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Summary. We propose a new stochastic framework for analyzing the dy-

namics of the (acquired) immunity of wildlife hosts against organisms caus-

ing an infectious disease. Our study is motivated by the need for analyzing

monitoring time-series data covering the period from 1975 to 1995 on bac-

teriological and serological tests-samples from great gerbils being the main
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host of Yersinia pestis in Kazakhstan. Based on a four-state continuous-time

Markov chain, we derive a generalized nonlinear mixed-effect model for an-

alyzing the serological test data. The immune function of a host pertains

to its production and activation of cells that fight infection. We find that

the immune function of the sampled great gerbils is seasonal so as to make

the great gerbils lose immunity to plague faster over the winter-to-summer

season than over the summer-to-winter season.
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1. Introduction

We consider the problem of studying the dynamics of the immune responses

of wildlife hosts to infectious disease, based on monitoring time-series data.

In monitoring epizootics of an infectious disease among wildlife hosts, the

sampling scheme is often destructive as the sampled hosts may have to be

sacrificed in order to test for the presence of the agents causing the infectious

disease, and including testing for the presence of anti-bodies in blood and/or

inner organs of the hosts. Such studies, therefore, cannot provide informa-

tion on the time course at the population level of the immune response of

an individual host. Our motivating case study concerns the modelling of the

dynamics of the immune responses of great gerbils (Rhombomys opimus) to

plague in Kazakhstan. The great gerbil populations constitute several nat-

ural foci to plague (caused by the bacteria Yersinia pestis) in Kazakhstan

where the disease may be transmitted to humans by vectors, mainly, fleas.

A long-term monitoring study of this natural plague system was undertaken

2



from 1949-1995, for tracking the prevalence of plague in the great gerbil pop-

ulation; see Davis et al. (2004) and Frigessi et al. (2004). In particular, in

both spring and fall of each year, samples of great gerbils provided bacterio-

logical and serological test data for plague symptoms. While bacteriological

tests may detect the presence of plague bacteria and hence the plague dis-

ease in great gerbils at the time of sampling, serological tests may detect the

presence of antibodies to plague bacteria. Consequently the serological test

data are indicative of past infections, and may shed light on the dynami-

cal structure of the immune system of the great gerbils against plague; see

Section 3.

In this paper, we focus on the modeling of the dynamics of the (acquired)

immunity of great gerbils in Kazakhstan against plague. For this purpose,

we assume a continuous-time Markov chain model (Cox and Miller, 1968,

and Bhattacharya and Waymire, 1990) for the time course of the immune

response of a (random) great gerbil with a 4-state state space; the four states

are susceptible (S), infected (I), recovered (R) and death (D). An advantage

of this approach is its relative ease of deriving an approximate expression

relating the probability of a positive serological test with the probability of

a positive bacteriological test and its lags. Consequently, we can use this

relationship to study the dynamics of the immune response (to plague) of

the great gerbils, conditional on the estimated prevalence rates of plague dis-

ease among the great gerbil population. A drawback of our continuous-time

Markov chain approach is that (unlike the classical approaches to infectious

disease modeling; see Grenfell and Dobson, 1995, and Dickmann and Heester-

beek, 2000 for recent surveys) it does not model the interactions between the
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infected hosts, the recovered hosts and the susceptible hosts. This omission

is, however, deliberate and it simplifies the analysis; this is appropriate as

our goal is not to model the epidemiological time course, but to understand

the dynamics of the immune response, conditional on the prevalence rates.

We specify the instantaneous prevalence rate to be constant over each season,

but otherwise be a free parameter. Based on the continuous-time Markov

chain framework, we derive a generalized nonlinear mixed-effect model for

analyzing the serological test data. For recent surveys of generalized non-

linear mixed-effect models, see, for instance, Pinheiro and Bates (1995) and

Davidian and Giltinan (2003).

This article is organized as follows. In Section 2 we provide some general

background information about the plague system as it is found in Kaza-

khstan. In Section 3 we provide further details on the monitoring data, the

protocol of the bacteriological and the serological tests. In Section 4 we de-

rive a generalized nonlinear mixed-effect model for analyzing the serological

test data. Details of the derivation are collected in an appendix. Section 5

presents the results of the data analysis. We conclude in Section 6.

2. The plague system

Plague exists in nature as a disease of wild rodents caused by infection of

the bacterium, Yersinia pestis. The infection is maintained in natural foci

of the disease in wild rodent colonies through transmission between rodents

by their flea ectoparasites. Rodents are the primary hosts of Y. pestis; how-

ever, other mammals, including humans, may be infected. Other mammalian

species, especially rodent-consuming carnivores, may play an ecologically im-

portant role by transporting infected fleas from one area to another. Plague
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is widespread on all continents of the world except Australia and Antarctica.

In the desert and semidesert of Kazakhstan (and central Asia, in general),

Rhombomys opimus (the great gerbil) and the fleas inhabiting their burrows

(mainly of the genus Xenopsylla) are considered to be the main host and

vectors, respectively, of plague.

Great gerbils are social desert rodents living in family groups that occupy

discrete, permanent burrow systems (colonies). A family group usually in-

cludes a single adult male and several females with their offspring. Group

size and composition vary by year with variation in population densities.

Females remain in their natal group, while males disperse and join other

solitary females or female groups. Both males and females defend the group;

males usually chase away other males. The winter death rate is high; no

more than 10-12 percent of adult gerbils survive the winter. All members of

a family group participate in the storing of green vegetation. Food storage is

especially intensive in the spring (when pups emerge) and in fall. From one

to three litters, ranging in size from 1-14 (but usually 4-7), are born from

April to September, depending on precipitation and vegetation (Naumov and

Lobachev, 1975). Great gerbils exhibit extensive population fluctuations be-

tween years. Years of high abundance seems to be necessary for the large

scale spread of plague that produces epizootics (Davis et al., 2004).

The response of great gerbils to plague infection depends on the inten-

sity of the infection (i.e., quantity and virulence of plague microbes) as well

as the level of innate and acquired resistance against the plague infection.

The higher the level of resistance, the weaker the infectious process may be

(Rothschild, 1978). Great gerbils are relatively resistant to plague, but there
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is extensive individual variation. Resistance to plague may differ dramat-

ically among populations of the same species of rodent, and the rate may

change within populations depending on how recently they were exposed to

plague. Resistant great gerbils rarely die of plague, but do become bac-

teremic (i.e., with bacteria present in the blood) and, therefore, may serve as

sources of infectious blood meals for feeding fleas. The rodents are infectious

only in the period of bacteremia of any intensity. The incubation period is

3-5 days. Great gerbils with an acute plague infection are characterized by

reduced activity being more vulnerable to predation. Infected great gerbils

experience higher death rates than non-infected great gerbils.

3. The Monitoring Data from Kazakhstan

The survey area is located south-east of Lake Balkhash in south-eastern

Kazakhstan, being part of the PreBalkhash plague focus (see, e.g., Davis

et al., 2004). The PreBalkhash focus is separated into specific Landscape-

Epizootological Regions, a Landscape-Epizootological Region being an area

of a particular type of landscape, soil, vegetation, density of the gerbils and

their fleas, as well as by the level of epizooticity. For the purposes of moni-

toring plague, the whole of Kazakhstan was divided into 40×40 km squares,

here referred to as large squares (see Figure 1). Each large square compro-

mises 4 20×20 km primary squares which in turn are divided into 4 sectors.

Within a given sector, data are typically recorded twice a year and providing

information on the results of bacteriological and serological tests (prevalence

data) together with independent information on the rodent densities.

The sampling was done during spring and fall from 1949 to 1995. The

great gerbils are mainly caught around May-June in spring and around
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September-October in fall, with the bacteriological and serological tests ad-

ministered to the caught gerbils. Gerbil density data are estimated in April

and September. For simplicity, it is assumed that the sampling was carried

out at time ∆t in the tth season which spans from bt to Lt. Standard-

ized serological tests have been carried out since 1975; hence, the analysis

reported below are confined to the data collected from the period starting

from 1975. The bacteriological test is positive when Y. pestis is isolated by

planting rodent samples (blood, liver and spleen) on agar media. The result

of the bacteriological test is the result of the combined testing of blood, liver

and spleen samples taken from each single rodent. Bacteriologically positive

results are found for rodents with local forms of infection in organs (liver or

spleen) or with expressed bacteremia (i.e., live bacteria present in blood).

The more Y. pestis there are in the sample, the more likely there will be

a positive test result. However, samples taken from infected individuals may

not include live bacteria, because the likelihood for bacteria to be included in

the sample is dependent on the strength of the infection (the amount and the

virulence of bacteria), the great gerbil’s resistance to plague and the phase of

the infectious process in the great gerbil caught. Hence, not all infected ger-

bils will give a positive response to the bacteriological test. Additionally, the

reduced above-ground activity of plague-infected great gerbils makes them

harder to trap than non-infected individuals. This implies that the proba-

bility that a caught great gerbil is bacteriologically positive approximately

equals the probability that a (random) great gerbil is bacteriologically posi-

tive up to a multiplicative factor that is between 0 and 1; the multiplicative

factor quantifies the reduction in the trapping probability due to the lower
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mobility and higher mortality rate of an infected great gerbil. The mul-

tiplicative factor is assumed to be constant or seasonal. Consequently, the

fraction of bacteriologically positive caught great gerbils is a biased estimator

of the prevalence rate, with a downward bias. Fortunately, the (unknown)

multiplicative factor can be absorbed by a parameter in the statistical model

to be derived below, so that, without loss of generality, the multiplicative

factor can and will be taken to be 1; see Section 4. In other words, it is valid

to carry out the analysis conditional on the (biased) prevalence estimates, as

it is done in Section 5.

We remark that the Markov chain model used in this paper only attempts

to model the average infectivity, immunity and survival rates as the param-

eters in the transition rate matrix are assumed to be unknown, but fixed,

parameters. As discussed above, some of these epidemiological parameters

may be better modelled as random; however, the data currently under study

is too coarse for such a purpose.

Serological tests were done by analyzing blood samples and tissue extracts

from the caught great gerbils for the presence of anti-F1 antibodies by a

passive haemagglutination (PHA) test. The F1 antigen is specific to Y.

pestis (Perry and Fetherston, 1997). The specificity of the PHA test was

confirmed by an F1 antigen neutralization test, reducing the probability of

a false positive test result.

When infected great gerbils develop antibodies to Y. pestis, they “sero-

convert” from antibody-negative to antibody-positive. After an infectious

flea bite, antibodies with low titres (i.e., low concentrations) may start to be

registered from the third day. Complete antibodies (both IgG and IgM gam-
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maglobulins), are commonly registered after 6-8 days in the rodent (Kanatov

et al., 1969). The probability of a positive serological result depends on the

length of time between the rodent was infected with the bacteria and was

caught; the shorter the time period since seroconversion in the rodent, the

higher the likelihood of a positive test result. After seroconversion, produc-

tion of antibodies may increase for a few weeks, thereafter the antibody titres

usually diminish gradually over the next months. The average length of anti-

body registration is 3-6 months, but in some cases it may last up to one year

(Kanatov, 1974) and possibly longer. From autumn to spring, antibodies are

found in a minority of great gerbils (10%; Suleimenov et al., 2001).

Positive serological tests indicate recent or past exposure to plague. Neg-

ative serological tests are not evidence for the absence of plague, because

individual rodents may not react serologically or have very low diagnostic

titres (corresponding to a low infectious dose, initial or final stages of an-

tibody production and/or low reactivity of an individual). Intensity of an-

tibody production (and the length of their presence) depends on immune

reactivity of a rodent. The later the elimination of the plague bacteria, the

clearer is the immune response of the rodent (Kanatov, 1974).

The data used in this paper consist of counts of great gerbils, the numbers

of great gerbils that are bacteriologically positive in each sample, as well as

the counts of serologically positive great gerbils. We analyze data from 6 large

squares that have adequate data for the model estimation reported in Section

5. The time-series plots of counts of serologically positives, and those of the

bacteriologically positives, the sample sizes and the rodent density estimates

are depicted in Figure 1. These plots display a variety of temporal patterns,
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and diverse levels of serological and bacteriological positive counts. Since

1975, most large squares had at most two epizootics.

For the purpose of analyzing these data, we formulate a new model frame-

work for analyzing such data. We aim to explain the observed variation in

the dynamical patterns in terms of an epidemiological-based model, and to

improve our understanding of the underlying immunity loss structure of the

great gerbil system in Kazakhstan.

4. A Generalized Nonlinear Mixed-effect Model

Given the sample size, the number of bacteriological positives and that

of serological positives have approximately marginal binomial distributions.

Here, we focus on the analysis of the serological test data. For this purpose,

we first derive a formula for the probability, qt, that a great gerbil is sero-

logically positive at time ∆t, the tth sampling epoch. (Recall that the tth

sampling season begins at bt and ends at Lt with the sampling epoch ∆t

within the season.) Specifically,

qt = C +
M

∑

j=0

Dt−j

Dt

τt−jpt−j

j
∏

k=1

θt−k+1 + ηt, (1)

where a product over an empty index set is defined to be 1; Dt is the estimated

great gerbil density at time ∆t; τt is proportional to the instantaneous recov-

ery rate (the proportionality constant is, however, generally region-specific);

pt is proportional to the probability of a great gerbil being bacteriologically

positive at time ∆t, i.e., the instantaneous plague prevalence rate at time ∆t;

the maximum value of M is set to be 7 because a great gerbil rarely lives

longer than 4 years (Naumov and Lobachev, 1975); θt is the probability of

a recovered great gerbil keeping immunity throughout the tth season (i.e.,
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from bt to Lt); C is a term accommodating for possible migration of great

gerbils between neighboring squares, and ηt are independent N(0, σ2) errors.

The plague prevalence rates are subject to no restrictions and can vary from

season to season, and year to year.

Consider the probability of a great gerbil being bacteriologically positive

at time ∆t, which can be obtained as follows (see the Appendix for details).

pt = P (a great gerbil is bacteriologically positive at ∆t) (2)

≈ qSIe
qII(∆t−bt)

e(qSS−qII)(∆t−bt) − 1

(qSS − qII)
, (3)

where qSI is the (instantaneous) infective rate, (−qSS)−1 is the mean suscep-

tible period, and (−qII)
−1 is the mean infective period.

Because a plague-infected great gerbil is harder to be caught, the prob-

ability pT
t that a caught great gerbil is bacteriologically positive at ∆t is

different from pt. Their relationship can be derived by Bayes’ theorem. Let

ω be the (conditional) probability of a great gerbil being caught given that

it is healthy and δω be the (conditional) probability of a great gerbil being

caught given that it is plague-infected, where for 0 < δ ≤ 1. By Bayes

Theorem,

pT
t =

ptδω

ptδω + (1 − pt)ω
≈ δpt,

where the approximation error is of the order of p2
t . Similarly, it can be
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shown that

qt = P (a great gerbil is serologically positive at ∆t)

≈
M

∑

j=0

Nt−j

Nt

j
∏

k=1

θt−k+1 × pt−j × τt−j, (4)

=
M

∑

j=0

Nt−j

Nt

j
∏

k=1

θt−k+1 × pT
t−j × (

τt−j

δ
),

where Nt is the true number of great gerbils in the tth season. But δ can be

absorbed into τt−j. For simplicity, we henceforth assume δ = 1 and pT
t = pt.

Furthermore, it is assumed that τt and/or θt are seasonal, i.e.,

τt =

{

τS, if t is a spring (winter-to-summer season),

τF , if t is a fall (summer-to-winter season),

with θt similarly specified. Later on, we shall consider the further simplifica-

tion that θt and/or τt are constants.

Because Nt are unknown, they will be replaced by great gerbil density

estimates. Specifically let Dt be the estimated great gerbil density. Then a

simple model relating the density estimates to Nt is: dt = K +nt + ǫt , where

K is a constant, dt = log(Dt), nt = log(Nt) and ǫt are iid N(0, σ2) noises.

Consequently,

Dt−j

Dt

= exp(nt−j − nt) exp(ǫt−j − ǫt) =
Nt−j

Nt

exp(ǫt−j − ǫt).

This implies that

qt =
M

∑

j=0

Dt−j

Dt

τt−jpt−j

j
∏

k=1

θt−k+1 exp(ǫt − ǫt−j).

The rather complex noise structure can be simplified by noting that (i) for

small noise terms, exp(ǫt−ǫt−j) can be approximated by 1+(ǫt−ǫt−j) and (ii)
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then approximating the combined noise terms as a single stochastic error, i.e.,

we specify (1). (Strictly speaking, the error terms in (1) are heteroscedastic,

but are assumed to be homoscedastic for simplicity.)

The probability model introduced above provides a useful framework for

analyzing the bacteriological and serological test data. While the bacteri-

ological test data provide only information on the plague prevalence, the

serological test data contain information on plague prevalence as well as the

immunity loss structure. Thus, ideally, a joint analysis may be carried out

with both the bacteriological and serological test data. However, such a joint

analysis is limited by the fact that there were just a few epizootics in each

large square making a fair number of pt being zero. For the sake of compari-

son, the analysis were carried out for data starting from spring 1975, for the

6 squares under study. The lag structure of pt entering in qt defined in (1)

further complicates the joint analysis. Because of these difficulties we first es-

timate pt based on the bacteriological test data. Recall that in the tth season,

a sample of Gt great gerbils were given bacteriological and serological tests

for plague symptoms. Let Bt denote the number of bacteriological positives

and St the number of serological positives in the sample. Below, the notation

B(n, p) denotes the Binomial distribution with n trials and the probability

of success being p. Specifically, because Bt have the Binomial distributions,

B(Gt, pt), the maximum likelihood estimates of pt equal p̂t = Bt/Gt. (Recall

that we have made the simplifying assumption that pt = pT
t . Hence, more

generally, p̂T
t = Bt/Gt). We then treat p̂t as if they were the true pt and

proceed to analyze the serological test data, for those seasons since spring of

1975 and with non-zero serologically positives. That is, we model St given
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Gt as B(Gt, qt), where qt is given by (1) with pt there replaced by p̂t. This

is a generalized nonlinear mixed-effect model, and the models reported in

the next Section were fitted using proc nlmixed of SAS. The estimation was

done with the parameters τs parameterized to be positive and Cs and θs be

between 0 and 1; furthermore we truncate the right side of (1) if it falls below

0 or above 0.99.

5. Statistical Analysis and Discussion

We considered four cases, namely, case 1: constant τ and seasonal θ, case 2:

seasonal τ and constant θ, case 3: both τ and θ are constants and case 4:

both τ and θ are seasonal. The analysis are done with the data from large

squares 91, 93, 105, 106, 117 and 118 (see Figure 1). The other large squares

do not have adequate serological positive data for analysis, and hence are

omitted. Given the relatively few epizootics, we assume a common θ and

τ model for all 6 large squares, but the constant C is allowed to be square

specific. We restrict M to be ≤ 7, which amounts to a maximum of great

gerbil life-span of 4 years. Table 1 reports the AICc of the fitted models

for the four cases, with various values of M in the model defined by (1).

The minimum AICc is bold-faced, while entries for models whose Hessian

matrices are singular or non-negative-definite are printed in italics. Thus, a

seasonal θ and constant τ model with M = 4 is selected, based on AICc, as

the best model with common immunity structure. That is, the best model

chosen includes a 4-seasonal-lag disease structure where the immunity loss

rate differs between the winter-to-summer season and the summer-to-winter

season, while the recovery rate is constant between the two seasons. The

coefficient estimates and some statistics related to the estimates of the best
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model are summarized in Table 2. The estimates of the main parameters,

θF , θS, τ and σ2 are significant.

The estimate of the parameter θ is significantly higher in fall than in

spring, suggesting that recovered great gerbils lost immunity to plague more

quickly during the winter-to-summer season than the summer-to-winter sea-

son. In PreBalkash area, reproduction occurs mainly over April-June (Nau-

mov and Lobachev, 1975). The fact that the period of intensive reproduction

being in the winter-to-summer season is likely to be one of the reasons for

the estimate of the parameter θ being lower in spring. Immunity is gener-

ally compromised during the breeding compared to the non-breeding season

(Nelson et al., 2002). Mounting an immune response likely require resources

that could otherwise be allocated to other biological functions. Nelson et

al., (2002) predict that immune function should be reduced when energetic

requirements are high (e.g., during migration, pregnancy, territory defence,

lactation or winter). As winters progress and nutritional and climatic stres-

sors act on the great gerbils, we may expect declines in body mass and levels

of immunocompetence during late winter and early spring.

We have checked the assumption of common structure by fitting the un-

constrained model to each large square. However, the model fits to large

squares 93 and 105 are problematic (e.g., having non-definite Hessian matri-

ces, which is probably due to the low number of positive serological cases).

Hence, a fair comparison between the constrained (common-structure) model

and the unconstrained model is not possible. Indeed, this is the main reason

for imposing the common structure assumption.

The immigration effects are insignificant for large squares 91, 105 and
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117, but they are significant for large squares 93, 106 and 118. Indeed, mi-

gration of great gerbils from other large squares into the latter three squares

may account for the surge in the serological positive cases toward the end of

the sampling period for these three squares; see Figure 1. Moreover, while

for large squares 91, 105 and 117, the bacteriological time series always led

the serological series, this was not the case for large squares 93, 106 and

118, and instead the serological series sometimes led the bacteriological se-

ries; immigration may be a likely cause of this phenomenon. (An alternative

explanation is that the lower trapping probability of the sick animals (likely

to give rise to a positive bacteriological test result) might contribute to the

pattern of serological series sometimes leading the bacteriological series; more

field work on the relative magnitude of the differential trapping probabilities

is needed to investigate this scenario.) Large square 91 belongs to Landscape-

Epizootological Region Bakanas, large squares 105 and 117 mainly belongs

to Landscape-Epizootological Region Akdala, while large squares 93, 106

and 118 consist of a combination of data from both Akdala and Landscape-

Epizootological Region Saryesikotrau. These last three squares are exactly

those squares for which an migration effect is found. To assess the possi-

ble problem due to pooling data from different Landscape-Epizootological

Regions, we computed the data according to Landscape-Epizootological Re-

gion and repeated the analysis for each region; we found that while the sea-

sonal immunity structure is still supported by data from Akdala, data from

the other two regions select the constant θ and τ model. However, Akdala

has 58% of all serological positives that occurred in the three Landscape-

Epizootological Regions. The low sample size in the other two regions may
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weaken the embedded seasonal signal. Consequently, it seems to us that the

combined analysis by large squares is still the best way to summarize the

data. Hence, we conclude that it is appropriate to combine data from the

three different Landscape-Epizootological Regions to estimate a common set

of parameters.

In Figure 1, the open circles represent the fitted values (i.e., the predicted

value of each case given the other data cases) based on the best fitted model;

these fitted values appear to closely track the counts of serological positives.

Figure 2 plots the standardized residuals against the fitted values. The plot

suggests some outlying residuals, with the largest one equal to 3.14, which is

not an outlier, after adjusting for multiple testing using Bonferroni inequality.

This is because there are 76 data cases so that a residual is judged to be

an outlier only if it exceeds 3.41 in magnitude, at 5% family error rate.

Nonetheless, we have also refitted the best model reported above, but with

the two largest “outliers” allowed for by incorporating dummy variables in the

model; the estimates of θs become slightly smaller although their difference

is still significant, that of τ is larger, and the rest of the parameter estimates

essentially unchanged. Thus, we conclude that the model fit is robust to the

presence of possible outliers.

In sum, we have demonstrated that (1) the immunity loss structure may

be explained in terms of a 4-seasonal-lag disease structure, (2) the immunity

loss rate is seasonal, but (3) the recovery rate is found to be non-seasonal.

[Table 1 about here.]

[Table 2 about here.]
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[Figure 1 about here.]

[Figure 2 about here.]

6. Conclusion

We have proposed a new stochastic framework useful for studying the dy-

namics of the immunity function of wildlife hosts against an infectious dis-

ease agent. The new proposed framework facilitates the study of the seasonal

pattern of the immunity of great gerbils against plague. Using a common

immunity structure, we illustrate this approach with the monitoring time-

series data on the great gerbil system in Kazakhstan and show that the

immune function of the great gerbil was seasonal. Interestingly, we find that

the great gerbils in the monitoring study lost immunity to plague faster over

the winter-to-summer season than over the summer-to-winter season. Earlier

studies of viral, bacterial, and parasitic infections suggest that such seasonal

pattern may be mediated by changes in food availability, temperature, pho-

toperiod, and social behavioral changes; see Nelson et al. (2002), Klein et al.

(2002) and Rogovin et al. (2003).

A major contribution of this paper consists of the development of an

epidemiologically-based time series analysis of the immunity structure with

aggregate time-series disease data. However, the continuous-time Markov

chain framework may also be useful for analyzing panels of individual-based

time-series disease data. Another interesting problem is how to extend our

approach to include covariates so that we may identify important factors that

may explain the observed seasonal structure.
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Appendix A

Derivation of Equations (3) and (4)

We model the disease history of a (random) great gerbil by a continuous-time

Markov chain with 4-states, namely, susceptible (S), infected (I), recovered

(R) and dead (D). Denote by {Xt} the Markov process whose state at time

t can be either S, I, R or D. Each state has distinct implications on the

outcomes of the bacteriological and/or serological test administered to the

great gerbil. Specifically, if at time t a great gerbil has the state S, then it

yields bacteriologically and serologically negative test outcomes, denoted by

(B-,S-); if it is in state I, then it yields bacteriologically and serologically

positive test outcomes, denoted by (B+,S+) (for simplicity, we have ignored

the brief, initial period of infection when the great gerbil may not respond

positively to either test); if it is in state R, then it yields bacteriologically

negative and serologically positive test outcomes; denoted by (B-,S+).

The (infinitesimal) transition rate matrix of {Xt} takes the following
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form:



















S I R D

S −qSI − qSD qSI 0 qSD

I 0 −qIR − qID qIR qID

R qRS 0 −qRS − qRD qRD

D 0 0 0 0



















where for any two states x and y, the infinitesimal transition rate qxy =

limδt↓0
P (Xt+δt

=y|Xt=x)−P (Xt=y|Xt=x)

δt
, and hence for small δt > 0,

qSI ≈ P (Xt+δt
= I|Xt = S)/δt, qSD ≈ P (Xt+δt

= D|Xt = S)/δt, qSS =

−qSI − qSD ≈ {P (Xt+δt
= S|Xt = S) − 1}/δt,

qIR ≈ P (Xt+δt
= R|Xt = I)/δt, qID ≈ P (Xt+δt

= D|Xt = I)/δt, qII =

−qIR − qID ≈ {P (Xt+δt
= I|Xt = I) − 1}/δt,

qRS ≈ P (Xt+δt
= S|Xt = R)/δt, qRD ≈ P (Xt+δt

= D|Xt = R)/δt,

qRR = −qRS − qRD ≈ {P (Xt+δt
= R|Xt = R) − 1}/δt.

The Markov process has the following implications. If Xt = x then the

transition time to another state is exponential with mean −1/qxx (note qxx is

negative), and given the process has a transition, the (conditional) probabil-

ity that the transition is from state x to state y is proportional to qxy. There-

fore, we can interpret qSI as the (instantaneous) infective rate, qIR/(qIR+qID)

as the recovery rate, −1/qRR as the mean immunity duration, qID/(qIR+qID)

as the mortality rate of plague and generally, qSD = qRD, as proportional to

the natural death rates. In this application, we assume that qSI is a free

parameter that is constant within any given season. All other intensity pa-

rameters are, however assumed to be seasonal, i.e. taking one of two possible

values, dependent on whether it is a winter-to-summer or summer-to-winter
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season. (To simplify the derivation of the formulas below, all the intensity

parameters will be treated as if they were constant.) The sampling was car-

ried out in each season (spring and fall) at time ∆t in the tth season. Plague

prevalence was monitored by counting the number of bacteriologically and/or

serologically positive great gerbils in the samples. First, we compute the (in-

stantaneous) plague prevalence rate

pt = P (B+ at ∆t) = P (a great gerbil tested bacteriologically positive at ∆t)

= P (X∆t
= I).

This probability can be approximately computed based on two working as-

sumptions.

Assumption A: For each great gerbil, there is at most one successful plague

attack within each season.

If recovering from a successful plague attack, the rodent may at any time be

exposed to a new infectious flea bite. However, during 2-4 months after any

acute period, a rodent possesses sufficient level of immunity to resist a new

infection. Therefore, a great gerbil is not likely to be infected with plague

more than once each season.

Assumption B: At the beginning of each season, the majority of the great

gerbils are susceptible.

Recent field data suggests the validity of Assumption B at the beginning

of the winter-to-summer seasons. Suleimenov et al. (2001) found that only

about 10% of surviving great gerbils kept antibodies from fall to spring. No-

tice, however, that new cases of plague infections may appear early in spring.

As antibodies may circulate for about 2 to 4 months and possibly longer

(Kanatov, 1974), this assumption may be invalid for the summer-to-winter
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season. During an acute epizootic, 50-70% of individuals in a given popu-

lation may react serologically (Suleimenov et al., 2001), and many of these

individuals are likely to keep a high level of antibodies for several months.

This suggests that the number of infected or recovered great gerbils could

be about half of the number of susceptibles. Nonetheless, a careful analysis

shows that the contributions to the probabilities of interest from the great

gerbils that are infected or recovered are of smaller order of magnitude than

those from the susceptibles. This is because at the beginning of tth season,

(i) any infected great gerbil will not contribute to pt by Assumption A, and

(ii) any recovered great gerbil has to become susceptible before it can con-

tribute to pt, and hence such contribution is of smaller order of magnitude

than contribution under Assumption B; similar reasoning applies to the com-

putation of qt. Consequently, Assumption B serves to simplify the ensuing

calculations.

Based on these two working assumptions, the event {X∆t
= I} is almost

equal to the event that there exists some intermediate time x between the

beginning of the season, bt, and the sampling time, ∆t, such that the great

gerbil is susceptible between bt and x and becomes infected from x to ∆t

(and then perhaps some time thereafter). The probability of the later event
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can be computed as follows.

pt =

∫ ∆t

bt

(−qSS)eqSS(x−bt)qSI/(−qSS)P ( the next transition time ≥ ∆t|Xx = I)dx

=

∫ ∆t

bt

qSIe
qSS(x−bt)eqII(∆t−x)dx

= qSIe
qII(∆t−bt)

∫ ∆t

bt

e(qSS−qII)(x−bt)dx = qSIe
qII(∆t−bt)

e(qSS−qII)(x−bt)

(qSS − qII)
|∆t

bt

= qSIe
qII(∆t−bt)

e(qSS−qII)(∆t−bt) − 1

(qSS − qII)
.

The immunity loss structure can be analyzed by studying the serological

test data. To do this, we need to compute the following probability

qt=p(S+ at ∆t ) = P(a great gerbil tested serologically positive at ∆t)=E(Qt)/Nt,

where E() denotes taking conditional expectation given the current and past

rodent densities, Nt is the true rodent density in the tth season, Qt is the num-

ber of great gerbils that test positive serologically at ∆t and Qt =
∑M

j=0 Qt,j,

where Qt,j is the number of great gerbils whose most recent infection occurr

in the (t − j)th season and test positive serologically at ∆t. The maximum

values of M is set to be 7, because great gerbils rarely live beyond 4 years.

Hence,

E(Qt) =
M

∑

j=0

Nt−jP (S + at ∆t, most recent infection in the (t − j)th season).

(A.1)

The probability P(S+ at ∆t, most recent infection in the (t−j)th season) can

be computed as follows. Based on the two working assumptions A and B, the

event of interest is almost equal to the event that a great gerbil is susceptible

at bt−j, the beginning of the (t− j)th season, then gets infected at x which is

between bt−j and Lt−j, the end of the (t− j)th season, and recovers at x + y
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and remains so until ∆t. Now, we introduce the third working assumption.

Assumption C: Any infection period is comparatively much shorter than

any recovered period or susceptible period.

Generally, the infection period of great gerbils are less than 10 days, while

antibodies to plague may be registered for several months (Kanatov, 1974).

Assumption C simplifies the calculation as we can take y = 0. Consider

the case that j > 0. Then,

P (S + at ∆t,

most recent infection in the (t − j)th season)

≈

∫ Lt−j

bt−j

(−qSS)eqSS(x−bt)qSI/(−qSS)
qIR

(qIR + qID)
eqRR(∆t−x)dx

= eqRR(∆t−Lt−j)

∫ Lt−j

bt−j

qSIe
qSS(x−bt)eqRR(Lt−j−x)dx ×

qIR

(qIR + qID)

= eqRR(∆t−Lt−j)P ( a great gerbil infected in the (t − j)th season,

and keeps immunity throughout (t − j)th season). (A.2)

Define the probability on the right side of the preceding equation by γt−j.

Upon noting that the end of a season coincides with the beginning of the

next season, we have

eqRR(∆t−Lt−j) = eqRR(∆t−bt)eqRR(Lt−1−bt−1) · · · eqRR(Lt−j+1−bt−j+1)

= eqRR(∆t−Lt)eqRR(Lt−bt)eqRR(Lt−1−bt−1) · · · eqRR(Lt−j+1−bt−j+1)

= eqRR(∆t−Lt)θt · · · θt−j+1, (A.3)

where θt = eqRR(Lt−bt) which can be interpreted as the probability that a

recovered great gerbil kept immunity throughout the tth season. Next, con-

sider the case that j = 0, which means that the great gerbil is infected some
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time within the tth season. We can compute the probability P( S+ at ∆t,

most recent infection in the tth season) as follows:

∫ ∆t

bt

−qSSeqSS(x−bt)qSI/(−qSS)
qIR

(qIR + qID)
eqRR(∆t−bt)dx

= qSIe
qRR(∆t−bt)

∫ ∆t

bt

e(qSS−qRR)(x−bt)dx ×
qIR

(qIR + qID)

= qSIe
qRR(∆t−bt)

e(qSS−qRR)(x−bt)

(qSS − qRR)
|∆t

bt
×

qIR

(qIR + qID)

= qSIe
qRR(∆t−bt)

(e(qSS−qRR)(∆t−bt) − 1)

qSS − qRR

qIR

(qIR + qID)

= δpt

(qSS − qII)

eqSS(∆t−bt) − eqII(∆t−bt)

eqSS(∆t−bt) − eqRR(∆t−bt)

(qSS − qRR)

qIR

(qIR + qID)
.

(A.4)

Let τt = (qSS−qII)

eqSS(∆t−bt)−eqII (∆t−bt)
eqSS(∆t−bt)−eqRR(∆t−bt)

(qSS−qRR)
qIR

(qIR+qID)
. This expression

can be simplified under the following assumption.

Assumption D: The magnitude of qSS is much smaller than that of qRR or

qII .

Assumption D amounts to the condition that the mean susceptible period

(−1/qSS) is much longer than the mean infection period (−1/qII) or the mean

recovered period (−1/qRR), which seems to be consistent with the monitor-

ing data under study (see the discussions below Assumptions (A-C)). Under

this assumption and the natural condition that ∆t − bt is relatively large,

τt ≈
(qSS−qII)
(qSS−qRR)

qIR

(qIR+qID)
. It can be shown that γt has the same expression as

τt except that ∆t is replaced by Lt, and hence γt ≈ τt, under Assumption D.

Combining (A.1)-(A.4), we get Equation (4).
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Figure 1. Upper left panel shows PreBalkhash focus marked as a square
on a map of Kazakhstan. Lower left panel shows the large squares in the
PreBalkhash focus from which we have data on the monitoring of plague
prevalence. The right panel shows the time-series plots of counts of bacteri-
ological positive (dashed line), serological positives (solid line), sample size
(dot-dashed line) and rodent density (dotted line) for 6 large squares. The
latter two variables are re-scaled and multiplied by a minus sign to render
the time-series plots clearer. Open circles represent fitted values from a fitted
model reported in Table 2.
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Figure 2. Standardized residual plot of the model reported in Table 2.
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Table 1

AICc of the various common immunological models. Case 1: constant τ
and seasonal θ, case 2: seasonal τ and constant θ, case 3: both τ and θ are

constants and case 4: both τ and θ are seasonal.

M

Model 7 6 5 4 3 2 1 0

Case 1 35155.0 23007.0 1877.9 752.6 753.0 754.8 753.7 769.0

Case 2 35164.0 23017.0 1888.6 763.6 763.7 764.2 765.4 769.0

Case 3 35168.0 23021.0 1894.5 769.6 769.8 770.6 766.8 781.4

Case 4 35157.0 23009.0 1879.6 754.4 754.6 756.3 757.0 771.7
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Table 2

Parameter estimates for the best model based on Table 1.

Parameter Estimate SE P-value

θF 0.632 0.203 0.003

θS 0.135 0.030 <.0001

τ 7.256 2.598 0.007

σ2 0.008 0.002 <.0001

θF − θS 0.497 0.204 0.017

C91 1.5E-07 9.2E-05 0.999

C93 0.073 0.029 0.014

C105 0.032 0.024 0.180

C106 0.074 0.027 0.007

C117 0.013 0.046 0.776

C118 0.096 0.023 <.0001
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