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Summary

We have derived a new analytic formula for evaluating the derivatives of a matrix

exponential. In contrast to some existing methods, eigenvalues and eigenvectors

do not appear explicitly in the formulae, although we show that a necessary and

sufficient condition for the validity of the formulae is that the matrix has distinct

eigenvalues. The new formula expresses the derivatives of a matrix exponential in

terms of minors, polynomials, exponential of the matrix as well as matrix inver-
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sion, and hence is algebraically more manageable. For sparse matrices, the formula

can be further simplified. Two examples are discussed in some details. For the

companion matrix of a continuous-time autoregressive moving average process,

the derivatives of the exponential of the companion matrix can be computed re-

cursively. We illustrate an use of these formulae in the conditional least square

estimation of a CAR(p) model that leads to a numerically stable estimation pro-

cedure. The second example concerns the exponential of the tridiagonal transition

intensity matrix of a finite-state-space continuous-time Markov chain whose in-

stantaneous transitions must be between adjacent states.

Keywords: Cayley-Hamilton Theorem; CARMA models; companion matrix; finite-

state-space continuous-time Markov processes; maximum likelihood estimation;

minimal polynomial; tridiagonal matrix.

1 Introduction

Various methods of parameter differentiation of a matrix exponential have been

studied in statistical mechanics and quantum theory (see, e.g., Wilcox, 1967), as

well as in the mathematics, economics and statistics literature, see e.g., Jennrich

and Bright (1976), Van Loan (1978), Kalbfleisch and Lawless (1985), Graham

(1986), Horn and Johnson (1991), Chan and Munoz-Hernandez (1997), Chen and

Zadrozny (2001). For continuous/discrete state space modelling (see, e.g., Jazwin-

ski, 1970 and Singer, 1995), parameter differentiation of a matrix exponential is

needed for computing the analytical score function. For continuous-time Markov

modeling, efficient algorithm for the computation of the transition probability ma-

trix and its derivatives with respect to the transition intensity parameters is needed

for maximum likelihood estimation. For example, see Kalbfleisch and Lawless

(1985) for an approach of analyzing a panel of categorical data by assuming that

the data are obtained from sampling a latent continuous-time finite-state-space

Markov process.

We propose in this note an alternative method for computing the derivatives

of a matrix exponential. In contrast to some existing methods, eigenvalues and

eigenvectors do not appear explicitly in the formulae, although we show that a nec-
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essary and sufficient condition for the validity of the formulae is that the matrix

has distinct eigenvalues. The new formula expresses the derivatives of a matrix

exponential in terms of minors, polynomials, exponential of the matrix as well

as matrix inversion, and hence is algebraically more manageable. When the ma-

trix has repeated eigenvalues, it seems hard to extend the results. See the end of

section 3 for discussion. Fortunately, in most statistical applications that involve

matrix exponentials, the distinct eigenvalue assumption often holds. For exam-

ple, in continuous-time Markov chain modelling, for most models of interest, the

transition intensity matrix has distinct eigenvalues for almost all parameter values

(see, e.g., Kalbfleisch and Lawless, 1985).

This note is organized as follows. In § 2, we derive the new formula for

computing the derivatives of a matrix exponential and a necessary and sufficient

condition for the validity of the formula. For sparse matrices, the formula may be

further simplified. Two interesting examples are the exponential of the companion

matrix arising from a continuous-time autoregressive moving average process and

that of the tridiagonal transition intensity matrix arising from a continuous-time

Markov chain whose instantaneous transitions must be jumps between adjacent

categories. The simplified formulae for these two examples are given in §3.

2 Main results

Let A = [aij] be a p × p matrix whose elements are functions of ϑ = (ϑ1, ..., ϑr)
′.

By equation (2.1) of Wilcox (1967), we have that, for i = 1, ..., r,

∂etA

∂ϑi

=
∫ t

0
e(t−u)A

(

∂A

∂ϑi

)

euAdu. (1)

Alternatively, if we assume A has distinct eigenvalues d1, · · · , dp and X is the

p × p matrix whose jth column is a right eigenvector corresponding to dj, then

A = XDX−1, where D = diag(d1, · · · , dp). Then etA = X diag(ed1t, · · · , edpt)X−1,

and

∂etA

∂ϑu

= XVuX
−1, u = 1, · · · , r, (2)

where Vu is a p × p matrix with (i, j) entry

g
(u)
ij (edit − edj t)/(di − dj), i 6= j,
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g
(u)
ii tedit, i = j,

and g
(u)
ij is the (i, j) entry in G(u) = X−1(∂A/∂θu)X. See Kalbfleisch and Lawless

(1985) for the above formula and related discussions. See also Jennrich and Bright

(1976) and Chan and Munos-Hernandez (1997). When A has repeated eigenvalues,

an analogous decomposition of A to Jordan canonical form is possible (see chapter

4 of Cox and Miller, 1965). But as pointed out by Kalbfleisch and Lawless (1985),

this is rarely necessary, since for most models of interest in continuous-time Markov

modelling, A has distinct eigenvalues for almost all parameters.

One of the main results of this paper is to derive another closed form solution

for ∂etA/∂ϑi. For r = 1, ..., p, define δr to be a p × 1 vector with 1 in position r

and 0 elsewhere. For 1 ≤ i, j ≤ p, let Bij = δiδ
′
j, and define

Σij =
∫ t

0
e(t−u)ABije

uAdu. (3)

Note that Bij is a zero p by p matrix except for its (i, j)th element being unity,

and, for 1 ≤ k ≤ r,

∂etA

∂ϑk

=
∫ t

0
e(t−u)A ∂A

∂ϑk

euAdu

=
∫ t

0
e(t−u)A





p
∑

i=1

p
∑

j=1

∂aij

∂ϑk

Bij



 euAdu

=
p
∑

i=1

p
∑

j=1

∂aij

∂ϑk

∫ t

0
e(t−u)ABije

uAdu

=
p
∑

i=1

p
∑

j=1

∂aij

∂ϑk

Σij. (4)

A closed form solution for Σij in terms of minors, polynomials, exponential of the

matrix A as well as matrix inversion is given in Theorem 1.

Let A = [aij] and B = [bij] be two p × p matrices. Define [A, B] = AB − BA

as the commutator of A and B, and let |A| be the determinant of the matrix

A. For vectors α = [α1, · · · , αq] and β = [β1, · · · , βq], where αj ∈ {1, · · · , p} and

βj ∈ {1, · · · , p}, for j = 1, · · · , q(≤ p), we denote the (sub)matrix that lies in the

rows of A indexed by α and the columns indexed by β as A(α, β). For example,

A([1, 3], [2, 1, 3]) =







a12 a11 a13

a32 a31 a33





 .
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If β = α, the submatrix A(α, α) is called a principal submatrix of A and is ab-

breviated A(α), see, e.g., p. 17 of Horn and Johnson (1985). Let Rp
0 = 1, and for

1 ≤ k ≤ p, let

Rp
k =

∑

1≤l1<···<lk≤p

|A([l1, · · · , lk])|. (5)

Note that q(λ) =
∑p

k=0(−1)p−kRp
p−kλ

k is the characteristic polynomial of the ma-

trix A, and q(A) = 0 by Cayley-Hamilton Theorem. Theorem 1 below essentially

results from differentiating the preceding equality w.r.t. ai,j. Let q′(λ) be the

(first) derivative of q w.r.t. λ. Then, q′(A) =
∑p−1

k=0(−1)p−k−1(k + 1)Rp
p−k−1A

k and

it is independent of t. This fact may result in simpler inferential procedures as will

be illustrated in an example below. The derivatives of the matrix exponential is

trivial when p = 1. For p ≥ 2, we have the following results:

THEOREM 1 For p ≥ 2 and assuming that q′(A) =
∑p−1

k=0(−1)p−k−1(k+1)Rp
p−k−1A

k

is invertible,

Σij =







p−1
∑

k=0

(−1)p−k−1(k + 1)Rp
p−k−1A

k







−1 









p−1
∑

k=0

(−1)p−k+1

(

∂Rp
p−k

∂aij

)

Ak







tetA

−
p−2
∑

u=0

p
∑

k=u+2

(−1)p−k(k − u − 1)Rp
p−kA

k−u−2[Bij, e
tA]Au



 .

Theorem 2 gives an explicit representation of the partial derivatives of Rp
k’s

with respect to aijs, whereas Theorem 3 gives a necessary and sufficient condition

for q′(A) to be invertible.

THEOREM 2 (a) For 1 ≤ i 6= j ≤ p,

∂Rp
1

∂aij

= 0.

(b) For 1 ≤ i 6= j ≤ p,

∂Rp
2

∂aij

= −|A([j], [i])| = −aji.

(c) For 3 ≤ k ≤ p, and 1 ≤ i 6= j ≤ p,

∂Rp
k

∂aij

= −
∑

1≤l1<···<lk−2≤p

i/∈{l1,···,lk−2}

and j /∈{l1,···,lk−2}

|A([j, l1, · · · , lk−2], [i, l1, · · · , lk−2])|.
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(d) For 1 ≤ i ≤ p,

∂Rp
1

∂aii

= 1.

(e) For 2 ≤ k ≤ p, and 1 ≤ i ≤ p,

∂Rp
k

∂aii

=
∑

1≤l1<···<lk−1≤p

i/∈{l1,···,lk−1}

|A([l1, · · · , lk−1])|.

THEOREM 3 For p ≥ 2, q′(A) =
∑p−1

k=0(−1)p−k−1(k + 1)Rp
p−k−1A

k is invertible

if and only if the matrix A has p distinct eigenvalues.

In the case that A has repeated eigenvalues, Theorem 3 implies that q ′(A) is

singular so that Theorem 1 is inapplicable. Now, Theorem 1 may be generalized

by considering the equation m(A) = 0 where m(λ) is the minimal polynomial of A.

Indeed, if A is diagonalizable, its minimal polynomial equals m(λ) =
∏

(λ − λj),

where the product is over distinct eigenvalues, in which case, even though the

eigenvalues are not distinct, they do not repeat in the minimal polynomial so that

m′(A) is invertible. This suggests that the preceding results may be extended

to the more general case that A is diagonalizable, or equivalently, its minimal

polynomial is of the form m(λ) =
∏

(λ− λj), where all λj’s are distinct. However,

the coefficients of the minimal polynomial may not admit a simple form. Moreover,

Theorem 2 and related results seem not be easily generalizable in this more general

situation.

3 Applications

3.1 Continuous-time autoregressive moving average pro-

cesses

For continuous/discrete state space modelling (see, e.g., Jazwinski, 1970 and Singer,

1995), parameter differentiation of a matrix exponential is needed in computing

the analytical score function; indeed, it is also required in other methods of esti-

mation, e.g., least squares. The continuous/discrete state space model is defined
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by two equations:

dxn(t) = Axn(t)dt + Bzn(t)dt + GdWn(t), t ∈ [t0, tT ] (6)

yn(ti) = Hnixn(ti) + Dnizn(ti) + εni, (7)

where εni ∼ N(0, Rni) is a discrete time white noise disturbance (measurement

error), Wn(t) is the standard Brownian motion, zn is a covariate and the matrices

Hni, Dni and Rni are obtained from H, D, and R by dropping the respective rows

(and columns) if the datum yn(ti) contains missing values. State equation (6) is

a linear stochastic differential equation in the sense of Itô (cf. Arnold, 1974). See

Singer (1995) for further discussions.

A continuous-time autoregressive moving average (CARMA(p,q)) process is

defined as the solution of a differential equation that can be cast in the state-space

form (below, the Y s are the observations with Xs being the state vectors; see, e.g.,

Brockwell, 1993 and Brockwell and Stramer, 1995 for further discussions):

Yti = βTXti , i = 1, 2, · · · , n,

dXt = (AXt + α0l)dt + σldWt,

where

A =



























0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

α1 α2 α3 · · · αp



























, Xt =



























X
(0)
t

X
(1)
t

...

X
(p−2)
t

X
(p−1)
t



























, l =



























0

0
...

0

1



























, β =



























1

β1

...

βp−2

βp−1



























,

and the superscript T denotes the transpose of a vector.

Note that the companion matrix A is a function of the parameters α1, · · · , αp,

and due to the simplicity of the matrix, parameter differentiation of the corre-

sponding matrix exponential can be easily computed by the recursive procedure:

∂etA

∂αi

=

(

∂etA

∂αi−1

)

A, 2 ≤ i ≤ p,

see Theorem 4 (c) and the appendix for a proof. The partial derivative of etA with

respect to α1 is given by parts (a) and (b) of the following theorem.
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THEOREM 4 (a) For p = 1, ∂etA/∂α1 = tetA.

(b) For p ≥ 2,

∂etA

∂α1
= K−1

p,0







tetA −
p−1
∑

r=1

Kp,r[Bpr, e
tA]







, (8)

where

Kp,r =











(p − r)Ap−r−1 −
∑p

k=r+2(k − r − 1)αkA
k−r−2, 0 ≤ r ≤ p − 2,

I, r = p − 1,

where [Bpr, e
tA] = Bpre

tA − etABpr is the commutator of Bpr and etA.

(c) For 2 ≤ i ≤ p,

∂etA

∂αi

=

(

∂etA

∂αi−1

)

A. (9)

For clarification, the expressions of the matrix ∂etA/∂α1, for p = 1, ..., 4, are

illustrated as follows:

p = 1 :
∂etA

∂α1

= tetA,

p = 2 :
∂etA

∂α1
= (2A − α2I)−1(tetA − [B21, e

tA]),

p = 3 :
∂etA

∂α1

= (3A2 − 2α3A − α2I)−1{tetA − (2A − α3I)[B31, e
tA] − [B32, e

tA]}

p = 4 :
∂etA

∂α1
= (4A3 − 3α4A

2 − 2α3A − α2I)−1{tetA

−(3A2 − 2α4A − α3I)[B41, e
tA] − (2A − α4I)[B42, e

tA] − [B43, e
tA]}.

We now present an example illustrating the use of the new formulae. Suppose

that we observed the states Xt from a CAR(p) model over (possibly) unequally

spaced epoches, say, tis, and we desire to compute the conditional least squares es-

timators of the parameters. First note that, the sum of squared predictive residuals

equals

g(α0, · · · , αp) =
N
∑

i=1

{xti − µ − e∆iA(xti−1
− µ)}T{xti − µ − e∆iA(xti−1

− µ)},

where ∆i = ti − ti−1 and µ = (−α0/α1, 0, · · · , 0)T . For simplicity asssume that

α0 = 0 so that µ = 0. Therefore, for 1 ≤ j ≤ p,

∂g(α0, · · · , αp)

∂αj
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= −2
N
∑

i=1

(

∂e∆iA

∂αj

xti−1

)T

(xti − e∆iAxti−1
)

= −2
N
∑

i=1

xT
ti−1

(AT )j−1



∆ie
∆iA −

p−1
∑

r=1

Kp,r[Bpr, e
∆iA]





T

(K−1
p,0)

T (xti − e∆iAxti−1
)

= −2
N
∑

i=1

tr











(xti − e∆iAxti−1
)xT

ti−1
(AT )j−1



∆ie
∆iA −

p−1
∑

r=1

Kp,r[Bpr, e
∆iA]





T

(K−1
p,0)

T











= −2





N
∑

i=1

vec









∆ie
∆iA −

p−1
∑

r=1

Kp,r[Bpr, e
∆iA]



Aj−1xti−1
(xti − e∆iAxti−1

)T











T

vec[(K−1
p,0)

T ].

By replacing K−1
p,0 by the adjoint of Kp,0 in the preceding expression, high numerical

accuracy can be attained even when some of the eigenvalues are nearly identical.

3.2 Tridiagnal intensity matrix in continuous-time Markov

processes

Kalbfleisch and Lawless (1985) proposed methods for the analysis of panel data

under a continuous-time Markov model with a finite state space. Let Q be a p× p

transition intensity matrix that is constant over an interval of length t, and etQ is

the corresponding transition probability matrix. For some applications, the matrix

Q is a sparse matrix in the sense that only a few elements of Q are non-zero.

See Kalbfleisch and Lawless (1985) for examples. Chan and Munos-Hernandez

(1997) adopted the continuous-time Markov processes to model longitudinal data

consisting of transitional frequencies classified according to an ordered categorical

response variable. The ordering of the categories implies that the continuous-time

Markov chain can only jump between adjacent categories over an infinitesimal

period, resulting in a tridiagonal transition intensity matrix. For the tridiagonal

transition intensity matrix, the coefficients Rp
k’s and their partial derivatives with

respect to qi,j’s, which have closed form solutions given in Theorem 2, can be

further simplified as in Theorem 5 below. From now on, assume p ≥ 2, and write
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the tridiagonal transition intensity matrix as

Qp =



























−q1 q1 0 · · · 0 0 0

q2 −q2 − q3 q3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · q2p−4 −q2p−4 − q2p−3 q2p−3

0 0 0 · · · 0 q2p−2 −q2p−2



























.

For 1 ≤ i ≤ p, let

Qi
p =



























−qi
1 qi

1 0 · · · 0 0 0

qi
2 −qi

2 − qi
3 qi

3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · qi
2p−4 −qi

2p−4 − qi
2p−3 qi

2p−3

0 0 0 · · · 0 qi
2p−2 −qi

2p−2



























,

where, for 1 ≤ k ≤ 2p − 2,

qi
k =











qk, if i /∈ {2i − 2, 2i − 1},

0, if k ∈ {2i − 2, 2i − 1}.

For 1 ≤ i ≤ p, let Rp
0,i = 1. For p ≥ 2 and 1 ≤ i, k ≤ p, define

Rp
k,i =

2p−2k
∑

i1=1

2p−2k+2
∑

i2=i1+2

· · ·
2p−2
∑

ik=ik−1+2

(−1)kqi
i1
· · · qi

ik
.

Also, for 1 ≤ i ≤ p, let

Q̃i
p =



























−q̃i
1 q̃i

1 0 · · · 0 0 0

q̃i
2 −q̃i

2 − q̃i
3 q̃i

3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · q̃i
2p−4 −q̃i

2p−4 − q̃i
2p−3 q̃i

2p−3

0 0 0 · · · 0 q̃i
2p−2 −q̃i

2p−2



























,

where, for 1 ≤ k ≤ 2p − 2,

q̃i
k =











qk, if k /∈ {2i − 2, 2i − 1, 2i, 2i + 1},

0, if k ∈ {2i − 2, 2i − 1, 2i, 2i + 1}.

For 1 ≤ i ≤ p, let R̃p
0,i = 1. For p ≥ 2 and 1 ≤ i, k ≤ p, define

R̃p
k,i =

2p−2k
∑

i1=1

2p−2k+2
∑

i2=i1+2

· · ·
2p−2
∑

ik=ik−1+2

(−1)kq̃i
i1
· · · q̃i

ik
.
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By equation (4) and the tridiagonality of the matrix, we only need to compute Σi,j

for |i − j| ≤ 1, and so only ∂Rp
k/∂qi,j for |i − j| ≤ 1 are needed. Theorem 5 gives

a closed form of the Rp
k’s and the required derivatives.

THEOREM 5 (a) Rp
p = 0, for p ≥ 2.

(b) For p ≥ 2 and 1 ≤ k ≤ p − 1,

Rp
k =

2p−2k
∑

i1=1

2p−2k+2
∑

i2=i1+2

· · ·
2p−2
∑

ik=ik−1+2

(−1)kqi1 · · · qik .

(c) For p ≥ 2 and 1 ≤ i ≤ p,

∂Rp
1

∂qi,i

= Rp
0,i = 1.

(d) For p ≥ 2, 1 ≤ i ≤ p and 2 ≤ k ≤ p,

∂Rp
k

∂qi,i

= Rp
k−1,i =

2p−2k+2
∑

i1=1

2p−2k+4
∑

i2=i1+2

· · ·
2p−2
∑

ik=ik−1+2

(−1)k−1qi
i1
· · · qi

ik−1
.

(e) For p ≥ 2,

∂Rp
1

∂qi,i+1

=
∂Rp

1

∂qi+1,i

= 0.

(f) For p ≥ 2,

∂Rp
2

∂qi,i+1
= −qi+1,i = −q2i,

and

∂Rp
2

∂qi+1,i

= −qi,i+1 = −q2i−1.

(g) For p ≥ 2, 1 ≤ i ≤ p − 1 and 3 ≤ k ≤ p,

∂Rp
k

∂qi,i+1
= −q2iR̃

p
k−2,i = −q2i

2p−2k+4
∑

i1=1

2p−2k+6
∑

i2=i1+2

· · ·
2p−2
∑

ik=ik−1+2

(−1)k−2q̃i
i1
· · · q̃i

ik−2
,

and

∂Rp
k

∂qi+1,i

= −q2i−1R̃
p
k−2,i = −q2i−1

2p−2k+4
∑

i1=1

2p−2k+6
∑

i2=i1+2

· · ·
2p−2
∑

ik=ik−1+2

(−1)k−2q̃i
i1
· · · q̃i

ik−2
.
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Example: For clarification, we write out the parameter differentiation of the

matrix exponential for an example from Chan and Munoz-Hernandez (1997). Let

Q =













−q1 q1 0

q2 −q2 − q3 q3

0 q4 −q4













=













−eθ5t+θ1 eθ5t+θ1 0

eθ6t+θ3 −eθ6t+θ3 − eθ5t+θ2 eθ5t+θ2

0 eθ6t+θ4 −eθ6t+θ4













.

Then

Σ11 = W−1
[

{Q2 + (q2 + q3 + q4)Q + q2q4I}te
tQ

−{2Q + (q1 + q2 + q3 + q4)I}[B11, e
tQ] − [B11, e

tQ]Q
]

,

Σ22 = W−1
[

{Q2 + (q1 + q4)Q + q1q4I}te
tQ

−{2Q + (q1 + q2 + q3 + q4)I}[B22, e
tQ] − [B22, e

tQ]Q
]

,

Σ33 = W−1
[

{Q2 + (q1 + q2 + q3)Q + q1q3I}te
tQ

−{2Q + (q1 + q2 + q3 + q4)[B33, e
tQ] − [B33, e

tQ]Q
]

,

Σ12 = W−1
[

(q2Q + q2q4I)tetQ

−{2Q + (q1 + q2 + q3 + q4)[B12, e
tQ] − [B12, e

tQ]Q
]

,

Σ21 = W−1
[

(q1Q + q1q4I)tetQ

−{2Q + (q1 + q2 + q3 + q4)I}[B21, e
tQ] − [B21, e

tQ]Q
]

,

Σ23 = W−1
[

(q4Q + q1q4I)tetQ

−{2Q + (q1 + q2 + q3 + q4)I}[B23, e
tQ] − [B23, e

tQ]Q
]

,

Σ32 = W−1
[

(q3Q + q1q3I)tetQ

−{2Q + (q1 + q2 + q3 + q4)I}[B32, e
tQ] − [B32, e

tQ]Q
]

,

where

W = 3R3
0Q

2 − 2R3
1Q + R3

2I

= 3Q2 + 2(q1 + q2 + q3 + q4)Q + (q1q3 + q1q4 + q2q4)I,

and

∂etQ

∂θ1

= −q1(Σ11 − Σ12),

∂etQ

∂θ2
= −q3(Σ22 − Σ23),
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∂etQ

∂θ3
= q2(Σ21 − Σ22),

∂etQ

∂θ4
= q4(Σ32 − Σ33),

∂etQ

∂θ5

= −tq1Σ11 + tq1Σ12 − tq3Σ22 + tq3Σ23

= t

(

∂etQ

∂θ1

+
∂etQ

∂θ2

)

,

∂etQ

∂θ6
= tq2Σ21 − tq2Σ22 + tq4Σ32 − tq4Σ33

= t

(

∂etQ

∂θ3
+

∂etQ

∂θ4

)

.
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APPENDIX

Proof of Theorem 1: By Cayley-Hamilton Theorem (see, e.g., page 86 of Horn

and Johnson, 1985),

p
∑

k=0

(−1)p−kRp
p−kA

k = 0. (10)

Taking partial derivative with respect to aij on both sides, we have

p
∑

k=0

(−1)p−k

(

∂Rp
p−k

∂aij

)

Ak +
p
∑

k=1

(−1)p−kRp
p−k

k−1
∑

r=0

Ak−r−1

(

∂A

∂aij

)

Ar = 0, (11)

which implies

p
∑

k=1

(−1)p−kRp
p−k

k−1
∑

r=0

Ak−r−1BijA
r =

p−1
∑

k=0

(−1)p−k+1

(

∂Rp
p−k

∂aij

)

Ak. (12)

Pre-multiplying e(t−u)A and post-multiplying euA to both sides of equation (12)

and then integrating u from u = 0 to u = t to get

∫ t

0
e(t−u)A

{

p
∑

k=1

(−1)p−kRp
p−k

k−1
∑

r=0

Ak−r−1BijA
r

}

euAdu

=
∫ t

0
e(t−u)A







p−1
∑

k=0

(−1)p−k+1

(

∂Rp
p−k

∂aij

)

Ak







euAdu. (13)
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Using the fact that (see, e.g., page 95 of Hale, 1969),

AetB = etBA if and only if AB = BA,

we have

p
∑

k=1

(−1)p−kRp
p−k

k−1
∑

r=0

Ak−r−1ΣijA
r =







p−1
∑

k=0

(−1)p−k+1

(

∂Rp
p−k

∂aij

)

Ak







tetA. (14)

Applying integration by parts to equation (3) to get

ΣijA = AΣij + [Bij, e
tA],

and then post-multiplying A to both sides to get

ΣijA
2 = AΣijA + [Bij, e

tA]A

= A(AΣij + [Bij, e
tA]) + [Bij, e

tA]A

= A2Σij + A[Bij, e
tA] + [Bij, e

tA]A.

Applying the same technique recursively to get

ΣijA
r = ArΣij +

r−1
∑

u=0

Ar−u−1[Bij, e
tA]Au, where r ≥ 1. (15)

It follows from equation (15) that the left hand side of (14) can be rewritten as

(−1)p−1Rp
p−1Σij

+
p
∑

k=2

(−1)p−kRp
p−k

{

Ak−1Σij +
k−1
∑

r=1

Ak−r−1

(

ArΣij +
r−1
∑

u=0

Ar−u−1[Bij, e
tA]Au

)}

= (−1)p−1Rp
p−1Σij +

p
∑

k=2

(−1)p−kRp
p−kA

k−1Σij

+
p
∑

k=2

(−1)p−kRp
p−k

k−1
∑

r=1

Ak−1Σij +
p
∑

k=2

(−1)p−kRp
p−k

k−1
∑

r=1

r−1
∑

u=0

Ak−u−2[Bij, e
tA]Au

=

{

p
∑

k=1

(−1)p−kkRp
p−kA

k−1

}

Σij +
p
∑

k=2

(−1)p−kRp
p−k

k−2
∑

u=0

k−1
∑

r=u+1

Ak−u−2[Bij, e
tA]Au

=







p−1
∑

r=0

(−1)p−r−1(r + 1)Rp
p−r−1A

r







Σij

+
p
∑

k=2

(−1)p−kRp
p−k

k−2
∑

u=0

(k − u − 1)Ak−u−2[Bij, e
tA]Au

=







p−1
∑

r=0

(−1)p−r−1(r + 1)Rp
p−r−1A

r







Σij

+
p−2
∑

u=0

p
∑

k=u+2

(−1)p−k(k − u − 1)Rp
p−kA

k−u−2[Bij, e
tA]Au.
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This proves the result.

Proof of Theorem 2:

The proofs for (a), (b) and (d) are trivial.

(c) First note that, for 3 ≤ k ≤ p,

Rp
k =

∑

1≤l1<···<lk≤p

|A([l1, · · · , lk])|

=
∑

1≤l1<···<lk≤p

i,j∈{l1,···,lk}

|A([l1, · · · , lk])| +
∑

1≤l1<···<lk≤p

i/∈{l1,···,lk}

or j /∈{l1,···,lk}

|A([l1, · · · , lk])|

= −
∑

1≤l1<···<lk−2≤p

i/∈{l1,···,lk−2}

and j /∈{l1,···,lk−2}

|A([i, j, l1, · · · , lk−2], [j, i, l1, · · · , lk−2])|

+
∑

1≤l1<···<lk≤p

i/∈{l1,···,lk}

or j /∈{l1,···,lk}

|A([l1, · · · , lk])|,

which implies that, for 1 ≤ i 6= j ≤ p,

∂Rp
k

∂aij

= −
∑

1≤l1<···<lk−2≤p

i/∈{l1,···,lk−2}

and j /∈{l1,···,lk−2}

|A([j, l1, · · · , lk−2], [i, l1, · · · , lk−2])|.

(e) For 2 ≤ k ≤ p,

Rp
k =

∑

1≤l1<···<lk≤p

|A([l1, · · · , lk])|

=
∑

1≤l1<···<lk≤p

i∈{l1,···,lk}

|A([l1, · · · , lk])| +
∑

1≤l1<···<lk≤p

i/∈{l1,···,lk}

|A([l1, · · · , lk])|,

which implies that, for 1 ≤ i ≤ p,

∂Rp
k

∂aii

=
∑

1≤l1<···<lk−1≤p

i/∈{l1,···,lk−1}

|A([l1, · · · , lk−1])|

Proof of Theorem 3:

The charactreistic polynomial can be written as

q(λ) = |λI − A| =
p
∏

i=1

(λ − λi),

where the λ′
is are the eigenvalues of A. Now, the derivative of the characteristic

polynomial equals q′(λ) =
∑p

i=1

∏

j 6=i(λ− λj). Hence, q′(A) =
∑p

i=1

∏

j 6=i(A− λjI).

If vk is an eigenvector of A corresponding to the eigenvalue λk, then

q′(A)vk =
p
∑

i=1

∏

j 6=i

(λk − λj)vk.
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In other words, the eigenvalues of q′(A) are
∑p

i=1

∏

j 6=i(λk−λj) =
∏

j 6=k(λk−λj), k =

1, 2, .., p, which are non-zero if and only if all the eigenvalues of A are distinct.

Proof of Theorem 4:

(a) The proof is trivial.

(b) The proof for p = 2 is trivial. For p ≥ 3, first note that,

Rp
p−k−1 =











(−1)p−kαk+2, for − 1 ≤ k ≤ p − 2,

1, for k = p − 1.
(16)

∂Rp
p−k

∂ap1
=











∂
∂α1

{(−1)p−k+1αk+1}, for 0 ≤ k ≤ p − 1,

0, for k = p,

=











(−1)p+1, for k = 0,

0, for 1 ≤ k ≤ p,
(17)

and

[Bp1, e
tA]Au = [Bp1A

u, etA] = [Bp(u+1), e
tA], for 0 ≤ u ≤ p − 1. (18)

Thus,

∂etA

∂α1

=
∫ t

0
e(t−u)A

(

∂A

∂α1

)

euAdu (by equation (1))

=
∫ t

0
e(t−u)ABp1e

uAdu

= Σp1 (by equation (3))

=







pAp−1 +
p−2
∑

k=0

(−1)p−k−1(k + 1)(−1)p−kαk+2A
k







−1
[

(−1)p+1(−1)p+1tetA

−
p−3
∑

u=0

p−1
∑

k=u+2

(−1)p−k(−1)p−k+1αk+1(k − u − 1)Ak−u−2[Bp1, e
tA]Au

−
p−2
∑

u=0

(−1)p−p(p − u − 1)Ap−u−2[Bp1, e
tA]Au





(by Theorem 1, equations (16) and (17))

=







pAp−1 −
p−2
∑

k=0

(k + 1)αk+2A
k







−1







tetA +
p−3
∑

u=0

p−1
∑

k=u+2

(k − u − 1)αk+1A
k−u−2[Bp(u+1), e

tA]

−
p−2
∑

u=0

(p − u − 1)Ap−u−2[Bp(u+1), e
tA]







( by equation (18))
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= K−1
p,0







tetA +
p−2
∑

r=1

p−1
∑

k=r+1

(k − r)αk+1A
k−r−1[Bpr, e

tA] −
p−1
∑

r=1

(p − r)Ap−r−1[Bpr, e
tA]







( by letting r = u + 1)

= K−1
p,0







tetA +
p−2
∑

r=1

p
∑

v=r+2

(v − r − 1)αvA
v−r−2[Bpr, e

tA] −
p−1
∑

r=1

(p − r)Ap−r−1[Bpr, e
tA]







( by letting v = k + 1)

= K−1
p,0



tetA −
p−2
∑

r=1







(p − r)Ap−r−1 −
p
∑

k=r+2

(k − r − 1)αkA
k−r−2







[Bpr, e
tA]

− [Bp(p−1), e
tA]
]

= K−1
p,0







tetA −
p−1
∑

r=1

Kp,r[Bpr, e
tA]







.

This proves the result.

(c) For 2 ≤ i ≤ p,

∂etA

∂αi

=
∫ t

0
e(t−u)Aδpδ

′
ie

uAdu

=
∫ t

0
e(t−u)Aδpδ

′
i−1AeuAdu ( because δ′i−1A = δ′i)

=

(

∂etA

∂αi−1

)

A ( because AeuA = euAA).

Proof of Theorem 5:

The proofs for (c), (e) and (f) are trivial.

(a) & (b) Let q0 = q2p−1 = 0, then the transition intensity matrix can be

rewritten as

Qp = [qi,j] =



























−q0 − q1 q1 0 · · · 0 0 0

q2 −q2 − q3 q3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · q2p−4 −q2p−4 − q2p−3 q2p−3

0 0 0 · · · 0 q2p−2 −q2p−2 − q2p−1



























,

and

qi,j =



































−q2i−2 − q2i−1, if 1 ≤ i = j ≤ p,

q2i−1, if 1 ≤ j = i + 1 ≤ p,

q2i−2, if 1 ≤ j = i − 1 ≤ p − 1,

0, otherwise.
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We will prove later that, for p ≥ 2, and 1 ≤ k ≤ p,

Rp
k =

2p−2k+1
∑

i1=0

2p−2k+3
∑

i2=i1+2

· · ·
2p−1
∑

ik=ik−1+2

(−1)kqi1 · · · qik . (19)

But because q0 = q2p−1 = 0, we have, by equation (19),

Rp
p =

1
∑

i1=0

3
∑

i2=i1+2

· · ·
2p−1
∑

ip=ip−1+2

(−1)pqi1 · · · qip = 0,

and, for 1 ≤ k ≤ p − 1,

Rp
k =

2p−2k
∑

i1=1

2p−2k+2
∑

i2=i1+2

· · ·
2p−2
∑

ik=ik−1+2

(−1)kqi1 · · · qik .

This proves parts (a) and (b) of the theorem.

For equation (19), we will prove it by mathematical induction. First, it is

easily seen that equation (19) holds for p = 2 and 1 ≤ k ≤ 2. Now, suppose

equation (19) holds for Rr
k, where 2 ≤ r ≤ p − 1 and 1 ≤ k ≤ r, we want to show

that, for 2 ≤ k ≤ p, Rp
k is given by the right hand side of equation (19) (the proof

for k = 1 is trivial).

Note that, for the tridiagonal matrix Qp, we have

|λI − Qp| = (λ − qp,p)|λI − Qp−1| − qp,p−1qp−1,p|λI − Qp−2|,

which implies that

p
∑

k=0

(−1)p−kRp
p−kλ

k = (λ + q2p−2 + q2p−1)
p−1
∑

k=0

(−1)p−k−1Rp−1
p−k−1λ

k

−q2p−2q2p−3

p−2
∑

k=0

(−1)p−k−2Rp−2
p−k−2λ

k.

Comparing the coefficients of λk on both sides, we have, for k = 1, ..., p − 2,

(−1)p−kRp
p−k = (−1)p−kRp−1

p−k + (−1)p−k−1(q2p−2 + q2p−1)R
p−1
p−k−1

−(−1)p−k−2q2p−2q2p−3R
p−2
p−k−2.

Equivalently, we have, for k = 2, ..., p − 1,

(−1)kRp
k = (−1)kRp−1

k + (−1)k−1(q2p−2 + q2p−1)R
p−1
k−1

−(−1)k−2q2p−2q2p−3R
p−2
k−2. (20)
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But, for k = 3, · · · , p − 1,

Rp−1
k =

2p−2k−1
∑

i1=0

2p−2k+1
∑

i2=i1+2

· · ·
2p−3
∑

ik=ik−1+2

(−1)kqi1 · · · qik ,

Rp−1
k−1 =

2p−2k+1
∑

i1=0

2p−2k+3
∑

i2=i1+2

· · ·
2p−3
∑

ik−1=ik−2+2

(−1)k−1qi1 · · · qik−1
,

Rp−2
k−2 =

2p−2k+1
∑

i1=0

2p−2k+3
∑

i2=i1+2

· · ·
2p−5
∑

ik−2=ik−3+2

(−1)k−2qi1 · · · qik−2
,

and so, for k = 3, · · · , p − 1, equation (20) becomes

(−1)kRp
k =

2p−2k−1
∑

i1=0

2p−2k+1
∑

i2=i1+2

· · ·
2p−5
∑

ik−1=ik−2+2

2p−3
∑

ik=ik−1+2

qi1 · · · qik

+
2p−2k
∑

i1=0

2p−2k+2
∑

i2=i1+2

· · ·
2p−6
∑

ik−2=ik−3+2

2p−4
∑

ik−1=ik−2+2

2p−1
∑

ik=2p−2

qi1 · · · qik

+
2p−2k+1
∑

i1=0

2p−2k+3
∑

i2=i1+2

· · ·
2p−5
∑

ik−2=ik−3+2

∑

ik−1=2p−3

∑

ik=2p−2

qi1 · · · qik

+
2p−2k+1
∑

i1=0

2p−2k+3
∑

i2=i1+2

· · ·
2p−5
∑

ik−2=ik−3+2

∑

ik−1=2p−3

∑

ik=2p−1

qi1 · · · qik

−
2p−2k+1
∑

i1=0

2p−2k+3
∑

i2=i1+2

· · ·
2p−5
∑

ik−2=ik−3+2

∑

ik−1=2p−3

∑

ik=2p−2

qi1 · · · qik

=
2p−2k−1
∑

i1=0

2p−2k+1
∑

i2=i1+2

· · ·
2p−5
∑

ik−1=ik−2+2

2p−3
∑

ik=ik−1+2

qi1 · · · qik

+
2p−2k
∑

i1=0

2p−2k+2
∑

i2=i1+2

· · ·
2p−6
∑

ik−2=ik−3+2

2p−4
∑

ik−1=ik−2+2

2p−1
∑

ik=2p−2

qi1 · · · qik

+
2p−2k+1
∑

i1=0

2p−2k+3
∑

i2=i1+2

· · ·
2p−5
∑

ik−2=ik−3+2

∑

ik−1=2p−3

∑

ik=2p−1

qi1 · · · qik

=
2p−2k+1
∑

i1=0

2p−2k+3
∑

i2=i1+2

· · ·
2p−1
∑

ik=ik−1+2

qi1 · · · qik .

The proofs for k = 2 and p are similar to that of 3 ≤ k ≤ p − 1. This proves

equation (19).

(d) First note that, for 1 ≤ l1 < · · · < lk−1 ≤ p and i /∈ {l1, · · · , lk−1},

|Qp([l1, · · · , lk−1])| = |Qi
p([l1, · · · , lk−1])|. For 1 ≤ l1 < · · · < lk−1 ≤ p and i ∈

{l1, · · · , lk−1}, |Q
i
p([l1, · · · , lk−1])| = 0, beause the matrix Qi

p([l1, · · · , lk−1]) contains

a zero row vector. Thus, by Theorem 2 (e), we have that, for 2 ≤ k ≤ p and
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1 ≤ i ≤ p,

∂Rp
k

∂qi,i

=
∑

1≤l1<···<lk−1≤p

i/∈{l1,···,lk−1}

|Qp([l1, · · · , lk−1])|

=
∑

1≤l1<···<lk−1≤p

i/∈{l1,···,lk−1}

|Qi
p([l1, · · · , lk−1])| +

∑

1≤l1<···<lk−1≤p

i∈{l1,···,lk−1}

|Qi
p([l1, · · · , lk−1])|

=
∑

1≤l1<···<lk−1≤p

|Qi
p([l1, · · · , lk−1])|

= Rp
k−1,i,

where the last equality follows from equation (5), Theorem 5 (b) and the definition

of Rp
k,i.

(g) By Theorem 2 (c), we have that, for 3 ≤ k ≤ p and 1 ≤ i ≤ p − 1,

∂Rp
k

∂qi,i+1
= −

∑

1≤l1<···<lk−2≤p

i/∈{l1,···,lk−2}

and i+1/∈{l1,···,lk−2}

|Qp([i + 1, l1, · · · , lk−2], [i, l1, · · · , lk−2])|

= −qi+1,i

∑

1≤l1<···<lk−2≤p

i/∈{l1,···,lk−2}

and i+1/∈{l1,···,lk−2}

|Qp([l1, · · · , lk−2], [l1, · · · , lk−2])|

= −qi+1,i

∑

1≤l1<···<lk−2≤p

i/∈{l1,···,lk−2}

and i+1/∈{l1,···,lk−2}

|Q̃i
p([l1, · · · , lk−2], [l1, · · · , lk−2])|

−qi+1,i

∑

1≤l1<···<lk−2≤p

i∈{l1,···,lk−2}

or i+1∈{l1,···,lk−2}

|Q̃i
p([l1, · · · , lk−2], [l1, · · · , lk−2])|

= −qi+1,i

∑

1≤l1<···<lk−2≤p

|Q̃i
p([l1, · · · , lk−2], [l1, · · · , lk−2])|

= −q2iR̃
p
k−2,i.

The proof for ∂Rp
k/∂qi+1,i is similar.
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