = 1 has been

proposed. The algorithm iterates between updating the missing parameters, and the trans-

formed missing data. One useful feature of the case p = 1 is that the missing data can

be naturally partitioned into segments in between observed data, such that all segments

are conditionally independent. This helps considerably in the construction of algorithms,

and the approach adopted in Roberts & Stramer (2001) is a straightforward independence

sampler procedure.

In this paper we generalise the reparameterisation scheme in Roberts & Stramer (2001)

to the NLCAR(p), p > 1 models. In this case, the imputed diffusion sample paths between

observed data are no-longer independent, but in fact are highly correlated, due to the fact

that the smoothness of sample paths requires that left and right derivatives need to agree at
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observed data. To avoid this problem we propose to use alternative approaches that involve

block updating of collections of overlapping segments.

2 NLCAR models: Definition and Notations

A non-linear continuous-time autoregressive process X(t) of order p, with p > 0, is defined

in (1) or equivalently has the state space representation

dX(t) = X (1)(t)dt

dX (1)(t) = X (2)(t)dt

...

dX (p−2)(t) = X (p−1)(t)dt

dX (p−1)(t) = g(X(t), . . . , X (p−1)(t), θ)dt + σdW (t),

(2)

with X(0) = x = (x0, x1, . . . , xp−1).

When the instantaneous mean g is linear, i.e.

g(X(t), θ) = a0 + a1X(t) + . . . apX
(p−1)(t), (3)

the NLCAR(p) model become a CAR(p) model.

When

g(X(t); θ) = a0(X(t)) + a1(X(t))X(t) + . . . ap−1(X(t))X (p−1)(t), (4)

where a0(x), a1(x), . . . , ap−1(x) are piecewise constant functions with constant values on the

intervals [ri−1, ri), and −∞ = r0 < r1 < . . . < rk = ∞, the NLCAR(p) model become a

continuous-time threshold autoregressive (CTAR) model, see for example Brockwell(1994).

We firstly note that if X(0) = x is given, then we can write X(t) =

(X(t), X (1)(t), . . .X (p−1)(t))′, in terms of {X (p−1)(s), 0 ≤ s ≤ t} using the relations,

X(p−2)(t) = xp−2 +
∫ t

0
X(p−1)(s)ds, . . .X(t) = x0 +

∫ t

0
X(1)(s)ds.

Using the same steps as in Brockwell (1994) for CTAR models, we can show that when g

satisfies growth conditions, then (2) has a unique (in law) weak solution. Throughout this
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paper we assume that (X (p−1)(t), W (t)) on (C[0,∞),B[0,∞), Pσ, {Ft}) is a weak solution of

(1), 0 ≤ t ≤ tN , with initial condition X(0) = x = (y0, 0).

Let Wσ be the law of a standard Brownian motion with volatility σ defined on

(C[0,∞),B[0,∞)). Given X(t) in the time interval [0, tN ], the Radon-Nikodym derivative

of the law of X with respect to Wσ is given by Girsanov’s formula

dPσ(X)

dWσ

= G(X, g, θ, σ) (5)

where

G(X, g, θ, σ) = exp

{
∫ T

0

g(X(s), θ)

σ2
dX (p−1)(s) − 1

2

∫ T

0

g2(X(s), θ)

σ2
ds

}

. (6)

Throughout this paper we will adopt the following notational conventions, some of which

have already been used. Processes transformed to have unit quadratic variation for their (p−
1)th derivative, are all written with a tilde, e.g, X̃. Processes which are further transformed

to be 0 at the times of observations, {ti}, are written with a double tilde, e.g ˜̃X. The same

connections are used for the respective probability laws. We continue with a summary of

some important notation which follows.

X process of interest, defined as a solution to (1)
Z “dominating process”, defined as a solution to (1) with g ≡ 0

X̃ mean scaled process defined as X̃ = X/σ
˜̃X mean centered process defined as in (8)

H proposed process needed for updating ˜̃X
N piecewise linear approximation to X used to construct H

3 A missing data problem

3.1 Preamble

If the complete data on a finite time interval, {X(t), 0 ≤ t ≤ tN}, is given, then σ is

completely identified through the usual quadratic variation identity:

σ2tN =

∫ tN

0

[dX (p−1)(t)]2, a.s. (7)

and therefore inference for θ can be carried out under the assumption that σ is known. Its

likelihood G(X, g, θ, σ) with respect to the distribution of a Brownian motion with volatility

4



σ is given in (6).

Thus we would like to find a way of completing the missing path. We write Xmis for

the sample path of X on [0, tN ] excluding the observed observations y = {X(ti), 1 ≤ i ≤
N}. Data-augmentation successively imputes missing datasets Xmis and updates parameters

(θ, σ) from their conditional distribution given the augmented dataset.

In practice, we have to impute a finite number of points from the diffusion sample path

X(t). For simplicity, we shall impute X
(

ti + ∆ti
m

k
)

, ∆ti = ti+1 − ti, for i = 0, . . . , N − 1,

and k = 1, . . . , m − 1 given X(ti), i = 0, . . . , N . The choice of m will be important, since it

will be important to choose m sufficiently large that the diffusion and its likelihood are well

approximated.

Recent papers which have applied this strategy in practice include Elerian et al. (2001),

Eraker (2001), and Eraker et al. (2002).

However in the present context, the data-augmentation technique has a problem which

can dramatically affect algorithm mixing. For large m, the number of iterations of the

algorithm needed to achieve convergence is known to be O(m). See Elerian et al. (2001),

and Roberts & Stramer (2001) for p = 1. This is essentially caused by very high posterior

correlation between σ and the missing path. See (7).

In many contexts, this approach will be sufficient, but in problems where g is highly non-

linear between observed data points, the approximations involved can still be unacceptably

poor.

3.2 Reparameterisation Scheme

In Roberts & Stramer (2001), a data reparameterisation scheme for p = 1 has been proposed

which has the property that the algorithm does not degenerate as m → ∞.

The reparameterisation scheme in Roberts & Stramer (2001) proceeds as follows. We

set X̃(s) = X(s)/σ, and then apply a piecewise linear transformation to X̃, to produce

˜̃X ensuring that ˜̃X(ti) = 0 at all observed data points. This is essentially the unique

transformation of the missing data that allows us to construct an irreducible Markov chain

Monte Carlo algorithm for simulating from the appropriate posterior distribution. The
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algorithm iterates between updating the missing parameters, and the transformed missing

data.

We now generalise the reparameterisation scheme of Roberts & Stramer (2001) to the

NLCAR(p), p > 1 models. We set X̃(s) = X(s)/σ, and then apply a piecewise linear

transformation to X̃, to produce ˜̃X, ensuring that ˜̃X(ti) = 0 at all observed data points, as

follows.

˜̃X(t) = X̃(t) − E(Z̃(t)|Z̃(ti) = ỹi, i = 0, . . . , N), (8)

where ỹi = yi/σ and Z(t) is a solution of (2) with g ≡ 0, and Z(0) = (y0, 0). Clearly

˜̃X(ti) = 0 for all i = 0, . . . , N .

For p = 1, Z̃(t) is a standard Brownian motion with a starting point ỹ0 and

˜̃X(s) = X̃(s) − (ti − s)ỹi−1 + (s − ti−1)ỹti

ti − ti−1
, ti−1 < s < ti.

Returning to the case of more general p, we recall that we are assuming that X(0) =

(y0, 0). Therefore, using integration by parts, it is easy to check that if y0 = 0 then

X(t) =

∫ t

0
X(p−1)(s)(t − s)p−2

(p − 2)!
ds. (9)

Thus, since Z̃(p−1) is a standard Brownian motion, Z̃ is a Gaussian process and

E(Z̃(t)|Z̃(ti) = ỹi, i = 0, . . . , N) is a linear combination of ỹ = y/σ. Here (and analo-

gously elsewhere) we adopt the shorthand notation, y = {yi, 1 ≤ i ≤ N}.
We now provide a theoretical justification to the construction ˜̃X(t). We firstly introduce

the following definitions and notation.

Let Z be a strong solution to (2) with g ≡ 0 and Z(0) = (y0, 0). Let Z
σ denotes the law

of Z(t), 0 ≤ t ≤ tN and let Z
σ
y denotes the law of Z(t), 0 ≤ t ≤ tN conditioned on Z(ti) = yi

for i = 0, . . . , N . In particular, when σ = 1 and y = 0, we denote Z
1
0

by Z0.

Denote the N -dimensional Lebesgue density of Y under Pσ by k(tN , y, g, θ, σ) and under

the measure induced by Z by f(tN , y, σ).

Now we can factorise the measure Z
σ as follows.

Z
σ = Z

σ
y × lebN(y) × f(tN , y, σ). (10)
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Thus, the conditional density of Xmis with respect to Z
σ
y is

dPσ

dZσ
y

(Xmis|y) = G(X, g, θ, σ)
f(tN , y, σ)

k(tN , y, g, θ, σ)
(11)

∝ G(X, g, θ, σ) .

The dominating measure Z
σ
y depends on σ. In order to circumvent this problem, we

factorise the distribution of Pσ in such a way that the dominating measure is independent

of σ.

We use the transformation ˜̃X, defined as in (8) to write,

dPσ(
˜̃Xmis, y) = G(ν( ˜̃X), µ, θ, 1)f(tN , y, σ)dZ0 ⊗ lebN , (12)

where

µ(X(t), θ, σ) =
g(σX(t), θ)

σ
(13)

and ν( ˜̃X) just inverts (8) so that

ν( ˜̃X)(t) := ˜̃X(t) + E(Z̃(t)|Z̃(ti) = ỹi, i = 1, . . . , N) (14)

The dominating measure Z0 is independent of σ. By (12) we can easily write down the

conditional distribution of the transformed missing data:

dPσ(
˜̃Xmis|y)

dZ0
∝ G{ν( ˜̃X), tN , µ, 1, θ} (15)

4 The MCMC algorithm

4.1 General

The Metropolis-Hastings algorithm iterates between updating the missing parameters, and

the transformed missing data according to their conditional posterior distributions.

For a fully Bayesian framework, we shall fix priors on all unknown parameters. We shall

assume that σ and θ have continuous prior densities pσ(·) and pθ(θ) respectively on IR. As a

result, and using (12), we can write the posterior conditional density of θ and the posterior

conditional density of σ as follows.

p(θ| ˜̃Xmis, y, σ) ∝ G{ν( ˜̃X
(p−1)

), tN , µ, 1, θ}pθ(θ), (16)
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where ν and µ are defined as in (14) and (13) respectively.

p(σ| ˜̃Xmis, y, θ) ∝ G{ν( ˜̃X), tN , µ, 1, θ}f(tN , y, σ) pσ(σ) . (17)

The conditional distributions (15), (16) and (17) provide the basis for the algorithm.

Updating θ and σ can be carried out using standard Metropolis-Hastings steps. For

updating σ, it is important to note that ν( ˜̃X) is a function of σ. The calculation of ν( ˜̃X)

will be given in the Appendix. Updating ˜̃X is less straightforward and will be discussed in

Section 4.2

4.2 Updating ˜̃X

We propose a new process ˜̃H(s), 0 ≤ s ≤ tN , from a proposal conditional diffusion distri-

bution P ˜̃
H

which is the law obtained by conditioning the proposed diffusion process { ˜̃N(s),

0 ≤ s ≤ tN}, with ˜̃N(0) = 0, on ˜̃N(ti) = 0, for i = 1, . . . , N . We require that Z0 be

absolutely continuous with respect to P ˜̃
H

.

One natural choice for ˜̃N is the Gaussian process Z, where Z is defined as a strong solution

to (2), with g ≡ 0, σ = 1 and Z(0) = 0. For this choice of N , P ˜̃
H

is simply Z0. Simulation

of ˜̃H, which is a Gaussian process, can be carried out via a full multivariate analysis on a

suitable discretisation.

An improvement on the choice of ˜̃N would be to use a linear process on [ti−1, ti]. In

this paper we describe one natural choice for ˜̃N when X(t) is a CTAR model. Recall that a

CTAR model is defined as a solution to (2) where g is defined as in (4). Let N be a solution

to (2) with drift

gL(N(t); θ) = a0(N(ti)) + a1(N(ti))N(t) + . . . ap−1(N(ti))N
(p−1)(t), ti ≤ t < ti+1 (18)

with N(0) = (y0, 0). Note that N(t) is a CAR process on [ti, ti+1). H̃ is the process obtained

by conditioning the proposed diffusion process {Ñ(s), 0 ≤ s ≤ tN}, with Ñ(0) = (ỹ0, 0), on

Ñ(ti) = ỹi for i = 1, . . . , N . Now let ˜̃H be defined as

˜̃H(t) = H̃(t) − E(Z̃(t)|Z̃(ti) = ỹi, i = 0, . . . , N)

Then the Metropolis-Hastings step proceeds as follows. Suppose that the current state of

the missing data on (t0, tN) is ˜̃Xmis(t0, tN). Then the algorithm proposes a new segment of
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missing data ˜̃H on the interval (0, tN). This proposal is accepted with probability

α{ ˜̃Xmis(t0, tN), ˜̃H} = min

(

1,
G[ν( ˜̃H); µ, 1]

G[ν( ˜̃H); µL, 1]

G[ν{ ˜̃Xmis(t0, tN)}; µL, 1]

G[ν{ ˜̃Xmis(t0, tN)}; µ, 1]

)

. (19)

where µ is defined as in (13) and µL is defined as in (13) with g = gL.

4.3 Generating the proposal

We now describe how to simulate ˜̃H on [0, tN ]. In practice, we have to impute a finite

number of points from ˜̃H. We shall impute m − 1 imputed times between (tj, tj+1). Let

Nh = {N(kh) : k = 0, . . . , Nm}, where h = ∆
m

, ∆ti = ti+1 − ti, and let yt = {yj : tj ≤ t}.
From Carter and Kohn (1994) we have,

p(Nh|ytN ) = p{N(tN)|ytN}
Nm−1
∏

k=1

p{N(kh)|ykh,N((k + 1)h)}. (20)

We now show that p{N(tN)|ytN} and p{N(kh)|ykh,N((k +1)h)} are Gaussian densities and

thus in order to generate N, it is sufficient to compute E(N(tN)|ytN ), var(N(tN)|ytN ) and

E(N(kh)|ykh,N((k + 1)h)), var(N(kh)|ykh,N((k + 1)h)), (k = 1, . . . , Nm − 1).

Let

N(k|j) = E(N(kh)|yjh), S(k|j) = var(N(kh)|yjh).

N(t) is a CAR process on each sub-interval [tj, tj+1). Thus, N is a solution to (2) with

drift gL defined as in (18) or equivalently as a solution to

dN(t) = (A(N(ti))N(t) + ea0(N(ti))) dt + edW (t), ti ≤ t < ti+1 (21)

where

A(x) :=













0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
a1(x) a2(x) · · · ap(x)













, e =













0
0
...
0
1













.

where a0(x), a1(x), . . . , ap−1(x) are defined as in (4).
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From (21) we have that

E(N((k + 1)h)|N(kh)) = eA(N(ti)h)N(kh) +
a0(N(ti))

a1(N(ti))
(eA(N(ti))h − I)b (22)

var(N((k + 1)h)|N(kh)) =

∫ h

0

eA(N(ti))uee′eA(N(ti))
′udu, (23)

for ti ≤ kh, (k + 1)h ≤ ti+1, where b′ = (1, 0, . . . , 0) and e′ = (0, . . . , 0, 1). The calculation

of the integrals can be done using the spectral representation of the matrix A(N(ti)) (Jones,

1985) or as in Tsai and Chan (2000a).

From (22) and (23) we have that for ti ≤ kh, (k + 1)h ≤ ti+1,

N((k + 1)h) +
a0(N(ti))

a1(N(ti))
b = eA(N(ti))h

(

N(kh) − a0(N(ti))

a1(N(ti))

)

+ Zk, (24)

where {Zk, k = 0, . . . Nm− 1} is an independent sequence of Gaussian random vectors with

mean E(Zk) = 0 and covariance matrix

E[ZkZ
′
k] =

∫ h

0

eA(N(ti))uee′eA(N(ti))
′udu, ti ≤ kh < ti+1.

(24) is in precisely the form needed for application of the Kalman recursions (see e.g. Brock-

well and Davis (1991), Chapter 12). From these recursions we can easily compute N(k|j) and

S(k|j), for j ≤ k and in particular N(N |N) and S(N |N). To find, E(N(kh)|ytj ,N((k+1)h))

and var(kh)|ytj ,N((k + 1)h)) for ti ≤ kh < ti+1, we note that conditioned on yti,
[

N(kh)
N((k + 1)h)

]

∼ N

([

N(kh|ytj)
N((k + 1)h|ytj)

]

,

[

S(k|k) S(k|k)eA′(N(tj ))h

eA(N(tj ))hS(k|k) S(k + 1|k)

])

.

See Tsai and Chan (2000b) for CAR models.

4.4 Block Sampling

Updating ˜̃X could lead to a very law acceptance rate, due to the discrepancy between the

proposed latent process component and the true latent component. To circumvent this

problem, we often split up the latent process into blocks, and cycle through each block in

turn for updating. This increases the acceptance rate of each move, because there is less

latent variables in each block, limiting the discrepancy between the proposed latent process

component and the true latent component. See an unpublished D.Phil. thesis from Nuffield

College, Oxford by O. Elerian.
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For p = 1, the imputed blocks between observed data are conditionally independent.

However, for p > 1 the imputed diffusion sample paths between observed data are no-longer

independent, but in-fact are highly correlated. It turns out that updating segments between

observed data leads to an algorithm which degenerates to reducibility as m → ∞, since

X(i+1)(tj) = lim
m→∞

X(i)(tj + 1
m

) − X (i)(tj)

1/m
= lim

m→∞

X(i)(tj) − X (i)(tj − 1
m

)

1/m
, i = 0, . . . , p − 2.

Alternative approaches involving block updating of collections of overlapping segments avoid

this problem. We propose to update ˜̃X(s), for ti ≤ s ≤ ti+2 for i = 0, . . . , N − 2.

4.5 The Wilkinson scheme

We recall that basic schemes which impute {X(t) : 0 ≤ t ≤ tN} and then update θ and σ

are reducible. The reparameterisation scheme circumvents this problem.

An alternative methodology for this problem has recently been developed in Wilkinson

(2001). It is proposed in Wilkinson (2001) to break down the correlation structure between

X and its parameters by grouping X and σ in the Metropolis-Hastings algorithm. Although

it seems unlikely that the Wilkinson approach will be able to deal effectively with large data

sets (since it loses the advantage of having independence of imputed blocks between observed

data), it will be more widely applicable for extremely smooth time-series.

5 Examples

5.1 Example 1: CTAR(2) process

dX (1)(t) = g(X(t), X (1)(t); θ)dt + σdW (t),

with

g(X(t), X (1)(t); θ) =






a1
0 + a1

1X(t) + a1
2X

(1)(t) X0(t) < r

a2
0 + a2

1X(t) + a2
2X

(1)(t) X0(t) ≥ r

Simulated Data: Data were simulated from the above model with r = 0, a1
0 = −0.5,

a1
1 = −0.5, a1

2 = −1.0, a2
0 = 0.9, a2

1 = −3.0, a2
2 = −2.5, σ2 = 0.36 at times kh, k =

0, 1, . . . , Nm with h = 0.001, N = 1000 and m = 1000 by assuming linearity on each time
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interval [kh, (k + 1)h). After generating 1, 000, 000 data points we recorded every 1000th

point and thus obtained a sample path of 1, 000 observations at times t = 0, 1, . . . , 999.

Prior: We assumed normal density priors for a1
i , a2

i

for i = 0, 1, 2, Uniform prior for r and InvGa(α, β) prior, for σ2.

Algorithms

We shall term the reparameterisation method introduced in Roberts & Stramer (2001) as

the R method. We refer to

• the algorithm that updates all missing data at once as method Ra,

• the algorithm that updates overlapping blocks as Rb,

• The Wilkinson algorithm as W.

We applied the algorithms Ra, Rb, and W to the simulated data for 12, 000 iterations.

Figure 1 show trace plots of the first 5000 steps taken by the Ra and Rb algorithm for the

parameters (a) r, (b) a1
0, (c) a1

1, (d) a1
2, (e) a2

0, (f) a2
1, (g) a2

2, and (h) σ with m = 40. The

graphs show that for this example the Rb algorithm perform better. The Rb method with

m = 40 algorithm converged quite rapidly from a distant starting point. The acceptance

rates for proposed sample paths with m = 40 were 0.001 for the Ra scheme, 0.006 for the W

scheme and 0.972 for the Rb scheme.

Figure 2 shows the autocorrelation plots in the Markov chain Monte Carlo output with

m = 40 for (a) r, (b) a1
0, (c) a1

1, (d) a1
2, (e) a2

0, (f) a2
1, (g) a2

2, and (h) σ after a burn-in period

of 2000 iterations. The autocorrelation plots demonstrate the advantage of using the Rb

algorithm, dying down pretty quickly when using the Rb algorithm.

Figure 3 shows the histograms plots for (a) r, (b) a1
0, (c) a1

1, (d) a1
2, (e) a2

0, (f) a2
1, (g)

a2
2, and (h) σ after a burn-in period of 2000 iterations. The histograms show that the

discretisation with m < 40 is not sufficiently fine. m needs to be at least 40.

5.2 Example 2: CTAR(3) process

dX (2)(t) = g(X(t), X (1)(t), X (2)(t); θ)dt + σdW (t),
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Figure 1: Trace plots of the steps taken by the algorithms used on the simulated example of Subsection 3.1:
(a) r, (b) a
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, and (h) σ with m = 40 using algorithms W, Ra, and Rb.

The horizontal line corresponds to the true value.
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Figure 2: Autocorrelation plots for the algorithms used on the simulated example of Subsection 3.1: (a) r,
(b) a
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Figure 3: Histograms for the algorithms used on the simulated example of Subsection 3.1: (a) r, (b) a
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where

g(X(t), θ) =






a1
0 + a1

1X0(t) + a1
2X1(t) + a1

3X2(t) X0(t) < r

a2
0 + a2

1X0(t) + a2
2X1(t) + a2

3X2(t) X0(t) ≥ r.

Data were simulated from the above model at times kh, k = 0, 1, . . . , 999 with r = 0, a1
0 = 0,

a1
1 = −0.2, a1

2 = −1.2, a1
3 = −0.5 a2

0 = 0, a2
1 = −1.0, a2

2 = −1.9, a2
3 = −1, and σ2 = 1.

We assumed normal density priors for a1
i , a2

i for i = 0, 1, 2, 3, Uniform prior for r and

InvGa(α, β) prior, for σ2. All of our results proved to be robust to the change of means and

variances in this prior.

We applied the algorithms Rb to the simulated data for 20, 000 iterations.

Figure 4 shows the autocorrelation plots in the Markov chain Monte Carlo output with

m = 50 for (b1) a1
0, (b2) a1

1, (b3) a1
2, (b4) a1

3, (a1) a2
0, (a2) a2

1, (a3) a2
2, (a4) a2

3, (r) r, and (s)

σ after a burn-in period of 5000 iterations.

Figure 5 shows the histograms plots with m = 20 and m = 50 for (b1) a1
0, (b2) a1

1, (b3)

a1
2, (b4) a1

3, (a1) a2
0, (a2) a2

1, (a3) a2
2, (a4) a2

3, (r) r, and (s) σ after a burn-in period of 5000

iterations.

6 Some example

In this section we briefly outline two examples where we have applied the methodology

introduced earlier in the paper.

6.1 An example from the S&P 500 index

We applied our algorithm, the Rb algorithm, to the S&P500 index data. The observations

are daily from 3 January 1994 to 25 March 2002. The dataset is publicly available at

http://www.economagic.com/em-cgi/data.exe/sp/day-sp500c.

We fitted CTAR(p), p = 1, 2 to the series of the first 700 relative daily percent change.

Our MCMC output suggests that for p = 1, the threshold is below the minimum of the data

which implies that the CAR(1) model performs better than the CTAR(1) model for this

data-set.
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Figure 4: Autocorrelation plots for the simulated example of Subsection 3.2: (b1) a
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We then applied the Rb algorithm with p = 2 for 30, 000 iterations.

Figure 6 show trace plots of the first 10000 steps taken by the Rb algorithm for the

parameters (a) r, (b) a1
0, (c) a1

1, (d) a1
2, (e) a2

0, (f) a2
1, (g) a2

2, and (h) σ with m = 30.

Figure 7 shows the histograms plots for (a) r, (b) a1
0, (c) a1

1, (d) a1
2, (e) a2

0, (f) a2
1, (g) a2

2,

and (h) σ after a burn-in period of 10000 iterations.

6.2 The Wolfe’s sunspot data

We have used the 280 observations from the year 1700 − 1979. We denote our observations

by Yt and the transformed data used by Tong (1983) by Xt = 2(
√

Yt + 1− 1). We apply the

CTAR(2) to the transformed data set. Our MCMC output suggests that the threshold is

below the minimum of the data which implies that the CAR(2) model performs better than

the CTAR(2) model for the transformed sunspot data.

We note that the Tsai & Chan (2000) test suggests that with p = 1 and p = 2 the

transformed data is linear while with p = 3, 4 it is non-linear.

7 Discussion

We have shown that the overlapping blocks extension of the method introduced in [5] is

an effective way of fitting NLCAR models. The approach combines a missing data repa-

rameterisation technique with an overlapping blocks updating scheme as part of an MCMC

algorithm.

The methodology introduced in this paper can be extended in a number of ways. More

general model types can easily considered within this framework. In this paper, we have as-

sumed that initial states (including the relevant derivatives) are known. It is straightforward

to generalise our methods to the case where initial conditions are uncertain. Furthermore,

generalisations to situations where model parameters vary over time (for instance according

to change-points which may or not be known) are in principle feasible, although increased

computational overheads will be encountered for highly complex models. Models where

volatility takes on different values in different regions, are more challenging for our methods

since it is not easy to construct appropriate reparameterisation schemes.
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Figure 6: Trace plots of the steps taken by the algorithms used on the S&P 500 data of Section 4: (a) r, (b)
a
1

0
, (c) a

1

1
, (d) a

1

2
, (e) a

2

0
, (f) a

2

1
, (g) a

2

2
, and (h) σ with m = 20 using algorithm Rb.

20



-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

0.
0

1.
0

2.
0

3.
0

m=20
m=30

(r)

-30 -20 -10 0 10

0.
0

0.
05

0.
10

0.
15

m=20
m=30

(c1)

-20 -15 -10 -5 0

0.
0

0.
10

0.
20

0.
30

m=20
m=30

(a11)

-4 -3 -2 -1 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m=20
m=30

(a12)

2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

m=20
m=30

(s)

-2.0 -1.5 -1.0 -0.5

0
1

2
3

m=20
m=30

(c2)

-8 -7 -6 -5 -4

0.
0

0.
4

0.
8

1.
2

m=20
m=30

(a21)

-3.5 -3.0 -2.5 -2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

m=20
m=30

(a22)

Figure 7: The S&P 500 example of Section 4: histograms (a) r, (b) a
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and (h) σ with m = 10, 30 using algorithm Rb.
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Generalising to problems of model choice, inference on the order of a NLCAR(p) process

can also be carried out using an extension of our framework. Our preferred methodology for

this would require the use of reversible jump MCMC techniques.

From an MCMC implementational point of view, many important problems still need to

be addressed. For instance there are many different choices of updating strategies for the

various blocks of missing data. The method of overlapping blocks used here seems effective

in our limited experience, but further investigation theoretically and in applications is clearly

required.
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