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Summary. We develop a new class of Continuous-time Auto-Regressive Fractionally In-

tegrated Moving-Average (CARFIMA) models which are useful for modelling regularly-spaced

and irregularly-spaced discrete-time long-memory data. We derive the autocovariance func-

tion of a stationary CARFIMA model, and study maximum likelihood estimation of a regression

model with CARFIMA errors, based on discrete-time data and via the innovations algorithm. It

is shown that the maximum likelihood estimator is asymptotically normal, and its finite-sample

properties are studied through simulation. The efficacy of the proposed approach is demon-

strated with a dataset from an environmental study.

Keywords: CARFIMA models; fractional Brownian motion; innovations algorithm; irregularly-

spaced data; polynomial trend.

1. Introduction

It is well known that the long range dependence properties of time series data have found

diverse applications in many fields including hydrology, economics and telecommunications;

see Bloomfield (1992), Sowell (1992), Robinson (1993), Beran (1994), Baillie (1996) and

Ray and Tsay (1997). A well-known class of discrete-time long-memory processes are the
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autoregressive fractionally integrated moving average (ARFIMA) models; see Granger and

Joyeux (1980) and Hosking (1981). Maximum likelihood estimation and forecasting of the

ARFIMA models with missing values have been considered by Palma and Chan (1997) and

Palma and Del Pino (1999).

For irregularly-spaced time series data, it is often more convenient to analyze the data

by assuming that they are sampled from an underlying continuous-time process. The un-

derlying continuous-time process may be modeled as driven by some stochastic differential

equations, e.g. the linear continuous-time autoregressive moving average (ARMA) models.

Continuous-time long memory modelling have been studied by a number of authors. Comte

and Renault (1996) developed a general class of linear continuous time processes that ex-

hibit long range dependence. Viano et al. (1994) studied the probabilistic properties of

a class of continuous-time fractional ARMA processes, but the estimation problem is not

considered. Chambers (1996) considered the estimation of the long memory parameter of

a continuous-time fractional ARMA process with discrete-time data, under the assumption

of model identifiability. Comte (1996) studied two estimation methods for a first-order frac-

tional stochastic differential equation (SDE), namely the Whittle likelihood method and the

semi-parametric approach, with regularly spaced data. These methods, however, can not be

directly applied to irregularly-spaced data. While Comte (1996) mentioned that extension

to general SDEs of higher order is straightforward, this extension, however, has not been

explicitly reported in the literature. Recently, Brockwell and Marquardt (2005) introduced

the fractionally integrated Lévy-driven continuous-time ARMA (CARMA) process, which is

obtained by fractional integration of the kernel of the CARMA process. Their model is use-

ful for modelling time series which exhibit both heavy-tailed and long-memory behaviour.

However, statistical inference of such models has not been considered by Brockwell and

Marquardt (2005).

In this paper, we develop the continuous-time autoregressive fractionally integrated mov-

ing average (CARFIMA) models of general order. Our model is based on the stochastic

calculus for fractional Brownian motions developed by Duncan et al. (2000). Duncan et al.

(2000) defined the Ito integral for a family of integrands so that the integral has zero mean

and admits an explicit expression for the second moment. Their approach makes use of

the Wick product and a derivative in the path sense; however, for deterministic integrands,

the integral can be defined in terms of the limit of Riemann sums. Duncan et al. (2000)
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derived an Ito formula, useful for solving SDEs. More importantly, the fact that their

stochastic calculus framework admits an Ito formula and an analogue of the Girsanov the-

orem (see e.g. Valkeila, 1999, Elliott and van der Hoek, 2003, and Hu and Øksendal, 2003)

holds the potential for developing nonlinear fractionally integrated processes, e.g. extending

the continuous-time threshold ARMA processes (Stramer et al., 1996) to continuous-time

threshold fractionally integrated ARMA processes. See Øksendal (2003) for a survey of

other variants of stochastic calculus with a fractional Brownian integrator. If the driving

Lévy process is the standard Brownian motion, Brockwell and Marquardt’s model is essen-

tially same as ours. Thus, their model can be considered as an extension of ours. However,

unlike the stochastic calculus framework fundamental to our model specification, Brockwell

and Marquardt’s approach is restricted to linear processes and cannot be easily extended

to nonlinear processes.

Our new class of models is useful for modelling regularly or irregularly spaced discrete-

time long-memory data. We study the use of the innovations algorithm for maximum like-

lihood estimation of the continuous-time long-memory models with (possibly) irregularly-

spaced discrete-time data. The rest of the paper is organized as follows. In Section 2,

we introduce the CARFIMA models. Implementation and large sample properties of the

maximum likelihood estimator are discussed in Section 3. In Section 4, we study the finite

sample performance of the maximum likelihood estimator. The new approach is illustrated

by a real application in Section 5. Finally, conclusions are presented in Section 6.

2. Continuous-time fractionally integrated ARMA processes

Heuristically, a CARFIMA(p,H,q) process {Yt} is defined as the solution of a p-th order

stochastic differential equation with suitable initial condition and driven by a standard

fractional Brownian motion with Hurst parameter H and its derivatives (if they existed)

up to and including order 0 ≤ q < p. Specifically, for t ≥ 0,

Y
(p)
t − αpY

(p−1)
t − · · · − α1Yt − α0 = σ{B(1)

t,H + β1B
(2)
t,H + · · · + βqB

(q+1)
t,H }, (1)

where {Bt,H = BH
t , t ≥ 0} is the standard fractional Brownian motion with Hurst parameter

0 < H < 1; superscript (j) denotes j-fold differentiation with respect to t. We assume that

σ > 0 and βq 6= 0, dY
(j−1)
t = Y

(j)
t dt, j = 1, ..., p − 1.
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We now recall the definition of fractional Brownian motions. Let 0 < H < 1 be a

fixed number. It is well known (see, e.g., Duncan et al., 2000) that there exists a Gaussian

stochastic process {BH
t , t ≥ 0} satisfying the following three properties, namely (i) with the

initial condition BH
0 = 0, (ii) of zero mean, i.e. E(BH

t ) = 0 for all t ≥ 0, and (iii) with the

covariance kernel defined as

E(BH
t BH

s ) =
1

2
{|t|2H + |s|2H − |t − s|2H}, (2)

for all s, t ≥ 0. The Gaussian process {BH
t } is called the (standard) fractional Brownian

motion with Hurst parameter H . The standard fractional Brownian motion with H = 1/2

equals the standard Brownian motion. On the other hand, for H > 1/2, increments of

the standard fractional Brownian motion, {BH
t − BH

t−1, t = 1, 2, · · ·}, exhibits long-range

dependence in the sense that its spectral density function is asymptotically linear on the log-

log scale (equivalently, the autocovariances are not summable); see (8) below. Henceforth,

the Hurst parameter H is fixed and 1/2 < H < 1.

The fractional Brownian motion is nowhere differentiable (Mandelbrot and Van Ness,

1968) so the stochastic equation (1) has to be appropriately interpreted as some integral

equation as explained below. Analogous to the case of continuous-time ARMA processes

(see, e.g., Brockwell, 1993), equation (1) can be equivalently cast in terms of the observation

and state equations:

Yt = β
′

Xt, t ≥ 0, (3)

dXt = (AXt + α0δp)dt + σδpdBH
t , (4)

where superscript ′ denotes transpose,
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and βj = 0 for j > q. The model can be made more useful by an extension that incorporates

covariates; see Section 3. The stochastic differential equation defined by (4) is interpreted

via the framework developed by Duncan et al. (2000) who used Wick products to define

stochastic integrals with a fractional Brownian integrator, in the Ito sense.
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The process {Yt, t ≥ 0} is said to be a CARFIMA(p,H,q) process with parameter (θ, σ) =

(α0, ..., αp, β1, · · · , βq, H, σ) if Yt = β
′

Xt, where Xt is the solution of (4) with the initial

condition X0. The solution of (4) can be shown to be

Xt = eAtX0 + α0

∫ t

0

eA(t−u)δpdu + σ

∫ t

0

eA(t−u)δpdBH
u , (5)

where eAt = Ip +
∑∞

n=1{(At)n(n!)−1}, and Ip is the identity matrix. For a random initial

X0, the mean vector of {Xt}, denoted by µX,t, satisfies the equation:

µX,t = eAtµX,0 +
α0

α1
(eAt − I)δ1, (6)

where δ1 = [1, 0, · · · , 0]′. If µX,0 is chosen to be −(α0/α1)δ1, then µX,t becomes −(α0/α1)δ1,

which is independent of t. If all the eigenvalues of A have negative real parts, it can be readily

checked that (5) implies that as t → ∞, Xt converges in distribution to N(−(α0/α1)δ1, VX)

where VX = H(2H − 1)σ2
∫∞

0

∫∞

0
eAuδpδ

′

pe
A

′

v|u − v|2H−2dudv so that the stationary so-

lution, if it exists, must be Gaussian. The stationary CARFIMA process defined over

non-negative t can be extended so that it is a stationary process over all real t, see Ap-

pendix 1. The stationarity and the autocovariance function of the stationary CARFIMA

process are summarized in the following theorem. (Below, CH = H(2H − 1).)

THEOREM 1. Let 1/2 < H < 1.

(a) Equation (1) with a deterministic initial condition admits an asymptotically stationary

solution if and only if all the eigenvalues of A have negative real parts. Moreover, under

the preceding eigenvalue condition on A and assuming the solution is stationary, Y0 and

{BH
t , t ≥ 0} are jointly Gaussian with the covariances given by

cov(Y0, B
H
t ) = Hσβ′

∫ ∞

0

eAuδp{(u + t)2H−1 − u2H−1}du, (7)

and the mean function of the stationary process equals µY = −α0/α1.

(b) Under the stationarity condition, the autocovariance function of {Yt} equals

γY (h) := cov(Yt+h, Yt) = CHσ2β′eAh

∫ ∞

0

∫ ∞

−h

eAuδpδ
′
pe

A′vβ|u − v|2H−2dudv.

(c) If h > 0, the autocovariance matrix γY (h) in (b) can be written as

γY (h) := cov(Yt+h, Yt)

= CHβ′eAh

(

∫ h

0

e−Auu2H−2du

)

V ∗β + CHβ′e−Ah

(∫ ∞

h

eAuu2H−2du

)

V ∗β

+CHβ′eAh

(∫ ∞

0

eAuu2H−2du

)

V ∗β,
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where V ∗ = σ2
∫∞

0
eAuδpδ

′

pe
A

′

udu.

It can be verified that for a random initial condition Y0 that may be correlated with the

fractional Brownian innovation process, the sufficiency part of the theorem stated in (a)

continues to hold if Y0 has finite variance. Furthermore, part (a) of the preceding theorem

implies that under stationarity, Y0 and the fractional Brownian innovations BH
t , t ≥ 0, are

generally correlated, in contrast to the case that when H = 1/2, the stationary distribution

of Y0 is independent of the standard Brownian motion. The spectral density function of

{Yt, t ≥ 0} can be shown to be

hY (ω) =
σ2

2π
Γ(2H + 1) sin(πH)|ω|1−2H |β(iω)|2

|α(iω)|2 , −∞ < ω < ∞, (8)

where Γ() is the Gamma function, α(z) = zp − αpz
p−1 − · · · − α1 and β(z) = 1 + β1z +

β2z
2 + · · · + βqz

q; see Tsai and Chan (2005) for a proof.

3. Maximum likelihood estimator and its large sample properties

Let Y = {Yti
}N

i=1 be a time series sampled with possibly unequal time intervals. For sim-

plicity, we assume α0 = µY = 0. This assumption is justified if the data are pre-processed

with mean deletion before carrying out the maximum likelihood estimation. For example,

the stationary mean can be estimated by the sample mean. Alternatively, under the sta-

tionarity assumption, we can incorporate µY as a parameter in the likelihood calculation

obtained with Yti
below replaced by Yti

− µY . The log likelihood function of Y equals

lY (θ, σ2) = −1

2

N
∑

j=1

(Ytj
− Ŷtj

)2

vj−1
− 1

2

N
∑

j=1

log vj−1 −
N

2
log(2π), (9)

where Ŷtj
= E(Ytj

|Yti
, i ≤ j − 1), Ỹj = Ytj

− Ŷtj
and vj−1 = var(Ỹj |Yti

, i ≤ j − 1).

The predictive means and variances can be computed by the innovations algorithm (see

Proposition 5.2.2 of Brockwell and Davis, 1991), namely

Ŷtn+1 =







0 if n = 0,
∑n

j=1 φn,j(Ytn+1−j
− Ŷtn+1−j

) if n ≥ 1,
(10)

where φn,j are computed recursively by the following formulas:

ν0 = γY (0),

φn,n−k = v−1
k

(

γY (tn+1 − tk+1) −
∑k−1

j=0 φk,k−jφn,n−jvj

)

, k = 0, · · · , n − 1,

vn = γY (0) −∑n−1
k=0 φ2

n,n−kvk.

(11)
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Note that {γY (h)} is the autocovariance function of {Yt, t ≥ 0} which can be computed by

a numerically stable recursive procedure detailed in Appendix 3. With v∗j = vj/σ2, the log

likelihood function (9) can be rewritten as

lY (θ, σ2) = −1

2

N
∑

j=1

(Ytj
− Ŷtj

)2

σ2v∗j−1

− 1

2

N
∑

j=1

log(σ2v∗j−1) −
N

2
log(2π). (12)

Differentiating (12) with respect to σ2 and equating to zero gives

σ̂2 =
1

N

N
∑

j=1

(Ytj
− Ŷtj

)2

v∗j−1

. (13)

Upon substituting this equation into (12), minus twice the objective function becomes

−2lY (θ) =

N
∑

j=1

log v∗j−1 + N log





N
∑

j=1

(Ytj
− Ŷtj

)2

v∗j−1



+ N{1 − log N + log(2π)}, (14)

which is then minimized with respect to θ to get the maximum likelihood estimate θ̂. The

parameter estimate σ̂2 is then calculated by (13).

We now extend the above procedure to the case when the model includes d-dimensional

covariates {Wti
} as follows.

Yti
= γ

′

Wti
+ X

(0)
ti

(i = 1, ..., N), (15)

X
(p)
t − αpX

(p−1)
t − · · · − α1X

(0)
t = σ{B(1)

t,H + β1B
(2)
t,H + · · · + βqB

(q+1)
t,H }, (16)

where γ is the vector of regression coefficients. Maximum likelihood estimation can be done

by adapting the above procedure with equation (10) replaced by

Ŷtn+1 =







γ
′

Wtn+1 if n = 0,

γ
′

Wtn+1 +
∑n

j=1 φn,j(Ytn+1−j
− Ŷtn+1−j

) if n ≥ 1;
(17)

c.f. So (1999).

For large sample properties of the estimator, we first consider the simpler case of reg-

ularly spaced time series data sampled from a stationary CARFIMA(p,H,q) process with

a polynomial trend of known degree, i.e., Wt in (15) equals (1, t, · · · , td−1)′ with a fixed d.

Dahlhaus (1989) gave a set of regularity conditions under which the maximum likelihood

estimator of a discrete-time stationary long memory model is
√

N -consistent, asymptoti-

cally normal and asymptotically efficient. Dahlhaus (2004), furthermore, relaxes condition
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(A9) in Dahlhaus(1989) to (A9’): α is assumed to be continuous. (The notation α is

defined in Dahlhaus(1989, 2004). Here, (A9’) amounts to assuming that H is a contin-

uous function of the parameter, which holds trivially.) For simplicity, in this section, let

θ = (α1, ..., αp, β1, · · · , βq, H, σ) and denote the regression coefficient by γ.

THEOREM 2. Let Y = {Yti
}N

i=1 be sampled from a model consisting of a polynomial

trend of degree d − 1 with stationary CARFIMA(p,H,q) noise process, where ti = ih with

h > 0 being the step size, and 1/2 < H < 1. Let the maximum likelihood estimator

θ̂ = θ̂N ∈ Θ, a compact parameter space, and the true parameter θ∗ be in the interior of the

parameter space; similarly, denote γ̂ = γ̂N as the maximum likelihood estimator of γ with

the true value being γ∗ ∈ Rd. Assume that conditions (A0)-(A8) of Dahlhaus (1989) and

(A9’) are valid. Then, γ̂ is asymptotically independent of θ̂. Moreover,

N1−HPN (γ̂ − γ∗) → N(0, c2Λ−1),
√

N(θ̂ − θ∗) −→ N(0, Γ−1
h (θ∗)),

where PN = diag(N0, N1, · · · , Nd−1),

c2 = σ2Γ(2H + 1) sin(πH)/(2πα2
1),

Λ = (Λij), Λij =
Γ(0.5 − H + i)Γ(0.5 − H + j)

Γ(1 − 2H + i)Γ(1 − 2H + j)(i + j − 2H)
, and

Γh(θ) =
1

4π

∫ π

−π

(▽ log fh(ω))(▽ log fh(ω))′dω,

where ▽ denotes taking the derivative w.r.t. θ, and fh() is the spectral density of the equally

spaced time series {Yih, i ∈ Z} that is given by

fh(ω) =
1

h

∑

k∈Z

hY

(

ω + 2kπ

h

)

, −π ≤ ω ≤ π. (18)

Remarks

1. Conditions (A0)-(A7) of Dahlhaus can be shown to be valid for a stationary CARFIMA

model; see Tsai and Chan (2005).

2. The compactness condition on the parameter space is taken from condition (A0) in

Dahlhaus (1989) who pointed out that the maximum likelihood estimator may lie on the

boundary of the compact parameter space.

3. See Priestley (1981) for a derivation of (18).

4. Often, h can be taken as 1. Note that using different h for the same data set will
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change the short-memory parameter estimates, but the estimate of the Hurst parameter H

is invariant, owing to self-similarity.

The proof of the theorem is deferred to the appendix. The preceding large-sample

properties of the maximum likelihood estimator may be extended to irregularly-spaced data,

under suitable regularity conditions. For example, if the sampling intervals are independent

and identically distributed positive random variables, then the time series can be made

regularly spaced by relabeling Yti
as Yi. The corresponding spectral density function can

be derived from that of the underlying continuous-time process, see Shapiro and Silverman

(1960, equation (19)). As this extension requires non-trivial theoretical and data analysis,

we shall not pursue this point further.

4. Simulation studies

We now report some simulation results about the finite sample performance of the maximum

likelihood estimator. We have experimented with both regularly and irregularly spaced data

from CARFIMA(p,H,0) models with p = 0, 1, and 2, and a CARFIMA(2,H,1) model. For

regularly spaced data, Yti
= X

(0)
i , i = 1, 2, ..., N, were simulated by the method of Davies

and Harte’s (1987). Irregularly spaced data were sampled as follows. First, we simulated si,

i = 1, ..., N , independently from the exponential distribution with mean equal to 0.5, and

recursively set the sampling epochs with t0 = 0, and ti = ti−1 + si + 0.5, i = 1, ..., N ; hence

the sampling intervals are independent, identically distributed and of unit mean. Second,

we simulated the irregularly spaced time series data, Yti
= X

(0)
ti

, i = 1, ..., N , from the joint

stationary multivariate normal distribution induced by the CARFIMA model under study.

For the case of p = 0, the data are modeled as fractional Gaussian noises (FGN) defined

by Yti
= σ(BH

ti
−BH

ti−1
), i = 1, ..., N . See Section 5 for more details of the fractional Gaussian

noise. All optimizations were done numerically by a constrained optimization procedure,

the DBCONF subroutine of the IMSL package which uses a quasi-Newton method with the

derivatives approximated by a finite-difference scheme. The H parameter was constrained

to be between 0.5 and 1.0, and the α’s being negative.

We have tried three sample sizes, N = 100, 200 and 400. For each model, the averages

and the standard deviations of 1,000 replicates of the estimators are summarized in Tables 1

and 2. In general, the bias of the maximum likelihood estimator of H appears to vanish
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Table 1. Averages (standard errors) {empirical coverage rates of the 95% C.I.’s using the asymptotic std.

errors} [asymptotic standard errors] of 1,000 simulations of the ML estimators of the parameters

model p q true value N=100 N=200 N=400

1 regularly 0 0 H 0.75 0.7145 (0.0713) 0.7305 (0.0510) 0.7405 (0.0351)

spaced {0.893} [0.0660] {0.909} [0.0467] {0.927} [0.0330]

σ 2 1.9457 (0.1997) 1.9686 (0.1449) 1.9838 (0.1042)

{0.957} [0.2062] {0.943} [0.1458] {0.945} [0.1031]

2 regularly 1 0 H 0.6 0.6162 (0.0885) 0.6078 (0.0737) 0.6048 (0.0560)

spaced {0.973} [0.1074] {0.954} [0.0759] {0.951} [0.0537]

α1 -0.1 -0.1607 (0.0964) -0.1311 (0.0699) -0.1170 (0.0513)

{0.858} [0.0787] {0.895} [0.0557] {0.910} [0.0394]

σ 2 2.0842 (0.2735) 2.0508 (0.2281) 2.0308 (0.2231)

{0.890} [0.1954] {0.912} [0.1382] {0.925} [0.0977]

3 regularly 1 0 H 0.75 0.7455 (0.0835) 0.7468 (0.0709) 0.7503 (0.0541)

spaced {0.995} [0.1119] {0.967} [0.0791] {0.952} [0.0559]

α1 -0.1 -0.1426 (0.0757) -0.1219 (0.0549) -0.1134 (0.0437)

{0.912} [0.0797] {0.927} [0.0564] {0.926} [0.0398]

σ 2 2.0879 (0.3549) 2.0641 (0.3099) 2.0464 (0.2689)

{0.928} [0.3503] {0.926} [0.2477] {0.926} [0.1751]

4 regularly 1 0 H 0.9 0.8631 (0.0628) 0.8749 (0.0560) 0.8871 (0.0427)

spaced {0.995} [0.1150] {0.982} [0.0813] {0.986} [0.0575]

α1 -0.1 -0.1202 (0.0566) -0.1070 (0.0411) -0.1043 (0.0337)

{0.977} [0.0805] {0.983} [0.0569] {0.969} [0.0402]

σ 2 1.9000 (0.4548) 1.9708 (0.4891) 2.0277 (0.4717)

{0.999} [1.0460] {0.988} [0.7396] {0.953} [0.5230]
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Table 2. Averages (standard errors) {empirical coverage rates of the 95% C.I.’s using the asymptotic std.

errors} [asymptotic standard errors] of 1,000 simulations of the ML estimators of the parameters

model p q true value N=100 N=200 N=400

5 regularly 2 0 H 0.75 0.6957 (0.0921) 0.7184 (0.0670) 0.7342 (0.0450)

spaced {0.883} [0.0875] {0.899} [0.0619] {0.932} [0.0437]

α1 -0.3 -0.2961 (0.0429) -0.2970 (0.0299) -0.2980 (0.0216)

{0.935} [0.0418] {0.938} [0.0295] {0.944} [0.0209]

α2 -0.2 -0.1953 (0.0727) -0.1988 (0.0507) -0.1999 (0.0366)

{0.959} [0.0748] {0.958} [0.0529] {0.958} [0.0374]

σ 2 1.9376 (0.2553) 1.9582 (0.1844) 1.9780 (0.1232)

{0.968} [0.2628] {0.958} [0.1858] {0.960} [0.1314]

6 regularly 2 1 H 0.75 0.6359 (0.1166) 0.6679 (0.0999) 0.7033 (0.0850)

spaced {1.000} [0.1730] {0.939} [0.1224] {0.924} [0.0865]

α1 -0.1 -0.0988 (0.0263) -0.0964 (0.0182) -0.0973 (0.0142)

{0.968} [0.0294] {0.977} [0.0208] {0.955} [0.0147]

α2 -0.2 -0.1845 (0.0824) -0.1855 (0.0555) -0.1908 (0.0409)

{0.965} [0.0852] {0.977} [0.0603] {0.969} [0.0426]

β1 0.3 0.1622 (0.1825) 0.1907 (0.1721) 0.2370 (0.1406)

{0.994} [0.2625] {0.992} [0.1856] {0.845} [0.1312]

σ 2 1.9964 (0.2787) 2.0036 (0.1919) 2.0107 (0.1585)

{0.962} [0.3100] {0.969} [0.2192] {0.948} [0.1550]

7 irregularly 2 0 H 0.75 0.6952 (0.0890) 0.7178 (0.0633) 0.7342 (0.0425)

spaced α1 -0.3 -0.2945 (0.0437) -0.2970 (0.0305) -0.2981 (0.0214)

α2 -0.2 -0.1982 (0.0695) -0.1982 (0.0526) -0.2002 (0.0366)

σ 2 1.9350 (0.2723) 1.9546 (0.1795) 1.9735 (0.1246)
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with increasingly large sample size. Similarly, the standard deviation of the estimators

generally becomes smaller with larger sample size, “confirming” the consistency results in

the previous section. Also note that the results of the CARFIMA(2,H,0) model are about

the same for both regularly and irregularly spaced data. For regularly spaced data, we

also compute the asymptotic standard errors using Theorem 2, and the empirical coverage

rates of the 95% C.I.’s using the asymptotic standard errors. In general, the empirical

coverage rates get closer to the nominal coverage rates with increasing sample sizes, except

for the MA parameter for the case N = 400, which is somewhat lower than the nominal

95%. The latter problem is partly due to the relatively large bias of the MA(1) coefficient.

Bias correction via bootstrap may be applied to mitigate the problem. In general, the

empirical standard errors also get closer to the asymptotic standard errors with increasing

sample sizes, except for σ of models 2 and 3. We have also conducted some other simulation

studies with different sampling intervals, the results of which are similar to the reported

results.

5. Application

Example: Field values of pH of wet deposition at the McNay Research Station in the

Lucas County of Iowa, U.S., were collected on a more or less weekly basis since 1984.

The McNay Research Station is one of the two monitoring sites of the Iowa Precipitation

Monitoring Program for the National Trends Network. The monitoring program aims at

providing an overview of chemical composition of atmospheric deposition in the U.S., see

http://ia.water.usgs.gov/projects/ia005.html. Besides field values of pH, specific

conductance and chemical analysis of the precipitation were recorded. Here, we focus on

the pH measurements which measured the acidity of the wet deposition; there are 562

observations, collected from October 1, 1985 to September 18, 2001. For simplicity, we

round the sampling times to days. The data are irregularly spaced with the sampling

intervals between consecutive observations ranging from 1 to 98 days; the average and

median sampling intervals are 10.394 and 7 days, respectively. The unit of time is taken as

one day, so h = 1. The time series plot of the data is displayed in Fig. 1 which suggests

an increasing trend in the data. We have fitted linear trend plus CARFIMA(p,H,0) models

to the data, for p = 0, ..., 4, with a denoting the intercept and b the slope. For the case

12



Table 3. AIC and Maximum likelihood estimates of H for model defined by

equations (15) and (16)

p 0 1 2 3 4

original data AIC 1031.73 927.60 927.91 929.91 931.89

(N=562) H 0.5824 0.7285 0.7543 0.7543 0.7543

outlier-deleted AIC 1005.31 880.15 881.47 883.47 885.46

data (N=559) H 0.5869 0.7107 0.7281 0.7288 0.7288

of p = 0, the data are modeled as a linear trend with fractional Gaussian noises (FGN)

defined by Yti
= a + bti + σ(BH

ti
− BH

ti−1
), i = 1, ..., N . Note that for regularly spaced

data of unit sampling interval, the autocovariance function of FGN is given by γY (τ) =

0.5σ2(|τ + 1|2H − 2|τ |2H + |τ − 1|2H), τ = ...,−1, 0, 1, .... For further discussion of the

fractional Gaussian noise, see Beran (1994). For p ≤ 2, the initial value of the parameter

H is set to be 0.75 and those of the parameters α’s are chosen to be −1. For p ≥ 3, the

initial value of H is set to be the estimate of H from p = 2, and then with H fixed at the

initial value, those of the α’s set to be the maximizer of the likelihood function with the

optimization initiated with α’s equal to -1. The initial values of a and b are estimated by

regressing Yti
on ti assuming the errors to be white noises.

In Table 3, we report for each order p, the maximum likelihood estimate of H and the

corresponding Akaike information criterion AIC = −2(lY (θ̂) − r), where r is the num-

ber of parameters in the model, and θ̂ is the maximum likelihood estimator of θ. AIC

selects the autoregressive order p = 1. The parameter estimates are (Ĥ, α̂1, σ̂, â, b̂) =

(0.7285,−0.4013, 0.3759, 4.8588, 9.0448× 10−5). An inspection of the standardized residu-

als reveals three outliers with values: 3.78, 3.66 and 3.64. These three outliers were then

deleted and we re-fitted the models; see Table 3. While AIC still suggests p = 1, the differ-

ence between p = 1 and p = 2 in terms of AIC is relatively small; hence we report the model

fits for both cases. Residual analysis suggests that both models provide adequate fit to the

data. For p = 1, (Ĥ, α̂1, σ̂, â, b̂) = (0.7107,−0.3463, 0.3352, 4.8196, 9.875× 10−5), whereas

for p = 2, (Ĥ, α̂1, α̂2, σ̂, â, b̂) = (0.7281,−0.1576,−0.5246, 0.1468, 4.8178, 9.910× 10−5).

We then assess the uncertainty of the maximum likelihood estimator via two methods,

namely, by computing the observed Fisher information based on (14) and, then checking

the asymptotics by parametric bootstrap with bootstrap size 1,000; see Table 4. The 95%

13



Table 4. Maximum likelihood estimates of the parameters of the model defined by equations (15)

and (16), with p = 1 and 2.

estimated asymptotic asymptotic bootstrap bootstrap

p value 95% C.I. std. err. 95% C.I. std. err.

1 H 0.7107 (0.5751, 0.8463) 0.0678 (0.5000, 0.7903) 0.0760

α1 -0.3463 (-0.5791, -0.1135) 0.1164 (-0.6135, -0.1465) 0.1329

a 4.820 (4.5606, 5.0794) 0.1297 (4.5700, 5.0875) 0.1314

b×105 9.875 (2.963 , 16.79) 3.456 (2.906 , 16.77) 3.543

σ 0.3352 (0.2724, 0.4729) 0.0586

2 H 0.7281 (0.5949, 0.8613) 0.0666 (0.5429, 0.8117) 0.0675

α1 -0.1576 (-0.2966, -0.0186) 0.0695 (-0.6916, -0.0990) 0.1808

α2 -0.5246 (-1.1078, 0.0586) 0.2916 (-2.5816, -0.2995) 0.6547

a 4.818 (4.5378, 5.0978) 0.1400 (4.543, 5.093) 0.1381

b×105 9.910 (2.575, 17.25) 3.668 (3.209 , 17.22) 3.598

σ 0.1468 (0.0883, 0.8113) 0.2056

bootstrap confidence intervals are obtained by the percentile method (Chapter 13 of Efron

and Tibshirani, 1993) with the 2.5 and 97.5 percentiles of the bootstrap estimates being the

end points of the 95% confidence intervals. The parametric bootstrap estimates appear to

have skewed distributions, and the bootstrap standard errors and confidence intervals are

generally larger than their asymptotic counterparts, except for the regression parameters

when p = 2. The 95% confidence intervals of H indicate substantial variability. While the

bootstrap confidence interval of H includes 0.5 for p = 1, its counterpart for p = 2 excludes

0.5. The confidence intervals of b suggest that b > 0. Hence, we conclude that (i) there is

some evidence that the data are of long memory and (ii) the wet deposition became less

acidic over time.

The population spectral density function of the CARFIMA noises can be estimated by

(8) with the unknown parameters there replaced by the maximum likelihood estimates.

For p = 1, the spectral density must peak at 0 with a singularity there, but for p = 2,

the spectral density may admit a secondary peak away from the origin. Indeed for p = 2,

although the estimated spectral density peaks only at 0 with a singularity there (left diagram

in Fig. 2, over the range 0.05 < ω < 1), the squared magnitude of the transfer function of

the autoregressive filter, i.e. 1/|α(iω)|2, peaks at ω = 0.1414, with the corresponding period

14



Table 5. Sample autocorrelations of the parametric bootstrap estimates for p = 2,

with their counterparts for p = 1 enclosed by parentheses.

α1 α2 σ a b

H 0.119 (-0.793) 0.353 -0.076 (0.569) 0.040 (-0.003) 0.002 (0.023)

α1 0.930 -0.105 (-0.939) 0.019 (0.027) -0.040 (-0.039)

α2 -0.149 0.040 -0.038

σ -0.014 (-0.034) -0.013 (0.037)

a -0.755 (-0.785)

equal to 2π/0.1414 = 44.4 days, essentially a one and half month pattern. Thus, besides

the long-memory component, the pH series has a significant short-memory component.

The sample correlation matrices of the parametric bootstrap estimates are given in

Table 5. It can be seen that (â, b̂) and the CARFIMA parameter estimators appear to

be uncorrelated, which is consistent with the asymptotic independence result stated in

Theorem 2.

6. Conclusions

We have introduced the CARFIMA models for continuous-time process that is analogous

to the fractional ARMA model in the discrete time setting. The short-memory CARMA

model relates to the CARFIMA model as its limiting case when H = 1/2. So far, H is

restricted to lie between 1/2 and 1. An interesting problem is to extend the model to

include H ≥ 1. See Beran (1995) and Ling and Li (1997) for estimation of discrete-time

non-stationary long memory processes. The real application illustrates that the CARFIMA

model provides a useful framework for studying the temporal dependence structure and the

spectrum of irregularly-spaced long-memory data. It is of interest to extend this approach

to multiple time series.
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Appendix 1.

The stationary CARFIMA process defined over all real t

The stationary CARFIMA process defined over non-negative t can be extended so that

it is a stationary process over all real t. First note that for H ∈ (0, 1), we have the following

integral representation of fractional Brownian motion for all real t:

BH
t = DH

∫ ∞

−∞

{(t − u)
H−1/2
+ − (−u)

H−1/2
+ }dBu,

where DH = [2HΓ(3/2 − H)/{Γ(H + 1/2)Γ(2 − 2H)}]1/2, and Bu is a standard Brownian

motion, see Taqqu (2003). Then we can show that provided (i)
∫ t

−∞
eA(t−u)dBH

u exists and

(ii) the eigenvalues of A all have negative real parts, the process {Xt} defined by

Xt = α0

∫ t

0

eA(t−u)δpdu + σ

∫ t

−∞

eA(t−u)δpdBH
u (A1)

is a strictly stationary solution of (4) for t ∈ (−∞,∞) with the corresponding CARFIMA

process,

Yt = α0

∫ t

0

β′eA(t−u)δpdu + σ

∫ t

−∞

β′eA(t−u)δpdBH
u .

Appendix 2.

Proof of Theorem 1

Proof of (a) We first prove equation (7). For 1/2 < H < 1 and for f, g ∈ L2(R; R)
⋂

L1(R; R),

Gripenberg and Norros (1996) showed that

cov

(∫ ∞

−∞

f(u)dBH
u ,

∫ ∞

−∞

g(v)dBH
v

)

= CH

∫ ∞

−∞

∫ ∞

−∞

f(u)g(v)|u − v|2H−2dudv. (A2)

Note that equations (5) and (A1) are essentially equivalent. Without loss of generality,

assume α0 = 0 and write Y0 = σ
∫ 0

−∞
β′e−AuδpdBH

u and BH
t =

∫ t

0 dBH
u , then the result

follows from equation (A2).

Now, we show that if all the eigenvalues of A have negative real parts, then the solution

to (4) with a deterministic initial condition is asymptotically stationary. It follows from

(6) that µX,t tends to −(α0/α1)δ1 under the eigenvalue condition. By (5) and (A2), the
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variance of Xt equals

VX,t = var

(

eAtX0 + σ

∫ t

0

eA(t−u)δpdBH
u

)

= eAtV0e
A

′

t + cov

(

eAtX0, σ

∫ t

0

eA(t−u)δpdBH
u

)

+ cov

(

σ

∫ t

0

eA(t−u)δpdBH
u , eAtX0

)

+CHσ2

∫ t

0

∫ t

0

eA(t−u)δpδ
′

pe
A

′

(t−v)|u − v|2H−2dudv. (A3)

Assume that all eigenvalues of A have negative real parts. Then

lim
t−→∞

VX,t = CHσ2 lim
t−→∞

∫ t

0

∫ t

0

eA(t−u)δpδ
′

pe
A

′

(t−v)|u − v|2H−2dudv

= CHσ2

∫ ∞

0

∫ ∞

0

eAuδpδ
′

pe
A

′

v|u − v|2H−2dudv, (A4)

where the integral is finite and denoted by VX . Similarly, the covariance kernel can be

shown to be asymptotically a function of |s − t|. Therefore, the process {Xt, t ≥ 0} is

asymptotically stationary if all the eigenvalues of A have negative real parts.

We now prove the necessity part. Let t > 0 be fixed. Suppose that the process is

asymptotically stationary and let X0 be random. Then, by equation (7), it can be seen that

cov(X0, B
H
t ) ≈ Hσ

∫ ∞

0

eAuδp{(u + t)2H−1 − u2H−1}du, (A5)

showing that (A5) is finite. This implies that the real part of all the eigenvalues of A

must be negative. Indeed, it follows from the finiteness of (A5) that the series
∑∞

n=0 cn

is finite where cn =
∫ n+1

n δ′pe
Auδp{(u + t)2H−1 − u2H−1}du. By the mean value theorem,

∫ n+1

n
δ′pe

Auδp{(u + t)2H−1 − u2H−1}du = δ′pe
Aunδp

∫ n+1

n
{(u+ t)2H−1 −u2H−1}du, for some

n < un < n + 1. But t(n + 1 + t)2H−2/(2H − 1) ≤
∫ n+1

n {(u + t)2H−1 − u2H−1}du ≤
tn2H−2/(2H − 1). For example, the right side of the preceding inequality can be seen

as follows:
∫ n+1

n {(u + t)2H−1 − u2H−1}du =
∫ n+1

n

∫ t

0 (u + v)2H−2dvdu/(2H − 1) ≤
∫ t

0 (n +

v)2H−2dv/(2H−1) ≤ tn2H−2/(2H−1). It can be readily checked that {Aiδp, i = 0, · · · , p−1}
forms a basis of Rp. Hence, δp does not belong to any subspace invariant with respect to

A that is a proper subset of Rp. This implies that all the eigenvalues of A must have

negative real part in order for cn to be summable. We show this by first assuming that A

is diagonalizable so that A = PDP−1 where D is a diagonal matrix with diagonal elements

di and the ith column of P is the associated eigenvector. Then, eAu = PeuDP−1. Because

δp does not belong to any invariant subspace except Rp, all entries of P−1δp are non-zero.
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Similarly, all entries of δ′pP are non-zero as δp is not orthogonal to any eigenvector, otherwise

we have a contradiction that it belongs to the invariant space that is orthogonal to some

eigenvectors. For the case of non-diagonalizable A, we can argue similarly using the Jordan

canonical form of A.

That the marginal stationary distribution is Gaussian follows from (5).

Proof of (b) Equations (5) and (A1) are essentially equivalent, so the result follows from (A1)

and (A2).

Proof of (c) This follows from calculus and the definition of V ∗.

Appendix 3.

A recursive procedure for computing the autocovariances

First write γY (h) = CHβ′{L1(h)+L2(h)+eAhL2(0)}V ∗β, where L1(h) =
∫ h

0
eA(h−u)u2H−2du,

and L2(h) =
∫∞

h eA(u−h)u2H−2du. Assume that A is diagonalizable so that A = PDP−1

and etA = PEtP
−1, where P is the p × p matrix whose jth column is a right eigenvector

corresponding to dj , D = diag(d1, · · · , dp) and Et = diag(ed1t, · · · , edpt). Then we have

γY (h) = CHβ′P{M1(h) + M2(h) + EhM2(0)}P−1V ∗β, where M1(h) =
∫ h

0 Eh−uu2H−2du,

and M2(h) =
∫∞

h
Eu−hu2H−2du. Note that the Mi’s , i = 1, 2, are p× p diagonal matrices.

Suppose we need to compute γY (hj), for j = 0, ..., r, where 0 = h0 < h1 < · · · < hr is

an increasing sequence. Then we need to compute g1(hi, dj) :=
∫ hi

0
edj(hi−u)u2H−2du and

g2(hi, dj) :=
∫∞

hi
edj(u−hi)u2H−2du, i = 1, · · · , r, j = 1, · · · , p, which we compute recursively

as follows. Let g1(0, dj) = 0 for all j = 1, · · · , p, then for fix j,

g1(hi+1, dj) = edj(hi+1−hi)g1(hi, dj) +

∫ hi+1

hi

edj(hi+1−u)u2H−2du, i = 0, · · · , r − 1,

and

g2(hi, dj) = edj(hi+1−hi)g2(hi+1, dj) +

∫ hi+1

hi

edj(u−hi)u2H−2du, i = 0, · · · , r − 1,

with g2(hr, dj) =
∫∞

hr
edj(u−hr)u2H−2du, for all j. In practice, we set the integration limits

of L2(h), to be from hr to M , where M is some large number, say 100hr. We have tried

different M in the program and the results are very robust to the choice of M .
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Appendix 4.

Proof of Theorem 2

We first show that the maximum likelihood estimator of θ is asymptotically equal to that

when γ is known. Write the true model in vector form as Y = Wγ∗ + X , where Y =

(Y1, Y2, · · · , YN )′, W the design matrix and X = (X1, X2, · · · , XN )′. Let LN (θ) be twice

the negative profile log-likelihood of θ that is normalized by the sample size, and Σθ be

the covariance matrix of Y induced by the stationary CARFIMA noises. For a fixed θ, the

maximum likelihood estimator of γ can be readily seen to be γ̂(θ) = (W ′Σ−1
θ W )−1W ′Σ−1

θ Y .

Hence, up to an additive constant, we have

LN (θ)

= sup
γ

{log(|Σθ |)/N + (Y − Wγ)′Σ−1

θ (Y − Wγ)/N}

= log(|Σθ |)/N + Y ′{I − W (W ′Σ−1

θ W )−1W ′Σ−1

θ }′Σ−1

θ {I − W (W ′Σ−1

θ W )−1W ′Σ−1

θ }Y/N

= log(|Σθ |)/N + (Wγ∗ + X)′{I − W (W ′Σ−1

θ W )−1W ′Σ−1

θ }′

Σ−1

θ {I − W (W ′Σ−1

θ W )−1W ′Σ−1

θ }(Wγ∗ + X)/N

= log(|Σθ |)/N + X ′{I − W (W ′Σ−1

θ W )−1W ′Σ−1

θ }′Σ−1

θ {I − W (W ′Σ−1

θ W )−1W ′Σ−1

θ }X/N

= {log(|Σθ |) + X ′Σ−1

θ X}/N

+{−X ′Σ−1

θ W (W ′Σ−1

θ W )−1W ′Σ−1

θ X − X ′Σ−1

θ W (W ′Σ−1

θ W )−1W ′Σ−1

θ X

+X ′Σ−1

θ W (W ′Σ−1

θ W )−1W ′Σ−1

θ W (W ′Σ−1

θ W )−1W ′Σ−1

θ X}/N

= {log(|Σθ |) + X ′Σ−1

θ X}/N − X ′Σ−1

θ W (W ′Σ−1

θ W )−1W ′Σ−1

θ X/N

= L1,N (θ) − L2,N (θ). (A6)

Note that L1,N (θ) equals twice the negative log-likelihood of θ when γ is known, and it is

known that L1,N (θ) − L1,N (θ∗) = Op(1); see Dahlhaus (1989). We shall outline the proof

that L2,N (θ) is uniformly Op(N
−1+δ) for some 0 < δ < 1, thus showing that twice the

negative profile log-likelihood of θ asymptotically equals that when γ is known. To see this,

let




A




 = {trace(AA′)}1/2 and ‖A‖ be the spectral norm of any square matrix A and

noting the inequality




AB




 ≤ A




 ‖B‖ (p. 1754 of Dahlhaus, 1989), we have

E{L2,N (θ)}

= E[trace{(W ′Σ−1
θ W )−1/2W ′Σ−1

θ XX ′Σ−1
θ W (W ′Σ−1

θ W )−1/2}]/N

= trace{(W ′Σ−1
θ W )−1/2W ′Σ−1

θ Σθ∗Σ−1
θ W (WΣ−1

θ W )−1/2}/N

19



=










(W ′Σ−1
θ W )−1/2W ′Σ−1

θ Σ
1/2
θ∗











2
/N

≤










(W ′Σ−1
θ W )−1/2W ′Σ

−1/2
θ











2
‖Σ−1/2

θ Σ
1/2
θ∗ ‖2/N

= d‖Σ−1/2
θ Σ

1/2
θ∗ ‖2/N,

which can be shown to be O(N−1+δ) for some 0 < δ < 1; recall d − 1 is the degree of

the polynomial trend. This follows from the fact that as N → ∞, the spectral norm

of Σ
−1/2
θ Σ

1/2
θ∗ is uniformly bounded by O(N δ/2) for some 0 < δ < 1, by Lemma 5.3 of

Dahlhaus (1989) and the compactness of Θ. Because L2,N (θ) is non-negative, it follows

from Markov inequality that, for each θ,

L2,N (θ) = Op(N
−1+δ). (A7)

Moreover, this result can be strengthened to showing that L2,N (θ) is uniformly Op(N
−1+δ)

for some 0 < δ < 1. This we do by adapting the argument of Lemma 6.2 of Dahlhaus

(1989). Let S = N−β |θ(1) − θ(2)|−1X ′(Bθ(1) − Bθ(2))X where θ(i) ∈ Θ, i = 1, 2, Bθ =

Σ−1
θ W (W ′Σ−1

θ W )−1W ′Σ−1
θ and 0 < β < 1 is some constant to be determined below. Let

l be a positive integer and cumℓ(S) denote the cumulant cum(S, · · · , S) where S appears ℓ

times within the parentheses. By an argument of Dahlhaus (1989, p. 1765),

|cumℓ(S)| ≤ (ℓ − 1)!2ℓ−1|θ(1) − θ(2)|−ℓN−ℓβ|trace{Σ1/2
θ∗ (Bθ(1) − Bθ(2))Σ

1/2
θ∗ }ℓ|

≤ (ℓ − 1)!2ℓ−1|θ(1) − θ(2)|−ℓN−ℓβ










Σ
1/2
θ∗ (Bθ(1) − Bθ(2))Σ

1/2
θ∗











ℓ
,

where we have made use of the fact that |trace(AB)| ≤ 



A










B




, and




AB




 ≤




A










B




. It follows from the mean value theorem that











Σ
1/2
θ∗ (Bθ(1) − Bθ(2))Σ

1/2
θ∗











≤










Σ
1/2
θ∗ ∇Bθ̃Σ

1/2
θ∗











|θ(1) − θ(2)|,

for some θ̃ between θ(1) and θ(2), and where ∇Bθ is the partial derivative of Bθ w.r.t θ, i.e.

it is an array whose jth component is the partial derivative of Bθ w.r.t. θj ; for any matrices

A and C of compatible dimensions, A∇BθC is an array whose jth component equals the

matrix product of A times ∂Bθ/∂θj times C, and




A∇BθC




 is the sum of the Euclidean

norms of the component matrices of A∇BθC. Now,

∇Bθ = −Σ−1
θ ∇ΣθΣ

−1
θ W (W ′Σ−1

θ W )−1W ′Σ−1
θ

+Σ−1
θ W (W ′Σ−1

θ W )−1(W ′Σ−1
θ ∇ΣθΣ

−1
θ W )(W ′Σ−1

θ W )−1W ′Σ−1
θ
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−Σ−1
θ W (W ′Σ−1

θ W )−1W ′Σ−1
θ ∇ΣθΣ

−1
θ

= −P1,θ + P2,θ − P3,θ.

Consider











Σ
1/2
θ∗ P1,θΣ

1/2
θ∗











=










Σ
1/2
θ∗ Σ−1

θ ∇ΣθΣ
−1
θ W (W ′Σ−1

θ W )−1W ′Σ−1
θ Σ

1/2
θ∗











≤ ‖Σ1/2
θ∗ Σ

−1/2
θ ‖|‖Σ−1/2

θ ∇ΣθΣ
−1/2
θ ‖|











Σ
−1/2
θ W (W ′Σ−1

θ W )−1W ′Σ
−1/2
θ











‖Σ1/2
θ∗ Σ

−1/2
θ ‖

≤
√

dKNβ,

uniformly for θ ∈ Θ, for some constants K that may vary from occurrence to occurrence,

0 < β < 1, by Lemma 5.3 and the proof of Lemma 5.4 (a) of Dahlhaus (1989); the notation

|‖ · ‖| is defined as the sum of the spectral norms of the components of the enclosed array.

Similarly, it can be shown that










Σ
1/2
θ∗ P3,θΣ

1/2
θ∗











≤
√

dKNβ, and also that











Σ
1/2
θ∗ P2,θΣ

1/2
θ∗











≤ ‖Σ1/2
θ∗ Σ

−1/2
θ ‖











Σ
−1/2
θ W (W ′Σ−1

θ W )−1W ′Σ
−1/2
θ











|‖Σ−1/2
θ ∇ΣθΣ

−1/2
θ ‖|

×










Σ
−1/2
θ W (W ′Σ−1

θ W )−1W ′Σ
−1/2
θ











‖Σ1/2
θ∗ Σ

−1/2
θ ‖

≤ dKNβ .

Hence,










Σ
1/2
θ∗ ∇BθΣ

1/2
θ∗











≤ KNβ, uniformly for θ ∈ Θ. Hence, there exists a constant K

such that for ℓ ≥ 2, |cumℓ(S)| ≤ (ℓ − 1)!2ℓ−1Kℓ. Moreover, it can be similarly verified that

|E(S)| ≤ K, by enlarging K if necessary. Then the proof of Lemma 6.2 of Dahlhaus (1989)

can be adapted to show that {Nβ−1L2,N (θ), θ ∈ Θ} is equicontinuous. The compactness of

Ω and (A7) then imply that L2,N (θ) is uniformly Op(N
−1+δ), with δ replaced by β if the

latter is larger, where 1 > δ > 0. Similarly, it can be verified that {∇2L2,N (θ), θ ∈ Θ} is

equicontinuous. Moreover, it can be checked that for each δ > 0,

N−1|X ′∇Bθ∗X | = Op(N
−1+δ) (A8)

N−1|X ′∇2Bθ∗X | = Op(N
−1+δ). (A9)

Here, |X ′∇Bθ∗X | is the L2-norm of the vector consisting of X ′(∂Bθ∗/∂θj)X . To see (A8),

consider E|X ′∇Bθ∗X | ≤∑3
i=1 E|X ′Pi,θ∗X | and hence it suffices to show that E|X ′Pi,θ∗X | ≤

KN δ for some K and each δ > 0. Below, we make use of the technical result that for any
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matrices C, H and D of compatible dimensions and H a non-negative definite matrix,

E|X ′CHDX | ≤ ‖Σ1/2
θ∗ C‖











H1/2










2 ‖Σ1/2
θ∗ D′‖, (A10)

which follows from the Cauchy-Schwartz inequality. Specifically,

E|X ′CHDX |

≤ E{(X ′CHC′X)1/2(X ′D′HDX)1/2}

≤ E1/2(X ′CHC′X)E1/2(X ′D′HDX)

= trace1/2(Σ
1/2
θ∗ CHC′Σ

1/2
θ∗ )trace1/2(Σ

1/2
θ∗ D′HDΣ

1/2
θ∗ )

=










Σ
1/2
θ∗ CH1/2





















Σ
1/2
θ∗ D′H1/2











≤ ‖Σ1/2
θ∗ C‖











H1/2










2
‖Σ1/2

θ∗ D′‖.

Applying (A10), we have

E|X ′P1,θ∗X |

= E|X ′Σ−1
θ∗ ∇Σθ∗Σ−1

θ∗ W (W ′Σ−1
θ∗ W )−1W ′Σ−1

θ∗ X |

≤ |‖Σ−1/2
θ∗ ∇Σθ∗Σ

−1/2
θ∗ ‖|











{Σ−1/2
θ∗ W (W ′Σ−1

θ∗ W )−1W ′Σ
−1/2
θ∗ }1/2











2
‖Σ1/2

θ∗ Σ
−1/2
θ∗ ‖

≤ d|‖Σ−1/2
θ∗ ∇Σθ∗Σ

−1/2
θ∗ ‖|

≤ KN δ,

for some K and each δ > 0, by the proof of Lemma 5.4 (a) in Dahlhaus (1989). The proofs

for E|X ′Pi,θ∗X | ≤ KN δ, i = 2, 3, are similar and hence omitted. Equation (A9) can be

similarly established.

Because of the equicontinuity of {∇2L2,N (θ), θ ∈ Ω}, (A8) and (A9), the asymptotically

normal limiting distribution of θ̂ then follows as in the proof of Theorem 3.2 of Dahlhaus

(1989) and Dahlhaus (2004).

Let γ̂ be the maximum likelihood estimator of γ given θ̂ was the true parameter value.

We are going to show that the limiting distribution of γ̂ is as given in Theorem 2. Note

that given θ, the maximum likelihood estimator of γ equals γ̂(θ) = (W ′Σ−1
θ W )−1W ′Σ−1

θ Y .

Also, γ̂(θ) is an unbiased estimator of γ because E(γ̂(θ)) = (W ′Σ−1
θ W )−1W ′Σ−1

θ Wγ∗ = γ∗.

For two fixed θ(1) and θ(2), consider the squared L2-norm between N1−HPN γ̂(θ(1)) and

N1−HPN γ̂(θ(2)) which equals

ρ2(θ(1), θ(2)) = trace(cov{N1−HPN (γ̂(θ(1)) − γ̂(θ(2)))}). (A11)
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Define C(θ) = N1−HPN [(W ′Σ−1
θ W )−1W ′Σ−1

θ − (W ′Σ−1
θ(2)W )−1W ′Σ−1

θ(2) ]Σ
1/2 where Σ =

Σθ∗ is the true covariance matrix of Y . Then ρ2(θ(1), θ(2)) =
∑

i,j C2
ij(θ

(1)). Hence,

by Theorem 5.19 of Rudin (1976), there exists an η between θ(1) and θ(2) such that

ρ2(θ(1), θ(2)) ≤
∑

i,j(θ
(1)−θ(2))itrace{(∂C(η)/∂θi)(∂C(η)/∂θj)

′}(θ(1)−θ(2))j where ∂C/∂θi

is the partial derivative of C with respect to the ith component of θ. Now, ∂C/∂θi =

N1−HPN (W ′Σ−1
θ W )−1 [W ′Σ−1

θ (∂Σθ/∂θi)Σ
−1
θ W (W ′Σ−1

θ W )−1W ′Σ−1
θ −W ′ Σ−1

θ (∂Σθ/∂θi)Σ
−1
θ ]Σ1/2.

Letting Vθ = W ′Σ−1
θ W , we have

∣

∣

∣

∣

trace

(

∂C

∂θi

∂C′

∂θj

)∣

∣

∣

∣

≤
∣

∣

∣

∣

trace

(

N2−2HPNV −1
θ W ′Σ−1

θ

∂Σθ

∂θi
Σ−1

θ WV −1
θ W ′Σ−1

θ ΣΣ−1
θ WV −1

θ W ′Σ−1
θ

∂Σθ

∂θj
Σ−1

θ WV −1
θ PN

)∣

∣

∣

∣

+

∣

∣

∣

∣

trace

(

N2−2HPNV −1
θ W ′Σ−1

θ

∂Σθ

∂θi
Σ−1

θ WV −1
θ W ′Σ−1

θ ΣΣ−1
θ

∂Σθ

∂θj
Σ−1

θ WV −1
θ PN

)∣

∣

∣

∣

+

∣

∣

∣

∣

trace

(

N2−2HPNV −1
θ W ′Σ−1

θ

∂Σθ

∂θi
Σ−1

θ ΣΣ−1
θ WV −1

θ W ′Σ−1
θ

∂Σθ

∂θj
Σ−1

θ WV −1
θ PN

)∣

∣

∣

∣

+

∣

∣

∣

∣

trace

(

N2−2HPNV −1
θ W ′Σ−1

θ

∂Σθ

∂θi
Σ−1

θ ΣΣ−1
θ

∂Σθ

∂θj
Σ−1

θ WV −1
θ PN

)∣

∣

∣

∣

.

It can be shown that for any δ > 0 and uniformly for θ in a sufficiently small neighbour-

hood of θ∗,

(a) ‖N2−2HPNV −1
θ PN‖ = O(N δ),

(b) ‖(N1−HPN )−1W ′Σ−1
θ

∂Σθ

∂θi
Σ−1

θ W (N1−HPN )−1‖ = O(N δ),

(c) ‖(N1−HPN )−1W ′Σ−1
θ ΣΣ−1

θ W (N1−HPN )−1‖ = O(N δ),

(d) ‖(N1−HPN )−1W ′Σ−1
θ

∂Σθ

∂θi
Σ−1

θ ΣΣ−1
θ W (N1−HPN )−1‖ = O(N δ),

(e) ‖(N1−HPN )−1W ′Σ−1
θ

∂Σθ

∂θi
Σ−1

θ ΣΣ−1
θ

∂Σθ

∂θj
Σ−1

θ W (N1−HPN )−1‖ = O(N δ),

where ‖ · ‖ denotes the spectral norm of the enclosed matrix. Consequently, there exists

some constant K such that, uniformly for θ(1) and θ(2) in a sufficiently small neighbourhood

of θ∗, ρ2(θ(1), θ(2)) ≤ KN δ|θ(1) − θ(2)|2, which can be checked by making use of (a)-(e)

and by observing that for any square r × r matrix A,




A




 ≤ √
r‖A‖. Then, we can

adapt the chaining argument in the proof of Theorem 3.1 in Dahlhaus (1995) to show that

N1−HPN (γ̂(θ̂) − γ̂(θ∗)) = op(1). Because γ̂(θ∗) has the limiting distribution stated in

Theorem 2, by Theorems 2.1 and 2.3 of Dahlhaus (1995), so has γ̂.
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We now verify (a) which requires us to show that ‖N1−HPN (W ′Σ−1
θ W )−1N1−HPN‖ ≤

KN δ for some constant K and any δ > 0. This inequality holds iff for all vector x of

appropriate dimension, (below each occurrence of K may denote a different constant)

x
′

(N1−HPN )−1W ′Σ−1
θ W (N1−HPN )−1x ≥ K

N δ
|x|2.

But the left side of the preceding inequality can be written as

x
′

(N1−HPN )−1W ′Σ−1/2Σ1/2Σ−1
θ Σ1/2Σ−1/2W (N1−HPN )−1x which is not less than

KN−δ|Σ−1/2W (N1−HPN )−1x|2 iff the spectral norm of Σ−1/2ΣθΣ
−1/2 is less than KN δ,

uniformly for θ in a sufficiently small neighbourhood of θ∗, which follows from applying

Lemma 5.3 of Dahlhaus (1989). Finally, note that

|Σ−1/2W (N1−HPN )−1x|2 = x
′

(N1−HPN )−1W ′Σ−1W (N1−HPN )−1x

and the matrix (N1−HPN )−1W ′Σ−1W (N1−HPN )−1 converges to a positive definite matrix

so that the quadratic form is larger than a certain multiple of |x|2. This completes the proof

of (a); those of (b)-(e) are similar and hence omitted.

We now outline the proof that γ̂ is asymptotically independent of θ̂. First, N1−HPN (γ̂−
γ∗) is asymptotically equal to N1−HPN (W ′Σ−1

θ∗ W )−1W ′Σ
−1/2
θ∗ ǫ where ǫ = Σ

−1/2
θ∗ X consists

of N independent standard normal variables. Also, it follows from the proof of Theorem

3.2 of Dahlhaus (1989) that Γh(θ∗)(θ̂ − θ∗) is asymptotically equal to −
√

N∇L1,N (θ∗)/2,

where Γh(θ∗) is defined in Theorem 2. Up to an additive deterministic function of θ∗,

N∇L1,N (θ∗) is a random vector consisting of the quadratic forms −X ′Σ−1
θ∗ (∂Σθ∗/∂θk)Σ−1

θ∗ X

= −ǫ′Σ
−1/2
θ∗ (∂Σθ∗/∂θk)Σ

−1/2
θ∗ ǫ, which has zero covariance with N1−HPN (W ′Σ−1

θ∗ W )−1W ′Σ
−1/2
θ∗ ǫ,

owing to the fact that the components of ǫ are independent standard normal variables.

This is because any linear form of ǫ = (ǫ1, · · · , ǫN)′, say ℓ =
∑N

i=1 ℓiǫi, must be uncorre-

lated with any quadratic form, say Q =
∑

1≤j,k≤N qjkǫiǫj , from the fact that cov(ℓ, Q) =
∑

i,j,k ℓiqjkE(ǫiǫjǫk) = 0. The joint asymptotic normality of θ̂ and γ̂ then implies that they

are asymptotically independent.
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Fig. 1. Time series plot of the field values of PH of wet deposition at the McNay Research Station;

open circles mark the 3 outliers.
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Fig. 2. Left figure is the spectral density estimate and right figure is the plot of squared magnitude of

the transfer function of the autoregressive part of the model.
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