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ABSTRACT. Let �S�∑� be a measurable space and let h : S�S� R be a real symmetric Borel/∑�∑-
measurable function on S� S. Let B be a non-empty measurable subset in S and let µ be a probability
measure supported on the restriction of the measurable space �S� ∑� to B. Let B have finite h-diameter

h� ess sup�h�u�v� : u�v � B�� ∞�

Let U�U1�U2�.... be a sequence of independent random points taking values in B according to µ and let

Hn � max�h�Ui�Uj� : 1� i � j � n�

denote the h-diameter of the set �Ui� i � 1� � � � �n�, the maximum pair-wise h-distance among the first n
points.

A theoretical framework is provided from which one may deduce the weak convergence of H n, upon
suitable centering and rescaling, to an extreme-value distribution. The sufficient condition provided
herein is quite different from that of Appel, et al. [1]. Several applications of the theory are provided.
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1. INTRODUCTION.

Let �S�∑� be a measurable space and let h : S�S�R be a real symmetric Borel/∑�∑ - measurable
function on S� S. Let B be a non-empty measurable subset in S. Let µ be a probability measure
supported on the restriction of the measurable space �S�∑� to B and assume that B has finite h-
diameter

h � ess sup�h�u�v� : u�v � B�

� sup�x : µ�µ�h�u�v�� x�� 0�(1.1)

� ∞�

Let U�U1�U2�.... be a sequence of independent random points taking values in B according to µ. Let P
denote the product measure constructed from copies of µ, so that P will refer to the joint distribution
of the Ui’s. Let

(1.2) Hn � max�h
�
Ui�Uj

�
: 1� i � j � n�

denote the h-diameter of the set �U1�U2� � � � �Un�, the maximum pair-wise h-distance among the first
n points. A precise description of the almost-sure limiting behavior of Hn appears in Appel, et al
[2]. We are concerned here with weak asymptotics. Our main result (Theorem 1 below) provides
a methodology for inferring extreme-value limit laws for Hn, upon suitable (non-random) rescaling.
While the sufficient condition of the main result is quite different from that of Appel, et al [1], we
continue here the line of investigation therein.

As an application of our results, we consider the special case where U1�U2� � � � �Un is a random
sample from the uniform distribution on a closed disk(sphere) B with center c in R2

�
R3
�
. Let h

denote the ordinary l2 euclidean metric and let B have radius ρ � h�c�v�, where v is any point on the
boundary ∂B. If c is known but ρ is unknown, then the sample ”radius”

Rn � max�h�c�Ui� : 1� i� n�

is observable and can be used to construct an exact p�100% confidence interval for the diameter of
B �

2Rn

t2
�
2Rn

t1

�
�

where 0 � t1 � t2 are points for which tkn
2 � tkn

1 � p, k � 2�3. However, if both center and radius are
unknown, one may need to rely on the diameter Hn in order to construct such an interval. The weak
limiting behavior of Hn would thus seem to be of interest.

Appel, Najim and Russo [3] studied the weak limiting behavior of diameters over uniform point
sets on compact planar regions having finitely many axes with no vertices in common (the unit square,
for example). In comparison, the disk in R2 is interesting as it provides no geometric clue regarding
the location of the vertices that define the diameter except that for large n those vertices are likely to be
close to the boundary and nearly diametrically opposite to each other. See Dette and Henze [5], Steele
and Tierney [11] and, more recently, Appel and Russo [1] for related results on the maximal diameter.
In the context of random geometric graphs, Hn is the minimal edge length for which the point set
induces a complete graph (a graph possessing all

�n
2

�
possible edges). Many wireless communication

network protocols are based on the properties of random geometric graphs generated on the unit disk;
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see Ellis, et al [7]. For a comprehensive treatment of the theory of random geometric graphs, see
Penrose [9].

2. STATEMENT AND PROOF OF MAIN RESULT.

We assume that h � ∞. This entails no loss of generality since we may always apply a monotone
transformation (for example h � h��1� h�) to an unbounded h to produce an equivalent bounded
one.

Given a point u in B and q � h, define H �u�q� � �v � B : h�u�v�� q�. Let �qn� be monotone
non-decreasing with qn � h as n�∞. For each n, define Γn � �v � B : h�w�v�� qn� for some w � B�.
Clearly,

(2.1) H �u�qn�	Γc
n � /0� any u in B�

Define random variables

(2.2) Yk�n � Yk�n �qn� � P�U �H �Uk�qn� 
Uk � �

Let F�x� � P�h�U1�U2�� x�. Note that EY1�n � 1�F �qn�.

We now state our main result.

Theorem 1. If

(a) the sequence
�

n2 �EY1�n
�

satisfies

(2.3) 0 � liminf
n

�
n2 �EY1�n

�
�� limsup

n

�
n2 �EY1�n

�
� ∞�

and if

(b) there is a non-random sequence �mn� such that

(2.4) Y1�n � mn � o

�
1
n

�
� everywhere, as n�∞�

and if

(c) for each δ � 0 and 0 � ε � 1

(2.5) lim
n�∞

n�1

∑
j��nε�

P

�					
j

∑
k�1

Yk�n� jEY1�n

					� jδEY1�n



� 0�

then

(2.6) lim
n�∞

�
exp

�
n2 � �1�F �qn��

2

�
�P�Hn � qn�

�
� 1�
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Corollary 1. If (a) above holds and there is a non-random sequence �mn� such that

(2.7) Y1�n � mn � o

�
1

n logn

�
� a.s., as n� ∞

then (2.6) holds.

REMARKS.

1. For each t � 0, take qn to be the quantile

(2.8) qn � qn�t� � inf


x : F�x�� 1�

2t
n2

�
�

If the distribution function F��� above is continuous in its far-right tail, then we have EY1�n � 1�
F �qn� �

2t
n2 for all n large, in which case the conclusion from (2.6) is that P�Hn � qn�� exp��t� as

n� ∞.

2. In general, the condition (2.5) is sufficient but not necessary for (2.6) to obtain. To see this, suppose
the distribution of h�U1�U2� has a final jump discontinuity in its right tail: for some z� 0, F�x�� 1�z
for all x� x� and F �x�� � 1. Then, for a given t, the quantile qn�t� in (2.8) takes the value x� � h for
all n large enough. With qn � qn�t�, EY1�n � 1�F �x�� � 0 and all of the probabilities in the sum in
(2.5) are equal to 1; the condition fails to obtain. However, the limit (2.6) exists, trivially.

PROOF OF THEOREM 1. We first state two lemmas that we will use below. The first is Bernstein’s
inequality (cf. Serfling [10], page 95).

Lemma 1. (S.N. Bernstein) Let Y�Yn�n � 1, be a sequence of i.i.d. random variables satisfying
Pr�
Y �EY 
 � m� � 1, where m � ∞. Then, for any t � 0 and all n� 1

Pr

�					
n

∑
j�1

Yj�nEY

					� nt



� 2exp

�
�nt2

2VarY � 2
3mt



�

The next result follows from the convergence x�1�1� exp��rx��� r as x� 0.

Lemma 2. Fix r � 1. Then for all small x, exp��rx�� 1� x� exp��x�.

Let δ � 0 and 0 � ε � 1 be fixed but arbitrary. Define events

Rn�q � �Hn � q�(2.9)
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and for each j � 2� � � � �n

Aj�n �

�
Uj �

j�1�
k�1

H �Uk�qn�

�
(2.10)

Ej�n �

�					
j

∑
k�1

Yk�n� jEY1�n

					� jδEY1�n

�
(2.11)

Fj�n �

�
j

∑
k�1

Yk�n � j�1�δ�EY1�n

�
�(2.12)

It is easy to check that

(2.13) Rn�qn � 	n
j�2Aj�n�

Since nEY1�n �
1

1�δ for large enough n, invoking the double expectation rule and keeping the second-
order terms in the Bonferroni bound, we have

P
�
Rn�qn

�
� E

�
1Rn�1�qn

�
1�P

�
Ac

n�n 
U1� � � � �Un�1
���

� E

�
1Rn�1�qn

�
1�

n�1

∑
k�1

Yk�n � ∑
1� j ��k�n�1

P
�
Un � H

�
Uj�qn

�
	H �Uk�qn�

		Uj�Uk
�
�

� E

�
1Rn�1�qn�Ec

n�1�n

�
1�

n�1

∑
k�1

Yk�n


�
�E

�
1Rn�1�qn�En�1�n

�
1�

n�1

∑
k�1

Yk�n


�
��n�1�2EY 2

1�n(2.14)

� P
�
Rn�1�qn

�
�1� �n�1��1�δ�EY1�n��P�En�1�n���n�1�2EY 2

1�n�

Repeating the above argument n� �nε� times gives

P
�
Rn�qn

�
� P

�
R�nε��qn

�
�Πn�1

j��nε� �1� j�1�δ�EY1�n��
n�1

∑
j��nε�

P
�
Ej�n

�
�

n�1

∑
j��nε�

j2EY 2
1�n

� Πn�1
j��nε� �1� j�1�δ�EY1�n��

n�1

∑
j��nε�

P
�
Ej�n

�
�

n�1

∑
j��nε�

j2EY 2
1�n�(2.15)
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To get an inequality similar to (2.15) which goes in the other direction, by Boole’s inequality we may
write

P
�
Rn�qn

�
� E

�
P
�
Rn�qn 
U1� � � � �Un�1

��
� E

�
1Rn�1�qn

P�An�n 
U1� � � � �Un�1 �
�

� E
�
1Rn�1�qn�Fn�1�n

�
1�P

�
Ac

n�n 
U1� � � � �Un�1
���

� E

�
1Rn�1�qn�Fn�1�n

�
1�

n�1

∑
k�1

Yk�n


�
(2.16)

� E
�
1Rn�1�qn�Fn�1�n �1� �n�1��1�δ�EY1�n�

�
� �1� �n�1��1�δ�EY1�n�

�
P
�
Rn�1�qn

�
�P

�
Rn�1�qn 	Fc

n�1�n

��
� P

�
Rn�1�qn

�
�1� �n�1��1�δ�EY1�n��P

�
Fc

n�1�n

�
� P

�
Rn�1�qn

�
�1� �n�1��1�δ�EY1�n��P�En�1�n� �

Repeating the above argument n� �nε� times gives

(2.17) P
�
Rn�qn

�
� P

�
R�nε��qn

�
�Πn�1

j��nε� �1� j�1�δ�EY1�n��
n�1

∑
j��nε�

P
�
Ej�n

�
�

By Boole’s inequality, the i.i.d. assumption and (2.3),

P
�
R�nε��qn

�
� 1�

�
�nε�
2

�
� �1�F �qn��

� 1�
ε2

2
�n2 � �1�F �qn��(2.18)

� 1� c � ε2�

for some constant c. Therefore, liminfn P
�
R�nε��qn

�
can be made arbitrarily close to 1 if ε is chosen

small enough.

By Lemma 2, we have

(2.19) Πn�1
j��nε� �1� j�1�δ�EY1�n�� exp

�
��1�δ�EY1�n

n�1

∑
j��nε�

j



�

and for fixed but arbitrary r � 1

(2.20) exp

�
�r �1�δ�EY1�n

n�1

∑
j��nε�

j



�Πn�1

j��nε� �1� j�1�δ�EY1�n� �
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as n� ∞. Note that ∑n�1
j��nε� j � �1� ε�n2

2 . To complete the proof of Theorem 1, by (2.4) we have

n�1

∑
j��nε�

j2EY 2
1�n �

2tmn

n2 �O
�
n3�(2.21)

� o�1� �

as n�∞. By (2.5), the sum ∑n�1
j��nε�P

�
Ej�n

�
which appears in both (2.15) and (2.17) vanishes, as n�

∞. Theorem 1 now follows from (2.15), (2.17), (2.19), (2.20) and (2.21), multiplying by exp
�
n2EY1�n

�
everywhere. ��

PROOF OF COROLLARY 1. From Lemma 1, we have

(2.22) P
�
Ej�n

�
� 2exp

�
�

jδ2E2Y1�n

2VarY1�n �
2
3δmnEY1�n



�

Now mn bounds Y1�n and hence 
Y1�n�EY1�n
, a.s. Thus VarY1�n �mnE 
Y1�n�EY1�n
 �mnEY1�n. Since
j � �nε�, the exponent in (2.22) is therefore bounded above by

(2.23) �
�nε�δ2EY1�n

mn
�
2� 2

3δ
� ��

c�t�
nmn

�

where

(2.24) c�t� �
εδ2t

1� δ
3

�

If (2.7) holds, then it is clear that (2.5) holds. ��

3. APPLICATIONS.

MINIMUM SPACING IN AN EXPONENTIAL RANDOM SAMPLE. Let U1�U2� ����Un be independent
random variables with common unit mean exponential distribution. Let X�1� � mini�1�����n

�
X�i�

�
�

X�2� � � � � � X�n� � maxi�1�����n
�

X�i�
�

be the order statistics and let sn � mink�1�����n
�

X�k�1��X�k�
�

denote the minimum spacing. Set h�u�v� � 1
1��u�v� . Then Hn �

1
1�sn

� h� 1, a.s. To see how fast, we

let 0 � x � 1 and compute F�x� � P�h�U1�U2�� x� � P
�

U1�U2
�

1
x �1

�
� exp

�
�1

x �1
�
. For

fixed t � 0, we take qn to be the quantile qn�t� � inf
�

x : F�x�� 1� 2t
n2

�
, as above in (2.8). We invert

F and solve

qn �
1

1� log
�

1� 2t
n2

� �
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It is easy to check that the random variable Yk�n is actually a constant here:

Yk�n �qn� � P�h�U1�Uk�� qn 
Uk �

� 1�F �qn�

�
2t
n2 �

the second equality following from continuity, so that conditions (a), (b) and (trivially) (c) in Theorem
1 (as well as (2.7) in Corollary 1) obtain. It follows from Theorem 1 that (2.6) holds:

lim
n�∞

�
exp

�
n2 � �1�F �qn��

2

�
�P�Hn � qn�

�
� exp�t� � lim

n�∞
P�Hn � qn�

� exp�t� � lim
n�∞

P

�
n2

2
� ��1� exp��sn���� t

�
(3.2)

� 1�(3.3)

thus n2

2 � ��1� exp��sn��� converges weakly to a unit mean exponential distribution. This fact is easily
deduced from first principles: by the memoryless property, the spacings between the order statistics
are distributed as independent exponentials with respective rates n� 1�n� 2� � � � �1 so the minimum
spacing is exponential with rate ∑n�1

i�1 i �
�n

2

�
.

I.I.D. SEQUENCES OF INDEPENDENT BERNOULLI TRIALS. Define a distance measure d on pairs
of infinite binary strings u � �ω1�u��ω2�u�� � � ��, ω j�u� � �0�1�, by

(3.4) d�u�v� � inf
�

j � 1 : ω j�u� � ω j�v�
�
�

with sup /0 � 0. That is, d�u�v� is the first coordinate-wise agreement between u and v. Let h�u�v� �
d�u�v�

1�d�u�v� . Again, h � 1. Let U1�U2� � � � �Un be an independent sequence of infinite sequences of inde-

pendent Bernoulli trials with common success probability 1
3 � p� 1

2 . We set ϕ � ϕ�p� � 2p�1� p�,
N�x� �

� x
1�x

�
, and compute F�x� � P�h�U1�U2�� x� � 1�ϕN�x�. Let �qn� be any sequence which

satisfies qn � 1 and

(3.5) sup
n

				 qn

1�qn
�

2logn
logϕ�p�

				� ∞�

Condition (a) in Theorem 1 thus holds. It is easy to see that

Yk�n �qn� � P�h�U�Uk�� qn 
Uk �

� ΠN�qn�
j�1 ρ j�k�(3.6)

where

(3.7) ρ j�k � p �1�ω j�Uk��1���1� p� �1�ω j�Uk��0��
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Let mn � �1� p�N�qn� and Z � 2log�1�p�
logϕ . It is easy to check that Z � 1 when p � 1

3 and therefore that

mn � o
�

1
n logn

�
as n� ∞. Hence condition (2.7) in Corollary 1 holds. From (2.6) we conclude that

(3.8) lim
n�∞

�
exp

�
n2

2
�ϕN�qn�

�
�P�Hn � qn�

�
� 1�

Likewise, we may redefine

(3.9) d�u�v� � inf
�

j � 1 : ω j�u� � ω j�v�
�

and show that the maximum first disagreement time among pairs of n such infinite Bernoulli se-
quences has the limiting distribution (3.8) with ϕ � p2 ��1� p�2, for any success probability 0 �
p � 1, when the rate qn satisfies (3.5).

I.I.D. UNIFORM POINTS IN THE EUCLIDEAN UNIT DISK AND UNIT SPHERE. For i.i.d uniform
points Ui, we consider the convergence of Hn in the closed euclidean disk B of unit radius centered at
the origin. Let u denote an arbitrary point in Γn. We will approximate P�U � H �u�bn� 
Uk � u� for n
large and invoke Corollary 1 to obtain the following result.

Proposition 1.

(3.10) lim
n�∞

P
�

n4�5 �2�Hn�� w
�
� exp

�
�

4w5�2

5π



�

PROOF. In what follows, if λn�u and µn�u are two quantities that depend on both u and n we write
λn�u � µn�u to indicate that λn�u�µn�u � 1 as n� ∞, uniformly in u � Γn. Let bn � 0. Draw two line
segments of length qn � 2�bn from u to points e1 and e2 on the boundary ∂B of B. Let αu denote the
angle formed by these line segments at u and let θu denote the angle at 0 formed by the line segments
joining e1 to 0 and e2 to 0. Let yu � 1�d�u�0� denote the distance between u and ∂B. By the law of
cosines

�cosθu �
�2�bn�

2� �1� yu�
2�1

2�1� yu�

�
2�4bn �b2

n �2yu� y2
u

2�1� yu�

�
1�2bn � yu

�1� yu�
(3.11)

� 1�2bn �2yu�

Thus, since θu � π as bn � 0, we have

π�θu � sin�π�θu�

� sinθu

� �1� cos2 θu�
1�2(3.12)

� 2�bn� yu�
1�2�
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Let Su�1 denote the sector in B formed by the line segments joining 0 to e1 and e2, respectively. We
have

(3.13) P�U � Su�1��
2�bn� yu�

1�2

π
�

Let Su�2 denote the sector formed by the line segments joining u to e1 and e2 on the disk with center
u and radius 2�bn. By the law of sines, αu � sinαu � �2�bn�

�1 sinθu, so that

(3.14) P�U � Su�2��
�4�2bn��bn� yu�

1�2

π
�

Let Tu�1 be the triangle with vertices 0, u and e1, and let Tu�2 be the triangle with vertices 0, u and e2.
We have

(3.15) P�U � Tu�1�Tu�2��
2�1� yu��bn� yu�

1�2

π
�

Thus we have the non-random bound

P�U � H �u�bn� 
Uk � u� � P�U � Su�1��P�U � Su�2��P�U � Tu�1�Tu�2�

�
2�bn� yu�

3�2

π

� mn :�
2b3�2

n

π
�(3.16)

for all n large, uniformly in u. Moreover, since P�h�U�0�� 2� y� � 2y� y2, we compute

EY1�n �

� bn

0

2�bn� y�3�2

π
�2�2y�dy(3.17)

�
8b5�2

n

5π
�

By continuity EY1�n �
2t
n2 . Thus (3.17) implies that mn �

2b3�2
n
π � O

�
n�6�5

�
, and so mn satisfies (2.7).

Equation (3.17) also allows us to solve directly for bn:

(3.18) bn � bn�t��
w

n4�5
� as n� ∞�

where w �
�5πt

4

�2�5
. Equation (3.10) now follows from Corollary 1. ��

Next, let B be the closed unit sphere centered at 0 in R3. Using arguments analogous to those for the
disk, we will prove the following result.

Proposition 2.

(3.19) lim
n�∞

P
�

n2�3 �2�Hn�� w
�
� exp

�
�

3w3

4

�
�
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PROOF. Again, let bn � 0 and qn � 2�bn. Given u in Γn, let

(3.20) C�u� � �x � ∂B : h�u�x� � qn�

be the circle embedded in the boundary ∂B whose center φ� lies in the interior of B. Let cap1 denote
the spherical cap of B whose circular base has circumference C�u�. Let h be the height of cap1:
h � 1�h�0�φ��. Then (cf. [8])

(3.21) Vol�cap1� �
πh2�3�h�

3
�

As in the 2-dimensional case, let yu � 1�h�u�0� � denote the distance between u and ∂B. From the
Pythagorean relation we have h� 2bn�2yu so that

(3.22) Vol�cap1�� 4π�bn� yu�
2�

Next, let Su�bn denote the sphere with center u and radius 2�bn and let cap2 denote the spherical cap
of Su�bn contained in cap1 and with the same base. Again, the Pythagorean relation implies that the
height h of cap2 satisfies h� bn� yu, so that

Vol�cap2� �
πh2�3�h�

3
� 2π�bn� yu�

2�(3.23)

Note that a point x in B satisfies h�u�x�� 2�bn if and only if x lies in cap1 � cap2. Thus,

P�U �H �u�bn�� �
Vol�cap1��Vol�cap2�

Vol�B�

�
3
2
�bn� yu�

2(3.24)

uniformly in u which lie in Γn, that is, which satisfy h�0�u�� 1�bn. Hence we have the non-random
bound

(3.25) Yk�n � mn :�
3b2

n

2
�

for all n large enough. Since P�h�U�0�� 2� y� � 1� �1� y�3, we compute

EY1�n �
� bn

0

9�bn� y�2

2
�1� y�2dy

�
3b3

n

2
�(3.26)

Again, by continuity EY1�n � 2t
n2 and so (3.25) implies that mn � O

�
n�4�3

�
, which shows that mn

satisfies (2.7). Solving for bn �
�4t

3

�1�3
n�2�3, (3.19) now follows from Corollary 1. ��

It is interesting to compare the limit laws (3.10) and (3.19) to the 1-dimensional case of i.i.d. uniform
variables in the interval [-1,1]. In this case, since Hn

2 is distributed as the range of n variables dis-
tributed uniformly on [0,1], it follows from the elementary properties of order statistics (cf. Arnold
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[4], page 31) that

(3.27) P�Hn � 2t� � ntn�1� �n�1�tn�

from which we obtain

P�n�2�Hn�� w� � n
�

1�
w
2n

�n�1
� �n�1�

�
1�

w
2n

�n
(3.28)

�
�

1�
w
2

�
exp

�
�

w
2

�
�

It is also interesting to compare (3.10) and (3.19) to results obtained recently on the weak behavior of
the diameter of n uniform points on the boundary of the disk or sphere. From Proposition 1 of Appel
and Russo [1], we have for the circle:

(3.29) lim
n�∞

P
�
n4�2�Hn�� w

�
� 1� exp

�
�

w1�2

π



�

while for the sphere:

(3.30) lim
n�∞

P
�
n2�2�Hn�� w

�
� 1� exp

�
�

w
2

�
�

On the boundary sets (circle or sphere surface, respectively), every observation is potentially a vertex
of the maximal diameter. The convergence of Hn to 2 is comparatively fast, hence the need for greater
magnification of the difference 2�Hn in order to get a weak limit. However, on the entire disk or
sphere, since only points observed near the boundary (that is, in a shrinking annulus) can determine
the maximal diameter, the convergence of Hn to 2 is comparitively slow.

The appearance of a factor of π in the functional form of the limit in the 2- but not in the 3-dimensional
case is curious, but is easily explained by noting that the calculations used in the proofs of the 3-
dimensional cases compare volumes of the sphere to spherical sub-regions (see, for example (3.24)),
whereas the calculations in the 2-dimensional cases do not.
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