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SUMMARY

We introduce the (mixed-effect) Generalized Threshold Regression (GTR) model for piecewise

linear stochastic regression with (possibly) non-normal time-series data. Specifically, it is assumed

that the conditional probability distribution of the response variable belongs to the exponential

family, and the conditional mean response is linked to some piecewise linear stochastic regression

function. We study the specific case where the response variable equals zero in the lower regime.

Some large-sample properties of a likelihood-based estimation scheme are derived. Our approach

is motivated by the need for modeling nonlinearity in serially correlated epizootic events. Data

coming from monitoring conducted in a natural plague focus in Kazakhstan are used to illustrate

this model by obtaining biologically meaningful conclusions regarding the threshold relationship

between prevalence of plague and some covariates including past abundance of great gerbils and

other climatic variables.

Some key words: Binomial distribution; Delay; Epizootic events (plague outbreaks); Exponential

family; Stochastic regression.
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1. Introduction and the Model Formulation

We introduce a new statistical method motivated by the need for studying the biotic and

abiotic factors affecting the prevalence of plague among the great gerbils in Kazakhstan. The

great gerbil (Rhombomys opimus) populations constitute several natural foci to plague (caused

by the bacteria Yersinia pestis) in Kazakhstan where the disease may be transmitted to humans

by vectors, mainly, fleas (mainly of the genus Xenopsylla). A long-term monitoring study of this

natural plague system was undertaken from 1949–1995, for tracking the prevalence of plague in

the great gerbil populations. Monitoring efforts consisted primarily of trapping the great gerbils,

together with their fleas, and testing both rodents and fleas for plague using a bacteriological test

and a serological test; see Davis et al. (2004) and Park et al. (2005). Bacteriological tests may

detect the presence of plague bacteria and hence plague disease in great gerbils at the time of

sampling. On the other hand, serological tests may detect the presence of antibodies to plague

bacteria and hence are indicative of past infections; see Park et al. (2005). In this paper, the

development of new statistical methods for analyzing the bacteriological test data will be our main

focus. Plague is still prevalent in several Asian, African, and American countries including the

USA, and is today one of the re-emerging diseases; see Gage and Kosoy (2005).

The major difficulty and/or novelty of the problem is that epizootics occur only if the expected

number of secondary infections arising from a primary infection (known as the basic reproductive

ratio R0) is greater than 1; see Dickmann and Heesterbeek (2000, chapter 1) and Keeling and

Gilligan (2000). The parameter R0 generally depends on the size and social structure (contact

rates) of the study population; see chapter 5 of Dickmann and Heesterbeek (2000). Assuming that

R0 increases monotonically with population size (which holds for several popular epidemiological

models including the SIR model, see p. 16 of Dickmann and Heesterbeek, 2000), the preceding

condition of epizootics translates to the requirement that in host-pathogen dynamics with a fixed

social structure, there is an unknown threshold population abundance below which an infectious

disease is unlikely to invade a fully susceptible host population and persist. Specifically, above the

threshold, R0 is greater than 1 and the disease spreads and persists while below the threshold, R0

is less than 1 and the disease dies out. Note that, in practice, the threshold effect may be delayed.

For general surveys on the modeling of infectious diseases, see Anderson and May (1991), Grenfell

and Dobson (1995), and Hudson et al. (2002).

We introduce the Generalized Threshold Regression (GTR) model that incorporates the pre-

ceding threshold condition for analyzing epidemiological time series that conditionally belongs to



GENERALIZED THRESHOLD REGRESSION MODEL 3

the exponential family. The general model is best illustrated by considering a specific GTR model

for analyzing the Kazakhstan monitoring data. Let Nt be the number of great gerbils examined

at time t, t = 1, 2, · · · , T, and Bt be the (sample) proportion of great gerbils testing positive for

plague under bacteriological tests at time t. Let Pt = E(Bt) be the prevalence of plague at time

t. The R0 dichotomy discussed above implies that the true prevalence Pt = 0 when the (possibly

delayed) abundance is below a threshold, and, otherwise, the prevalence is assumed to be dependent

on some vector covariate process Y = {Yt, t = 1, · · · , T}, where Yt consists of the abundance Xt

of the great gerbils and its lags, as well as some other covariates and their lags. Furthermore, let

ε = {εt, t ∈ Z} be a latent process that may be used to account for possible overdispersion and some

missing covariates such as the virulence of bacteria (infectivity variable). Conditional on N,Y, and

ε, we may model NtBt as independent binomial random variables with parameters (Nt, Pt) , where

Pt =











0, if Xt−d < r

logit−1
(

β
′

Yt + εt

)

, if Xt−d ≥ r;
(1)

t = 1, · · · , T. Besides the logit link function, other non-constant smooth link function may be

employed.

The error terms εt are assumed to be a sequence of independent and identically distributed ran-

dom variables with probability density function denoted by fε(.) that is indexed by some parameter

vector ψ; the random effects are often assumed to be normally distributed with zero mean. Also,

{εt, t ∈ Z} and
{

(Nt, Y
′

t )
′, t ∈ Z

}

are assumed to be independent of each other. The parameter r

is known as the threshold and d is a non-negative integer referred to as the delay or threshold lag.

The analysis of the above threshold regression model is conditional on the observed Ns and Y s.

We now consider the general case that allows more general non-normal distribution including

Poisson and negative binomial. Let {Nt, t = 1, 2, · · · , T} be a positive process and Bt be a non-

negative discrete random variable whose conditional probability density function given Nt belongs

to the exponential family and takes the form

f(Bt; γt, Nt, ν) = exp

[

Nt

ν
{Btγt − b(γt)} + c(Bt,

ν

Nt
)

]

, (2)

where γt is the natural canonical parameter, Nt are weights, and ν a known scale parameter.

It is well-known (McCullagh and Nelder, 1989) that, under some mild regularity conditions, the

conditional mean µt = E(Bt) = ∂b(γt)
∂γt

is a one-to-one function of γt. Because of the non-negativity

of Bt, µt = 0 implies that Bt is degenerate and hence identically equals 0. We shall assume that the

conditional distribution of Bt is degenerate if and only if µt = 0. Hence, if µt > 0, the (conditional)
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probability density function of Bt is strictly less than 1. Let ε be a latent process and Y be a

covariate process that includes a univariate sub-process X. The Generalized Threshold Regression

model (GTR) specifies that conditional on N,Y, and ε, Bt are independent random variables whose

conditional means µt are given by

µt =











0, if Xt−d < r

g−1
(

β
′

Yt + εt

)

, if Xt−d ≥ r;
(3)

t = 1, · · · , T. The function g is a known non-constant smooth link function such that its inverse

function g−1 is a positive function. (As g−1 must be non-negative because of the non-negativity

of Bt, this is a mild condition; it is required for the validity of Claim 1 below.) Clearly, the GTR

model subsumes the specific model for the Kazakhstan monitoring data discussed earlier. Yet, a

more general form of the GTR model obtains by (i) removing the restrictions on the positivity of

the inverse link function and the discreteness and non-negativity of Bt, (ii) partitioning the sample

space of (possibly vector-valued) Xt−d into a finite set of regions (often referred to as regimes),

say Ri, i = 1, · · · ,m and (iii) requiring that g(µt) equals a linear function, say `i(Yt, εt), whenever

Xt−d ∈ Ri.

The GTR model bears resemblance to the so-called Open-Loop Threshold model. The Open-

Loop Threshold model is essentially a piecewise linear stochastic regression model with the errors

often assumed to be normal; see Tong (1990). In particular, the Open-loop Threshold model

with normal errors is a special case of the GTR model with identity link and normal conditional

distributions. The use of the link function removes any inherent constraints on the conditional

mean function of a non-normal response so that on the scale of the link function, the mean response

may be specified as some unconstrained linear or nonlinear stochastic regression function, being

a piecewise linear stochastic regression function for the GTR model. From this perspective, the

link function is a useful, natural device for extending useful normal time-series models to studying

non-normal time-series data.

Henceforth, we focus on the GTR model defined by (3), i.e. of two regimes, with a positive

inverse link function and of identically zero response in the lower regime. While the GTR model

is motivated by the needs for analyzing the Kazakhstan plague monitoring data, it is of general

applicability for analyzing epidemiological time series and other time-series data, e.g. consumer

choice data, whose conditional distributions belong to the exponential family and that are subject

to the zero-response condition below a threshold.
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The rest of the paper is organized as follows. We introduce in § 2 a likelihood-based estimation

scheme for the GTR model, and its large-sample properties are derived in § 3. The empirical

performance of the proposed estimation scheme is studied through Monte Carlo in § 4. We illustrate

the GTR model with an analysis of the Kazakhstan plague monitoring data in § 5. A brief conclusion

is given in § 6. All proofs are deferred to several appendices.

2. Maximum Likelihood Estimation

Estimation of the Generalized Threshold Regression (GTR) model defined by (3) is straight-

forward were the delay parameter d and the threshold parameter r known, as then intuitively the

regression parameter β and the nuisance parameter ψ can be estimated by fitting a mixed-effect

generalized linear regression model with data cases whose Xt−d ≥ r. This observation is the basis

of the strategy of first estimating the threshold parameter given a fixed delay. We shall show below

that, given the delay parameter, the profile log likelihood function of the threshold parameter is

initially an increasing function and then drops to −∞ at and beyond a point (the maximum like-

lihood estimator of the threshold) which can be determined by a simple sorting procedure. This

property of the profile log likelihood simplifies the estimation of the threshold parameter. Let `(θ)

be the log likelihood of θ, where θ = (d, r, β
′

, ψ
′

)′. For any positive integer i, let Zi = (Ni, Y
′

i )
′.

Because of the independence between {εt, t ∈ Z} and {Zt, t ∈ Z} , it is readily checked that

`(θ) =
T

∑

i=1

log [E {f(Bi|εi, Zi, θ)|Zi, θ}] , (4)

where E(·|·) denotes the conditional expectation and the conditional probability density function

f(·|·) equals (2) with the canonical parameter γi being implicitly defined by the mean parameter

µi specified by (3); c.f. Pinheiro and Bates (2002, p. 62). The summands in (4) can be simplified

for data falling in the lower regime, i.e. Xi−d < r, in which case µi = 0 and hence Bi identically

equals 0 under the model indexed by θ, so that the corresponding summand equals 0 if Bi = 0 and

−∞ if Bi > 0. Hence,

`(θ) =

T
∑

i=1

log [E {f(Bi|εi, Zi, θ)|Zi, θ}] I(Xi−d ≥ r) + (−∞) ×
T

∑

i=1

I(Xi−d < r,Bi > 0), (5)

where I(.) equals 1 if and only if the enclosed expression is true and we adopt the convention

that 0 × (−∞) = 0 and a positive scalar times −∞ equals −∞. The first sum on the right side

of (5) is clearly a finite number so that the log likelihood is −∞ if and only if there exists some

data case where Xi−d < r but Bi > 0, i.e. the specified parameter values lead to an inconsistent
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observation for which the probability of success is zero and yet a success is observed. For a fixed

d, the inconsistent cases can be readily identified by ordering the data cases by the values of Xs

so that X(1) ≤ X(2) ≤ · · · ≤ X(T ). Define t̂ = t̂(d) such that B(i)+d = 0 for all 1 ≤ i < t̂ with

i+d ≤ T , and it is observed that B(t̂)+d > 0. Then, it is readily checked that for r > X(t̂), the data

pair (X(t̂), B(t̂)+d) is inconsistent with the model. Thus, the profile log likelihood becomes −∞, for

all r > X(t̂). Consequently, for fixed d, the maximum likelihood estimator of r must be less than

or equal to X(t̂). We show in Appendix 1 the validity of the following claim.

Claim 1: For fixed d and if the profile log likelihood of the threshold parameter is well-defined for

r ≤ X(t̂), then it is an increasing (step) function for r ≤ X(t̂).

We note that the profile likelihood function may not be well-defined if, e.g. the sample size is too

small. Hence, given d, the maximum likelihood estimator of r, denoted by r̂(d), equals X(t̂) which

can be obtained by a simple sorting procedure as illustrated by the following example.

Example 1. Given a fixed threshold delay d, consider the following data points

{(Xt, Bt+d)} = {(0.5, 90), (0.8, 100), (0.2, 0), (0.49, 0), (0.7, 0), (0.15, 0)} .

Then, by rearranging so that {Xt} is in ascending order, we get the following

{

(X(j), B(j)+d)
}

= {(0.15, 0), (0.2, 0), (0.49, 0), (0.5, 90), (0.7, 0), (0.8, 100)} .

In this example, r̂(d) = 0.5.

Given r = r̂(d), the corresponding maximum likelihood estimator of the regression parameter

β and that of the nuisance parameter ψ of the error distribution, denoted by β̂(d) and ψ̂(d),

can be obtained by maximizing the first sum on the right side of (5), which is equivalent to

fitting an associated mixed-effect generalized linear model for data falling in the upper regime,

i.e. Xt−d ≥ r̂(d). In practice, the true delay d0 is unknown and needs to be estimated. Let

D > 0 be some known integer upper bound of the unknown delay d. In the next section, we shall

show that under suitable regularity conditions r̂(d0) ≥ r0, the true threshold, but there exists a

δ > 0 such that for 0 ≤ d ≤ D and d 6= d0, r̂(d) < r0 − δ with probability → 1 as T → ∞.

This observation motivates estimating the delay by the simple estimator d̃ defined as the smallest

0 ≤ d ≤ D with the largest r̂(d) = X(t̂(d)). It is shown below in Appendix 2 that under some mild

regularity conditions, d̃ is consistent. The other parameter estimators can then be simply defined

as the maximum likelihood estimators given d = d̃, i.e. r̂ = r̂(d̃), β̂ = β̂(d̃) and ψ̂ = ψ̂(d̃). Because
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of the discreteness of the delay parameter, consistency of d̃ implies that it is ultimately equal to

the true delay d0 almost surely.

The maximum likelihood estimator d̂ provides a competitive alternative to d̃. However, the

computation of d̂ is more complex and its sampling properties depend on the covariate distribution

and the specification of the random effects. Hence, we prefer the use of the simpler d̃ to d̂ for

exploratory data analysis. Nonetheless, d̂ may be employed in a refined analysis, and the study of

its sampling properties constitutes an interesting future research problem.

3. Large-Sample Properties of the Estimator

We first recall two notions of mixing properties. A stationary process {Wt} is said to be α-

mixing if there exists a sequence of numbers {α(k)} with α(k) → 0 as k → ∞, and such that for

any events E1 in the σ-algebra generated by {Wt, t ≤ j} and E2 in the σ-algebra generated by

{Wt, t ≥ j + k},

|P (E1 ∩ E2) − P (E1)P (E2)| ≤ α(k). (6)

If the right side of inequality (6) is replaced by ψ(k)P (E1) with ψ(k) → 0 as k → ∞, then the

process is said to be ψ−mixing. See Billingsley (1968, section 20) and Doukhan (1994, pp. 3 and

20) for further discussion of ψ-mixing. In order to study the asymptotic properties of the maximum

likelihood estimator, the following set of assumptions will be required later.

A1. The process Z = {Zt} is stationary and α-mixing with exponentially decaying mixing

coefficients, i.e. for all k ≥ 0, |αk| ≤ cρk for some c > 0 and 0 ≤ ρ < 1.

A2. There exists a δ > 0 such that the process {Xt I(r0 ≤ Xt ≤ r0 + δ)} is ψ−mixing with

exponentially decaying mixing coefficients.

A3. {Xt} admits a marginal probability density function π(.) that is continuous at the true

threshold r0 which is an interior point of the range of X, and π(r0) > 0. Also, the joint

marginal probability density functions πij(. , .) of (Xi,Xj)
′

, for all i 6= j, are assumed to be

positive everywhere and uniformly bounded.

A4. Conditional on Xt−d = r, Zt has a probability density function that is weakly continuous

at r0; see Feller (1971, p. 243) for a discussion of weak continuity.

Remark 1. Recall that Zt includes Xt so that A1 implies that {Xt} is stationary and α-mixing. The

α-mixing condition is needed so that the Law of Large Numbers and the Central Limit Theorem

hold. It can be relaxed somewhat at the expense of requiring more complex conditions. The ψ-

mixing condition for the process {Xt I(r0 ≤ Xt ≤ r0+δ)} holds if, e.g. {Xt} is a Markov chain that
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is uniformly ergodic when it is restricted to the interval [r0, r0 + δ]; see Nummelin (1984, section

5.6). The ψ-mixing condition serves as an essential condition entailing that for a fixed τ > 0,

the counting process
∑T

i=1 I(r0 ≤ Xt ≤ r0 + τ/T ) has an asymptotic Poisson distribution. This

asymptotic distribution forms a technical argument for showing that r̂ has an Op(1/T ) convergence

rate. Assumptions A3 and A4 are mild regularity conditions.

Theorem 1 below states the consistency of the estimator d̃, the proof of which is deferred to

Appendix 2.

Theorem 1. Suppose assumptions A1 and A3 hold. Let Ω = {0, 1, · · · ,D} be the parameter space

of d, where D > 0 is a known positive integer. Then, the estimator d̃ of the true parameter d0 ∈ Ω

is strongly consistent. It follows from the discreteness of the delay parameter that for all sufficiently

large T, d̃ = d0 with probability 1.

Because of Theorem 1, without loss of generality, we may and shall assume henceforth in this

section that the delay parameter is known. Also, we write d for d0. The parameter d is, furthermore,

deleted from θ. We next show in Theorem 2 that the maximum likelihood estimator of the threshold

is T -consistent, whose proof is deferred to Appendix 3.

Theorem 2. Suppose assumptions A1–A4 hold. Then the maximum likelihood estimator of the

threshold is such that r̂ = r0 + Op(1/T ) where T is the sample size. Moreover, T (r̂ − r0) has an

asymptotic exponential distribution with mean equal to 1/{π(r0) p0}, where

p0 = 1 − P (Bt = 0|Xt−d = r0) = 1 − E
{∫

f(0|εt, Zt, θ)fε(εt;ψ)dεt |Xt−d = r0
}

.

Remark 2. The Op(1/T ) fast convergence rate is due to the discontinuity of the conditional mean

function; see Chan (1993) and Chan and Tsay (1998). See also Hansen (2000). The asymptotic dis-

tribution of r̂ can be expressed as r0 + E/{Tπ(r0)p0} where E denotes the exponential distribution

with unit mean. Let r0.95,T be the 95 percentile of E/{Tπ(r0)p0}. Then (r̂− r0.95,T , r̂] is an asymp-

totic 95% confidence interval of r0. In practice, r0.95,T needs to be estimated before computing an

asymptotic confidence interval for r0. However, the preceding consideration motivates the simpler

alternative of bootstrap confidence intervals. Let r̂∗1, · · · , r̂∗B be B copies of independent parametric

bootstrap threshold estimates and r∗0.95 be the corresponding 95 percentile. Approximating the

distribution of r̂ − r0 by the bootstrap distribution of r̂∗ − r̂, (2r̂ − r∗0.95, r̂] is a bootstrap 95%

confidence interval of r0; c.f. section 2.4 of Hinkley and Davison (2003). The bootstrap method is

illustrated in the real application.
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The super-consistency of the threshold parameter, i.e. the Op(1/T ) convergence rate, implies

that under some regularity conditions, it is asymptotically independent of β̂ and ψ̂, which is the

content of Theorem 3 below. Moreover, we show that β̂ and ψ̂ are
√
T -consistent and whose

joint asymptotic distribution is identical to that obtained from fitting the associated mixed-effect

generalized linear model with data falling in the upper regime of the GTR with known true threshold

and delay. We now briefly outline this asymptotic equivalence result. First, we introduce some

notations. Define δ = (β
′

, ψ
′

)′, θ = (r, δ
′

)′. Recall that Zi = (Ni, Y
′

i )
′, and let δ̂(r) = arg maxδ `(θ),

for a fixed r. The log likelihood function of the associated mixed-effect generalized linear model is

given by

˜̀(θ) =

T
∑

i=1

log [E {f(Bi|εi, Zi, θ)|Zi, θ}] I(Xi−d ≥ r)

=

T
∑

i=1

lδ(Bi;Zi)I(Xi−d ≥ r),

where lδ(Bi;Zi) is defined as the logarithmic expression on the first equation. Let ϕδ(Zi) =

l̇δ(Bi;Zi)I (Xi−d ≥ r0) , where l̇δ(Bi;Zi) = ∂
∂δ
lδ(Bi;Zi). Define

ΨT (δ) =
1

T

T
∑

i=1

l̇δ(Bi;Zi)I (Xi−d ≥ r̂) . (7)

The maximum likelihood estimator δ̂ = δ̂(r̂) is a root of the estimating equation ΨT (δ) = 0. On

the other hand, for the associated mixed-effect generalized linear model with data from the true

upper regime of the GTR model, the maximum likelihood estimator equals δ̂(r0) which is a root of

the following estimating equation

1

T

T
∑

i=1

l̇δ(Bi;Zi)I (Xi−d ≥ r0) = 0. (8)

We show in Theorem 3 that the super-consistency of r̂ and other regularity conditions imply that

the two estimating equations (7) and (8) are asymptotically equivalent so that δ̂ = δ̂(r̂) and δ̂(r0)

enjoy the same asymptotic distribution. The following set of assumptions will be required later.

B1. The domain of δ is an open subset of the Euclidean space, in which δ 7→ l̇δ(b; z) is twice

continuously differentiable for every (b, z).

B2. E
∣

∣

∣
l̇δ0

∣

∣

∣

2
< ∞, where | · | denotes the Euclidean norm of the enclosed expression and the

expectation is taken under the true model.

B3. E(l̈δ0) exists and is nonsingular.
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B4. The third-order partial derivatives of lδ(b; z) with respect to δ are dominated by a fixed

integrable function g(b; z) for every δ in a neighborhood of δ0.

We note that these assumptions are classical conditions for studying the asymptotic properties

of maximum likelihood estimation; see Theorems 5.41 and 5.42 of van der Vaart (2000). Under

assumptions A1, B1–B4, it can be shown using Theorem 5.41 in van der Vaart (2000) that the esti-

mating equation (8) admits a root close to the true parameter value δ0. These roots are designated

as δ̂(r0) which can be shown to be
√
T -consistent, i.e.

δ̂(r0) − δ0(r0) = Op(1/
√
T ).

Moreover, by Theorem 5.42 of van der Vaart (2000), the sequence
√
T

{

δ̂(r0) − δ0(r0)
}

is asymp-

totically normal with mean zero and covariance matrix E(ϕ̇δ0)
−1E(ϕδ0ϕ

′

δ0
)E(ϕ̇δ0)

−1. These results

can be transferred to δ̂, as stated in Theorem 3 below.

Remark 3. We remark that Theorem 5.41 of van der Vaart (2000) assumes independent and iden-

tically distributed data. However, it can be easily extended to the case of α-mixing data with

geometrically decaying mixing coefficients, and if {ϕδ0(Zi)} are uncorrelated. The latter condition

holds because of the conditional independence of Bs given Z and ε.

Theorem 3. Suppose assumptions A1–A4 and B1–B4 hold. Then,

δ̂(r̂) − δ0(r0) = Op(1/
√
T ),

and the sequence
√
T

{

δ̂(r̂) − δ0(r0)
}

is asymptotically normal with mean zero and covariance ma-

trix E(ϕ̇δ0)
−1E(ϕδ0ϕ

′

δ0
)E(ϕ̇δ0)

−1.

See Appendix 4 for a proof of Theorem 3.

4. Simulation Study

We conduct a simulation study to investigate the empirical performance of the proposed esti-

mation scheme for the GTR model defined by (3). Conditionally independent observations of NtBt

are generated from binomial distributions with number of trials Nt equal to 1000 and conditional

probabilities of success given by

Pt =











0, if Xt−d < r

logit−1 (β0 + β1At,1 + β2At,2 + β3At,2At,3 + εt) , if Xt−d ≥ r;
(9)
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t = 1, · · · , T. The parameters d and r are taken to be 1 and 0.4, respectively. The regression

coefficients are fixed at β
′

= (0, 5,−5, 0). The Xs are generated as a series that follows an AR(2)

process given by Xt = Ot+0.907
2.37 , where Ot = 0.9255Ot−1 −0.2736Ot−2 +

√
0.02125 ηt, and ηt denotes

a series of uncorrelated normal random variables with zero mean and variance 1, truncated between

-3 and 3. Note that the parameters are chosen such that Xt is bounded between 0 and 1. The

covariates At,1, At,2, and At,3 are generated as independent uniform(0, 1) random variables. The

random effect sequence {εt} is generated as a series of independent N(0, σ2) random variables,

where σ is taken to be 0.1, 0.2, and 0.5. The sample sizes used are 50, 100, and 200, and for each

sample size, the results are based on 1,000 replications (excluding cases of failures, see below). The

associated mixed-effect logistic regression model is fitted using the glmmPQL function in R, which

implements approximate maximum likelihood estimation by linearization about the Best Linear

Unbiased Predictors (BLUPs); see Breslow and Clayton (1993) and Venables and Ripley (2002, pp.

297–298).

Table 1 provides the mean number of data points in the upper regime, the percentage of

times the delay was estimated to be equal to the true value 1, and the percentage of times an

error has occurred while fitting the simulated model, namely the percentage of failures. The

percentage of failures refers to the cases where glmmPQL gives an error (e.g. non-positive definite

asymptotic covariance matrix) or a warning message (e.g. non-convergence and/or the Hauck-

Donner phenomenon; see pp. 197–198 of Venables and Ripley, 2002). The percentage of failures

generally decreased with larger sample size. We also report in Table 1 the sample means, biases,

and standard deviations of the estimates, and the empirical coverage probabilities of the parameters

in the associated mixed-effect logistic regression model. The empirical coverage probabilities are

based on the asymptotic 95% confidence intervals of the corresponding parameters. In general, the

standard deviation of the estimators generally became smaller with larger sample size, confirming

the consistency results discussed previously. Moreover, the empirical coverage probabilities were

generally closer to the nominal coverage probabilities with increasing sample sizes.

In all cases considered in this simulation study, the Q-Q plots (not shown) confirm the limiting

exponential distribution of the threshold estimator and the asymptotic normality of the remaining

estimators in the associated mixed-effect logistic regression model.

5. Application

In this section we illustrate the GTR model by studying which biotic and/or abiotic factors

affect the prevalence of plague among great gerbil population in Kazakhstan. Plague exists in nature
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Sample Mean # of Data True % of Parameter Estimates Empirical Coverage Rate of % of Failures

Size in Upper Regime σ d̂ = 1 (in %) r̂ β̂0 β̂1 β̂2 β̂3 σ̂ β0 β1 β2 β3 σ (in %)

50 21 0.1 100 0.4049 0.0005 5.0004 -5.0017 -0.0043 0.0749 0.912 0.905 0.904 0.902 0.912 26.79

sd 0.0052 0.0936 0.1477 0.2144 0.2804 0.0493

bias 0.0049 0.0005 0.0004 -0.0017 -0.0043 -0.0251

50 21 0.2 100 0.4049 0.0029 4.9976 -5.0225 0.0296 0.1533 0.892 0.897 0.898 0.899 0.915 25.26

sd 0.0049 0.1539 0.2185 0.3064 0.4204 0.0696

bias 0.0049 0.0029 -0.0024 -0.0225 0.0296 -0.0467

50 21 0.5 100 0.4049 -0.0191 5.0019 -4.9743 0.0190 0.3841 0.900 0.887 0.906 0.909 0.849 28.93

sd 0.0050 0.3480 0.5149 0.6939 0.9015 0.1448

bias 0.0049 -0.0191 0.0019 0.0257 0.0190 -0.1159

100 43 0.1 100 0.4027 -0.0006 4.9958 -4.9961 0.0021 0.0826 0.912 0.924 0.916 0.924 0.936 15.11

sd 0.0027 0.0593 0.0904 0.1155 0.1440 0.0409

bias 0.0027 -0.0006 -0.0042 0.0039 0.0021 -0.0174

100 43 0.2 100 0.4024 -0.0042 4.9954 -4.9924 0.0089 0.1773 0.937 0.933 0.938 0.935 0.973 18.57

sd 0.0025 0.0952 0.1387 0.1770 0.2350 0.0470

bias 0.0024 -0.0042 -0.0046 0.0076 0.0089 -0.0227

100 43 0.5 100 0.4023 0.0012 4.9592 -4.9649 -0.0057 0.4373 0.942 0.924 0.925 0.946 0.928 28.37

sd 0.0023 0.2153 0.3076 0.3937 0.4962 0.0941

bias 0.0023 0.0012 -0.0408 0.0351 -0.0057 -0.0627

200 86 0.1 100 0.4013 0.0002 4.9938 -4.9953 -0.0010 0.0932 0.960 0.951 0.932 0.937 0.965 16.39

sd 0.0012 0.0367 0.0576 0.0772 0.0969 0.0293

bias 0.0013 0.0002 -0.0062 0.0047 -0.0010 -0.0068

200 86 0.2 100 0.4012 -0.0033 4.9911 -4.9881 -0.0015 0.1906 0.933 0.957 0.949 0.947 0.968 8.93

sd 0.0012 0.0656 0.0901 0.1187 0.1557 0.0292

bias 0.0012 -0.0033 -0.0089 0.0119 -0.0015 -0.0094

200 86 0.5 100 0.4012 -0.0086 4.9710 -4.9567 -0.0020 0.4657 0.938 0.93 0.947 0.954 0.952 21.14

sd 0.0012 0.1505 0.2075 0.2616 0.3394 0.0587

bias 0.0012 -0.0086 -0.0290 0.0433 -0.0020 -0.0343

True 0.4 0.0 5.0 -5.0 0.0

Table 1. Results of the simulation study.
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as a disease of wild rodents caused by infection of the bacterium Yersinia pestis. The infection

is maintained in natural foci of the disease, in wild rodent colonies through transmission between

rodents by their flea ectoparasites. In desert and semidesert areas of Kazakhstan (and central Asia,

in general), the great gerbil (Rhombomys opimus) and the fleas inhabiting their burrows (mainly

of the genus Xenopsylla) are considered to be the main host and vectors of plague, respectively.

The survey area is located south-east of Lake Balkhash in south-eastern Kazakhstan, being part

of the PreBalkhash plague focus. The PreBalkhash focus is separated into specific landscape-

epizootological regions. Kazakhstan was divided into 40 × 40 km2 so called large squares (LSQ).

Each LSQ comprises four 20 × 20 km2 primary squares that are divided into four sectors. Within

a given sector, data are maximally recorded twice a year, providing information on the results

of bacteriological test (prevalence data) in addition to independent information on the burrow

occupancy rate which is a proxy of the abundance of the great gerbils (and hence also for the

contact rate between the great gerbils and the fleas). The sampling was done bi-annually during

the spring and the fall from 1949 to 1995. The great gerbils were mainly caught between May and

June in the spring and between September and October in the fall. Below we develop the GTR

model that embodies the principle that plague outbreak occurs only if the occupancy is above

a certain threshold, in which case the probability of an outbreak is higher with more favourable

environmental conditions. Because the prevalence structure is likely to be seasonal, we extend the

GTR model to a seasonal GTR model where both the threshold and the delay are seasonal and

so is the prevalence function defined below. The estimation procedure introduced earlier can be

readily modified to estimating a seasonal GTR model; the large-sample results can be similarly

extended to the estimator of a seasonal GTR model. For the sake of illustration, we fit the GTR

model for only one large square, namely LSQ 105. Potential covariates include a large set of

climate variables, current occupancy, lag 1
2 and lag 1 occupancies. We tried a number of subset

seasonal GTR models. Because of the small sample size in the upper regime of each season and

some covariates have missing data, some subset models cannot be fitted. Based on AIC and the

significance of each covariate effect, we obtain the final fitted model for LSQ 105 that is given

below. Recall that Nt is the number of great gerbils examined at time t, t = 1, 2, · · · , T, and Bt

is the (sample) proportion of great gerbils testing positive for plague under bacteriological tests at

time t. Let Pt = E(Bt) be the prevalence of plague at time t. We fitted models of the form specified



14 GENERALIZED THRESHOLD REGRESSION MODEL

by (1), but with a seasonal structure:

Pt =
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


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

0, if Xt−ds
< rs and t is spring

logit−1 (β0,s + β1,sXt−1 + β2,sFwi,t + εt) , if Xt−ds
≥ rs and t is spring;























0, if Xt−df
< rf and t is fall

logit−1
(

β0,f + β1,fXt− 1
2

+ β2,fRsu,t

+β3,fRsu,t × Tsu,t + εt) , if Xt−df
≥ rf and t is fall.

(10)

Occupancy is the X-variable. It is important to note that we use lag 1
2 occupancy, because data

are collected twice per year. Spring climate covariate is the average monthly number of days with

frost during the winter, namely Fwi,t. Fall climate covariates are the average monthly number of

days with relative humidity less than 30% during the summer (Rsu,t) and the average monthly

summer temperature (Tsu,t). Owing to possible overdispersion and some missing covariates such

as the virulence of bacteria (infectivity variable), the latent variables εt are included in the model.

Moreover, they are assumed to be independent N(0, σ2) random variables.

The seasonal delay parameters ds and df are estimated to be 1.5 and 1, respectively, using

the estimation procedure discussed in this paper. Figure 1(a) shows the seasonal scatter plots

of the observed prevalence rate P̂t = Bt versus the threshold variable, i.e. versus Xt−1.5 for the

spring and Xt−1 for the fall. The arrows in the plots of Figure 1(a) indicate the location of the

maximum likelihood estimates of the seasonal thresholds which are estimated using the simple

sorting procedure discussed earlier. Note that P̂t is likely to be biased downwards, because the test

sample of an infected rodent may not include bacteria, the efficacy of the test, etc. Fortunately,

the bias can be absorbed by the intercept term; see Park et al. (2005).

The time-series plots of log(Nt) and −NtBt in Figure 1(b) start from the spring of 1949 and

end in the fall of 1995. These time-series plots show some missing observations and the existence of

a large number of observations for which Bt is equal to zero. Figures 2(a) and (b) show the pairwise

scatter plots for the dataset in the upper regime of the spring and fall seasons, respectively.

In Table 2, we report the maximum likelihood estimate of each of the parameters in the model

defined by (10) with their asymptotic standard errors and asymptotic 95% confidence intervals.

As in the simulation study, the associated mixed-effect logistic regression model was fitted using

the glmmPQL function in R. Since the number of data points in the upper regime is 18 for the

spring and 12 for the fall, it is prudent to alternatively calibrate the uncertainty of the parameter
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Figure 1. (a) Seasonal scatter plots of P̂t vs. the threshold variable. (b) Time-

series plots of log(Nt) and −NtBt.

estimates by using the parametric bootstrap with bootstrap size 1,000 and with the covariates

fixed at their observed values and the seasonal delays fixed at ds = 1.5 and df = 1; see Table 2.

The bootstrap 95% confidence intervals for the seasonal threshold parameters are based on r∗0.95,

the 95 percentile of the bootstrap estimates. The end points of these 95% confidence intervals are

(2r̂− r∗0.95, r̂]; see Remark 2. The bootstrap 95% confidence intervals for the remaining parameters

in the upper regime are obtained by the percentile method with the 2.5 and 97.5 percentiles of the
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P̂t

Xt−1

Fwi, t

(a)

P̂t

Xt−0.5

Rsu, t

Tsu, t

(b)

Figure 2. Pairwise scatter plots for the data in the upper regime (a) Spring season;

(b) Fall season.

bootstrap estimates being the end points of these 95% confidence intervals; see Efron and Tibshirani

(1993, chapter 13). The bootstrap confidence intervals are generally wider than their asymptotic

counterparts.

Standard diagnostic checks on the estimated random effects from our final fitted model show

no evidence of any failure of the assumptions related to the random effect. Therefore, the fitted

model seems adequate. Based on the asymptotic and parametric bootstrap confidence intervals, we

conclude that (given everything else being equal) the occupancy of last spring season is positively

correlated with the prevalence of plague during the spring. The average number of days with frost

during the winter season is negatively correlated with the prevalence of plague during the spring; in

other words, warm spells in the winter increase the chance of a plague outbreak during the spring

season. On the other hand, the occupancy of last spring is positively correlated with the prevalence

of plague during the fall season. Moreover, average summer temperature is positively correlated

with the prevalence of plague during the fall. Average summer temperature ranged between 22.8

and 25.7, over the span of which the number of days with relative humidity less than 30% during

the summer season is negatively correlated with the prevalence of plague during the fall. Hence, a

dry summer decreases the chance of a plague outbreak during the fall season.

We have also fitted a simple logistic regression model to the plague data in LSQ 105 where the

threshold phenomenon is discarded. The estimate of σ is found to be 8.43 × 10−5, suggesting that

the random effects can be dropped. Table 3 reports the simple logistic regression model fit without
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Estimated Asymptotic Asymptotic Bootstrap

Parameter Value Standard Error 95% C.I. 95% C.I.

rs 0.380 (0.311, 0.380]

rf 0.550 (0.530, 0.550]

β0,s 3.48 11 (−16.8, 23.8) (−15.4, 28.8)

β1,s 12.3 5.5 (2.37, 22.3) (3.35, 27.3)

β2,s -0.544 0.35 (−1.18, 0.0944) (−1.48, 0.0498)

β0,f -11.6 3.1 (−17.2, −5.87) (−22.8, −7.05)

β1,f 23.2 6.2 (11.9, 34.5) (12.2, 47.0)

β2,f -2.10 1.1 (−4.16, −0.0414) (−5.71, −0.220)

β3,f 0.0742 0.043 (−0.00283, 0.151) (−5.69 × 10−4, 0.201)

σ 0.996 (0.583, 1.70) (1.38 × 10−7, 1.43)

Table 2. Maximum Likelihood Estimates of the Parameters in the Plague Model.

Estimated Asymptotic Asymptotic

Parameter Value Standard Error 95% C.I.

β0,s -2.06 2.5 (−6.85, 2.91)

β1,s 13.1 1.2 (10.7, 15.6)

β2,s -0.349 0.084 (−0.519, −0.188)

β0,f -14.5 1.5 (−17.6, −11.9)

β1,f 24.6 1.9 (21.1, 28.7)

β2,f -1.46 0.32 (−2.10, −0.848)

β3,f 0.0519 0.012 (0.0293, 0.0757)

Table 3. Maximum Likelihood Estimates of the Parameters in the Plague Model

Fitted without Random Effects and without the Threshold Phenomenon.

random effects. Except β0,s, the signs of the estimates are same as their counterparts of the GTR

model. But the standard errors of the estimates are much smaller when the threshold effect is

ignored, primarily because of deceptively higher sample size. Incorporating the random effects in

the logistic regression model did not change the other parameter estimates but their standard errors

became larger although still much smaller than those of the GTR model. Both logistic regression

model fits were deemed inadequate based on model diagnostics, e.g. the plot of residuals versus
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fitted values did not look random. We conclude that the GTR model provides a better fit to the

data from LSQ 105.

6. Conclusion

The real application illustrates the potential usefulness of the GTR model in analyzing epi-

demiological time series subject to a threshold condition. The GTR model specifies zero response in

the lower regime. While this specification has a sound epidemiological justification, it is of interest

to study the more general model that the non-normal response follows a generalized piecewise-

linear model. Another interesting problem is to study how to pool information across different

large squares in the Kazakhstan plague monitoring data, and to incorporate the spatial correlation

structure. Given the relatively small number of non-zero bacteriological positive cases, the latter

problem is pivotal for extracting the biological signal from the data and its spatial variation.
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Appendix 1

Proof of Claim 1

Because d is assumed to be fixed, d is deleted from θ; i.e. let θ = (r, β
′

, ψ
′

)′, and let `(θ) be

the log likelihood of θ given by (4). Let

l(r) = max
β,ψ

`(θ)

be the profile log likelihood of r. For any positive integer i, let ri = X(i), and

(β̂
′

i , ψ̂
′

i)
′ = arg max

β,ψ
`(θ), for a fixed r = ri.

Moreover, let θi = (ri, β̂
′

i , ψ̂
′

i)
′, and Zi = (Ni, Y

′

i )
′. For convenience of notations, let d = 0.

We now verify that l(r) increases for r ≤ r̂ = X(t̂). This is trivial if t̂ = 1, hence we consider

the case t̂ ≥ 2. First consider l(r1) − l(r2) where ri = X(i) ≤ r̂ = X(t̂), i = 1, 2. With no loss of
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generality, assume r1 < r2. We have

l(r1) − l(r2)

=

T
∑

i=1

log [E {f(Bi|εi, Zi, θ)|Zi, θ = θ1}]

−
T

∑

j=1

log [E {f(Bj|εj , Zj , θ)|Zj , θ = θ2}]

=
T

∑

i=1

log
[

E
{

f(B(i)|ε(i), Z(i), θ)|Z(i), θ = θ1
}]

−
1

∑

j=1

log (1) −
T

∑

l=2

log
[

E
{

f(B(l)|ε(l), Z(l), θ)|Z(l), θ = θ2
}]

.

Since r1 < r2 ≤ r̂, then B(1) = 0. Thus,

l(r1) − l(r2) = log
[

E
{

f(0|ε(1), Z(1), θ)|Z(1), θ = θ1
}]

(A1)

+

T
∑

i=2

log
[

E
{

f(B(i)|ε(i), Z(i), θ)|Z(i), θ = θ1
}]

(A2)

−
T

∑

l=2

log
[

E
{

f(B(l)|ε(l), Z(l), θ)|Z(l), θ = θ2
}]

(A3)

Now note that the term in (A1) is always strictly < 0, because when θ = θ1, 0 ≤ f(0|ε(1), Z(1), θ) <

1 ⇒ 0 ≤ E
{

f(0|ε(1), Z(1), θ)|Z(1), θ = θ1
}

< 1, entailing that its logarithm is negative. Moreover,

the term in (A2) is less than or equal to minus the term in (A3), because the maximum likeli-

hood estimator (β̂
′

2, ψ̂
′

2)
′ is the argument that maximizes the following function (with β, ψ as the

arguments)
T

∑

l=2

log
[

E
{

f(B(l)|ε(l), Z(l), θ)|Z(l), θ = r2, β
′

, ψ
′

)′
}]

.

Hence, l(r1) − l(r2) < 0. Similar approach can be used to show the above for any two arbitrary

thresholds that are less than or equal to r̂ = X(t̂). This completes the proof.
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Appendix 2

Consistency of d̃

Recall that θ = (d, r, β
′

, ψ
′

)′ denotes the generic parameter and θ0 denotes the true parameter

value. Let I denote the interior of the range of {Xt}. We claim that for any fixed r ∈ I and

d 6= d0, the log likelihood at θ equals −∞ with probability → 1 as T → ∞. Then, because r0 ∈ I,

∃δ > 0, such that r0 − δ ∈ I. Hence, r̂(d) < r0 − δ with probability → 1 as T → ∞. The preceding

claim can be proved by noting that the expression inside the expectation on the right side of log

likelihood equation (5) is bounded above by 1, because µt > 0 so the conditional distribution of

Bt is non-degenerate. Hence the first sum on the right side of (5) is bounded away from ∞. The

validity of the preceding claim follows if we can show that for any fixed r in the range of {Xt} ,
the second term on the right side of (5) equals −∞, with probability → 1 as T → ∞. In turn, this

is true if
∑T

i=1 I(Xi−d < r,Bi > 0) > 0, with probability → 1 as T → ∞. But,
∑T

i=1 I(Xi−d <

r,Bi > 0) =
∑T

i=1 I(Xi−d < r,Xi−d0 ≥ r0, Bi > 0). By assumption A1, {(Xi−d,Xi−d0 , Bi)} can be

readily checked to be α-mixing. It follows from the Law of Large Numbers for α-mixing process that
∑T

i=1 I(Xi−d < r,Xi−d0 ≥ r0, Bi > 0)/T → P (Xi−d ≤ r,Xi−d0 > r0, Bi > 0), which is greater than

zero, by assumption A3. This completes the proof that for d 6= d0, ∃δ > 0 such that r̂(d) < r0 − δ

with probability → 1 as T → ∞.

Next, we show that r̂(d0) ≥ r0 almost surely. Consider the log likelihood evaluated at θ0.

The first term on the right side of (5) is clearly a finite number but the second term vanishes

as
∑T

t=1 I(Xi−d0 < r0, Bi > 0) clearly equals 0, by model assumption. Consequently, r̂(d0) ≥ r0

almost surely. Thus, d̃ = d0 with probability → 1 as T → ∞.

Appendix 3

Proof of Theorem 2 – Consistency of r̂

Without loss of generality, assume d = 0, and that some Bs are positive. By model definition,

it is clear that r̂ ≥ r0. Then, it suffices to show that ∀δ > 0, there exists τ > 0 such that

P (r̂ − r0 >
τ
T

) < δ, for all T sufficiently large. Consider P (r̂ − r0 >
τ
T

). Note that if r̂ > r0 + τ
T

,

then all Xs that are ≤ r0 + τ
T

have their corresponding Bs being zero. This implies that for any

fixed τ > 0,

P {T (r̂ − r0) ≤ τ}
= P (r̂ ≤ r0 + τ

T
) = P (one or more Xs in

[

r0, r0 + τ
T

]

with corresponding B > 0).

Now let CTt = ATt ∩ {Bt > 0} , where ATt =
{

Xt ∈
[

r0, r0 + τ
T

]}

, t = 1, · · · , T. Then,
{

CTt
}

can be
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readily checked to be α-mixing using assumption A1. Moreover, using assumption A4 and because

π(.) is assumed to be continuous at r0, then as T → ∞, T P (CTt ) = T P (ATt )P (Bt > 0
∣

∣ATt ) →
π(r0) τ p0, with p0 = P (Bt > 0 |Xt = r0 ) = 1−P (Bt = 0 |Xt = r0 ) = 1−E

{∫

f(0|εt, Zt, θ)fε(εt;ψ)

dεt |Xt = r0 } .
Now let Ut = (Xt, Bt)

′. If the Us were independent and identically distributed,
∑T

t=1 I(C
T
t ) has

an asymptotic Poisson distribution with mean equal to a = π(r0) τ p0. For ψ−mixing processes,

we can apply the result of Meyer (1973) to show the asymptotic Poisson result. Meyer (1973) used

an expanding blocking scheme, indexed by m, that blocks the data {Ut, t = 1, · · · , T} into blocks

of alternate block sizes pm and qm, where m depends on T . The essential idea is that the larger

blocks of size pm are asymptotically independent with the smaller blocks of size qm being negligible

asymptotically so that we are back to the independent case for proving the asymptotic Poisson

distribution. Meyer (1973) required that the triangular array of events
{

CTt
}

, T = 1, 2, · · · , be

α-mixing with mixing coefficients given by

αT (k) = sup
D∈{CT

1 ,··· ,C
T
t },E∈{CT

t+k+1,···}
|P (D ∩ E) − P (D)P (E)| → 0 (A4)

as k → ∞, and the validity of the following technical condition.

C1. Suppose that there exist two sequences of block sizes {pm,m = 1, 2, · · · } and {qm,m = 1,

2, · · · } such that:

(1) for any fixed s > 0, msαtm(qm) → 0 as m→ ∞; tm = m(pm + qm).

(2) qm
pm

→ 0 as m→ ∞.

(3) pm+1 ∼ pm; i.e. limm→∞
pm+1

pm
= 1.

(4) For any fixed τ > 0, Ipm =
∑pm−1

i=1 (pm − i)P (Ctmi+1 ∩ Ctm1 ) = o( 1
m

) as m→ ∞.

We remark that condition C1 holds under assumptions A1–A3 and if we set pm = [T β ] and qm = [T γ ]

where [·] denotes the largest integer not greater than the enclosed expression and 0 < γ < β < 1;

see below.

Hence, owing to the result of Meyer (1973),
∑T

t=1 I(C
T
t ) has an asymptotic Poisson distri-

bution with mean equal to π(r0)τp0. Therefore, P {T (r̂ − r0) ≤ τ} = P
{

∑T
t=1 I(C

T
t ) ≥ 1

}

=

1 − P
{

∑T
t=1 I(C

T
t ) = 0

}

→ 1 − exp−π(r0)τp0 . Consequently, T (r̂ − r0) has a limiting exponen-

tial distribution with mean equal to 1
π(r0)p0

.

Verification of C1

Recall that we assume d = 0. First, we need to show that because the process Z = {Zt} is

assumed to be α-mixing, then the process
{

CTt
}

=
{

ATt ∩ {Bt > 0}
}

is also α-mixing. This we can
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verify by considering

P (CTt ∩ CTt+k) − P (CTt )P (CTt+k)

= E
[

I(ATt )I(ATt+k)E {I(Bt > 0, Bt+k > 0)|Z}
]

− E
[

I(ATt )E {I(Bt > 0)|Zt}
]

E
[

I(ATt+k)E {I(Bt+k > 0)|Zt+k}
]

= E
[

I(ATt )I(ATt+k)E {I(Bt > 0|Z)}E {I(Bt+k > 0)|Z}
]

− E
[

I(ATt )E {I(Bt > 0)|Zt}
]

E
[

I(ATt+k)E {I(Bt+k > 0)|Zt+k}
]

(A5)

= E
[

I(ATt )I(ATt+k)E {I(Bt > 0|Zt)}E {I(Bt+k > 0)|Zt+k}
]

− E
[

I(ATt )E {I(Bt > 0)|Zt}
]

E
[

I(ATt+k)E {I(Bt+k > 0)|Zt+k}
]

(A6)

Equality (A5) is true because Bt| {Z, ε} are independent random variables. Since {Zt} is assumed

to be α-mixing and using the covariance inequality of Bosq (1998, page 7), we can conclude that
{

CTt
}

is α-mixing.

For a fixed integer m, partition the set of positive integers {1, 2, · · · , T} into consecutive blocks

of size pm = T β and qm = T γ alternately, where 0 < γ < β < 1, beginning with the initial block

{1, 2, · · · , pm} of size pm. (More rigorously, we should write pm =
[

T β
]

and qm = [T γ ] , where

[.] denotes the integral part of the expression inside the square bracket.) Hence, m ∼ T
Tβ+T γ =

T 1−βO(1) → +∞ as T → +∞. Furthermore, recall that αT (k) = cρk

T
. Note that T → ∞ if and

only if m→ ∞. We now verify the requirements in Condition C1. We have

• for any fixed s > 0, msαtm(qm) = T s(1−β)−1cρT
γ {1 + o(1)} → 0 as T → +∞, because ρ is

between 0 and 1.

• qm
pm

= T γ−β → 0 as T → +∞, because 0 < γ < β < 1.

• pm+1

pm
=

[

(m+1)β−1{1+o(1)}
mβ−1{1+o(1)}

]β

= (m+1)β(β−1)

mβ(β−1) {1 + o(1)} → 1, as m→ +∞.
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• For any fixed τ > 0, and an L to be determined later,

ITβ =

Tβ−1
∑

i=1

(T β − i)P (CTi+1 ∩ CT1 )

=

L−1
∑

i=1

(T β − i)P (CTi+1 ∩CT1 ) +

Tβ−1
∑

j=L

(T β − j)P (CTj+1 ∩ CT1 )

≤
L−1
∑

i=1

(T β − i)P (CTi+1 ∩CT1 ) +

Tβ−1
∑

j=L

(T β − j)

{

cρj

T
+ P (CTj+1)P (CT1 )

}

≤
L−1
∑

i=1

(T β − i)O

(

1

T 2

)

+

Tβ−1
∑

j=L

(T β − j)

{

cρj

T
+ P (ATj+1)P (AT1 )

}

,

because πi,j(., .) is uniformly bounded and using the ψ-mixing conditions. Hence,

ITβ ≤ (L− 1)(T β − L

2
)O

(

1

T 2

)

+

Tβ−1
∑

j=L

T β
cρj

T
+

(T β − L)(T β − L+ 1)

2
O

(

1

T 2

)

≤ (L− 1)(T β − L

2
)O

(

1

T 2

)

+ T β−1 cρ
L(1 − ρT

β−L)

1 − ρ
+

(T β − L)(T β − L+ 1)

2
O

(

1

T 2

)

.

Now, 0 ≤ T 1−βITβ ≤ O
(

T β−1
)

+ cρL

1−ρ . Given ε > 0,M = c
1−ρ , take L =

[

ln( ε
2M )

ln(ρ)

]

+ 1,

where [.] denotes the integral part of the expression inside the square bracket. Thus, ∀ε >
0, T 1−βITβ < ε, for all T sufficiently large.

Appendix 4

Proof of Theorem 3

We first state and prove a lemma which is instrumental in the proof of Theorem 3.

Lemma 1. Suppose assumptions A1 and A3 hold. Then E {I (r0 ≤ Xt−d < r̂)} = o(1).

Proof of Lemma 1. It has been shown in Theorem 2 that r̂ = r0 + Op(1). Then, ∀ε > 0,∃K such

that for all T sufficiently large, |r̂ − r0| ≤ K
T

with probability ≥ 1− ε. Let HT be the event defined
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by HT =
{

r0 ≤ r̂ ≤ r0 + K
T

}

. Then, ∀ε > 0, we have

P (r0 ≤ Xt−d < r̂) = P (r0 ≤ Xt−d < r̂,HT ) + P
(

r0 ≤ Xt−d < r̂,HC
T

)

≤ P

(

r0 ≤ Xt−d < r0 +
K

T

)

+ P

(

r0 ≤ Xt−d < r̂, r̂ > r0 +
K

T

)

≤ P

(

r0 ≤ Xt−d < r0 +
K

T

)

+ P

(

r̂ > r0 +
K

T

)

< P

(

r0 ≤ Xt−d < r0 +
K

T

)

+ ε, for all T sufficiently large;

=

∫ r0+
K
T

r0

π(x)dx+ ε, for all T sufficiently large. (A7)

Since π(.) is continuous at r0 by assumption A3, then ∃M > 0 such that |π(x)| ≤M for all x in a

neighborhood of r0. Consequently, (A7) implies that ∀ε > 0,

P (r0 < Xt−d ≤ r̂) <
MK

T
+ ε < 2ε, (A8)

for all T sufficiently large. This completes the proof of Lemma 1. �

We now prove Theorem 3. First we prove the existence of a consistent estimator δ̂(r̂) of δ0.

The proof is similar to the proof of Theorem 5.42 in van der Vaart (2000) with some modifications.

Making use of Lemma 1, we show below that ΨT (δ) → Ψ(δ) = E(ϕδ) as T → ∞. The true

parameter δ0 satisfies the equation Ψ(δ) = 0. Let Ψj
T (δ) and Ψj(δ) be the jth component of

ΨT (δ) and Ψ(δ) respectively. Similarly, denote the jth component of lδ by ljδ. Furthermore, write

Ψ̇j(δ0) = ∂
∂δ

Ψj(δ) |δ=δ0 , and Ψ̈j(δ0) = ∂2

∂δ2
Ψj(δ) |δ=δ0 . Similarly defined are Ψ̇j

T (δ0) and Ψ̈j
T (δ0).

Using Taylor’s theorem applied on the jth component of ϕδ, ∃δ̃ between δ and δ0 such that

E(ϕjδ) = E(ϕjδ0) + E(ϕ̇jδ0)(δ − δ0) +
1

2
(δ − δ0)

′

E(ϕ̈j
δ̃
)(δ − δ0),

where ϕ̇jδ0 = ∂
∂δ
ϕjδ |δ=δ0 , and ϕ̈j

δ̃
= ∂2

∂δ2
ϕjδ

∣

∣

δ=δ̃ . Note that
∣

∣

∣
E(ϕ̈j

δ̃
)
∣

∣

∣
≤ E

∣

∣

∣
ϕ̈j
δ̃

∣

∣

∣
≤ E |g| < ∞, if δ is

sufficiently close to δ0. Hence, E(ϕjδ) is differentiable at δ0 for every j. By the same argument, E(ϕjδ)

is differentiable throughout a small neighborhood of δ0. On the other hand, using Taylor’s theorem

applied on ϕ̇jδ , ∃δ̃ between δ and δ0 such that E(ϕ̇jδ) = E(ϕ̇jδ0)+E(ϕ̈j
δ̃
)(δ− δ0). As discussed earlier,

∣

∣

∣
E(ϕ̈j

δ̃
)
∣

∣

∣
< ∞, if δ is sufficiently close to δ0. Thus, E(ϕ̇jδ) is continuous at a small neighborhood of

δ0 for every j. By assumption, E(ϕ̇δ0) is nonsingular. Then, we can make the neighborhood still

smaller to ensure that E(ϕ̇δ) is nonsingular throughout the neighborhood. Then, by the inverse

function theorem, for every sufficiently small γ > 0, there exists an open neighborhoodGγ of δ0, and

a ball Bγ centered at the origin with radius γ, such that the map Ψ : Gγ 7→ Bγ is a homeomorphism.
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By the mean-value theorem and because the norms of the derivatives {E(ϕ̇δ)}−1 are bounded in a

neighborhood of δ0, ∃δ̃ between δ and δ0 such that
∣

∣Ψj(δ) − Ψj(δ0)
∣

∣ =
∣

∣Ψj(δ)
∣

∣ =
∣

∣

∣
E(ϕ̇j

δ̃
)
∣

∣

∣
|δ − δ0| ,

where Ψj is the jth component of Ψ. Thus, the diameter of Gγ is bounded by a multiple of γ. That

is, |δ − δ0| is bounded by a multiple of γ, for δ ∈ Gγ .

Now consider Ψj
T (δ) − Ψj(δ). Using Taylor’s theorem, we have

Ψj
T (δ) = Ψj

T (δ0) + Ψ̇j
T (δ0)(δ − δ0) +

1

2
(δ − δ0)

′

Ψ̈j
T (δ̃)(δ − δ0); (A9)

Ψj(δ) = Ψj(δ0) + Ψ̇j(δ0)(δ − δ0) +
1

2
(δ − δ0)

′

Ψ̈j(δ̃)(δ − δ0). (A10)

Combining equations (A9) and (A10), we get the following

Ψj
T (δ) − Ψj(δ) = Ψj

T (δ0) − Ψj(δ0) (A11)

+
{

Ψ̇j
T (δ) − Ψ̇j(δ)

}

(δ − δ0) (A12)

+
1

2
(δ − δ0)

′

{

Ψ̈j
T (δ̃) − Ψ̈j(δ̃)

}

(δ − δ0). (A13)

Now, the right-hand side term in (A11) can be written as

Ψj
T (δ0) − Ψj(δ0) = Ψj

T (δ0) − 0

=
1

T

T
∑

i=1

l̇jδ0(Bi;Zi)I (Xi−d ≥ r̂)

=
1

T

T
∑

i=1

l̇jδ0(Bi;Zi)I (Xi−d ≥ r0) +
1

T

T
∑

i=1

l̇jδ0(Bi;Zi)I (Xi−d ≥ r̂)

− 1

T

T
∑

i=1

l̇jδ0(Bi;Zi)I (Xi−d > r0) .

Because r̂ ≥ r0, we have

Ψj
T (δ0) − Ψj(δ0)

=
1

T

T
∑

i=1

l̇jδ0(Bi;Zi)I (Xi−d ≥ r0) −
1

T

T
∑

i=1

l̇jδ0(Bi;Zi)I (r0 < Xi−d ≤ r̂) . (A14)

By the law of large numbers, 1
T

∑T
i=1 l̇

j
δ0

(Bi;Zi)I (Xi−d ≥ r0) converges to 0 in probability. On the

other hand, by the Lebesgue’s dominated convergence theorem, for every j and i,

E
[
∣

∣

∣
l̇jδ0(Bi;Zi)

∣

∣

∣
I

{
∣

∣

∣
l̇jδ0(Bi;Zi)

∣

∣

∣
≤M

}]

→ E
{

∣

∣

∣
l̇jδ0(Bi;Zi)

∣

∣

∣

}

<∞ as M → ∞, (A15)
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because E
∣

∣

∣
l̇δ0

∣

∣

∣

2
is assumed to be finite. Consequently, ∀ε > 0, there exists M such that

∣

∣

∣
E

{

l̇jδ0(Bi;Zi)I (r0 ≤ Xi−d < r̂)
}∣

∣

∣

< ε+ E
[
∣

∣

∣
l̇jδ0(Bi;Zi)

∣

∣

∣
I

{
∣

∣

∣
l̇jδ0(Bi;Zi)

∣

∣

∣
≤M

}

I (r0 ≤ Xi−d < r̂)
]

≤ ε+ME {I (r0 ≤ Xi−d < r̂)} . (A16)

It follows from Lemma 1 and the results in (A14) and (A16) that

Ψj
T (δ0) − Ψj(δ0) = op(1). (A17)

It can be similarly shown that
∣

∣

∣
Ψ̇j
T (δ) − Ψ̇j(δ)

∣

∣

∣
= op(1). (A18)

Finally, because of the assumption that the third-order partial derivatives of lδ(z) are dominated

by a fixed integrable function g(z) for every δ in a neighborhood of δ0, then

∣

∣

∣
Ψ̈j
T (δ̃) − Ψ̈j(δ̃)

∣

∣

∣
= Op(1). (A19)

Consequently, combining the results in (A17)–(A19) with the results in (A11)–(A13), we get

∣

∣

∣
Ψj
T (δ) − Ψj(δ)

∣

∣

∣
≤ op(1) + |δ − δ0| op(1) + |δ − δ0|2Op(1)

≤ op(1) + γop(1) + γ2Op(1), (A20)

for δ ∈ Gγ . Now, letting k be the dimension of δ, we have

|ΨT (δ) − Ψ(δ)| =

√

√

√

√

k
∑

j=1

∣

∣

∣
Ψj
T (δ) − Ψj(δ)

∣

∣

∣

2
≤

√
k

{

k
∑

i=1

∣

∣Ψi
T (δ) − Ψi(δ)

∣

∣

}

⇒ sup
δ∈Gγ

|ΨT (δ) − Ψ(δ)| ≤
√
k

[

k
{

op(1) + γop(1) + γ2Op(1)
}]

. (A21)

Because for every γ > 0, P
{

op(1) + γop(1) >
1
2γ

}

→ 0 as T → ∞, there exists γT ↓ 0 such that

P
{

op(1) + γT op(1) >
1
2γT

}

→ 0 as T → ∞.

Let KT,γ be the event such that supδ∈Gγ
|ΨT (δ) − Ψ(δ)| < γ

2 . Thus, P (KT,γT
) → 1 as T → ∞.

Now consider the map η 7→ η − ΨT ◦ Ψ−1(η). On the event KT,γ , this map maps the ball Bγ into

itself, by the definition of Gγ and KT,γ . Because the map is also continuous, and by Brouwer’s

fixed-point theorem, there exists a fixed point in Bγ such that

η − ΨT ◦ Ψ−1(η) = η ⇒ ΨT ◦ Ψ−1(η) = 0 ⇒ ∃δ such that ΨT (δ) = 0, δ ∈ Gγ .
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Therefore, the probability that the equations ΨT (δ) = 0 has at least one root tends to 1, as T → ∞,

and there exists a sequence of roots δ̂(r̂) such that δ̂(r̂)−δ0(r0) converges to 0 in probability. Finally,

by Theorem 5.41 in van der Vaart (2000) and Remark 3, we get that

δ̂(r̂) − δ0(r0) = Op(
1√
T

),

and the sequence
√
T

{

δ̂(r̂) − δ0(r0)
}

is asymptotically normal with mean zero and covariance

matrix E(ϕ̇δ0)
−1E(ϕδ0ϕ

′

δ0
)E(ϕ̇δ0)

−1.

References

Anderson, R.M. and May, R.M. (1991). Infectious Diseases of Humans. Oxford: Oxford University Press.

Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley.

Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes: Estimation and Prediction, (2nd edition).

New York: Springer-Verlag.

Breslow, N.E. and Clayton, D.G. (1993). Approximate Inference in Generalized Linear Mixed Models. Journal

of the American Statistical Association 88, 9–25.

Chan, K.S. (1993). Consistency and Limiting Distribution of the Least Squares Estimator of a Threshold Au-

toregressive Model. The Annals of Statistics 21, 520–533.

Chan, K.S. and Tsay, R.S. (1998). Limiting Properties of the Least Squares Estimator of a Continuous Threshold

Autoregressive Model. Biometrika 85, 413–426.

Davis, D., Begon, M., De Bruyn, L., Ageyev, V., Viljugrein, H., Stenseth, N. and Leirs, H. (2004). Predictive

Thresholds for Plague in Kazakhstan. Science 304, 736–738.

Davison, A.C. and Hinkley, D.V. (2003). Bootstrap Methods and their Application. Cambridge: Cambridge

University Press.

Dickmann, O. and Heesterbeek, J. A. P. (2000). Mathematical Epidemiology of Infectious Disease: Model Build-

ing, Analysis and Interpretation. Chichester: John Wiley.

Doukhan, P. (1994). Mixing: Properties and Examples. New York: Springer-Verlag.

Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. New York: Chapman and Hall.

Feller, W. (1971). An Introduction to Probability Theory and its Applications. Volume 2. New York: Wiley.

Gage K.L. and Kosoy M.Y. (2005). Natural history of plague: Perspectives from more than a century of research.

Annu. Rev. Entomol. 50, 505-28.

Grenfell, B. T. and Dobson, A. P. (1995). Ecology of Infectious Diseases in Natural Populations. New York:

Cambridge University Press.

Hansen B.E. (2000). Sample splitting and threshold estimation. Econometrica 68, 575-603.

Hudson, P.J., Rizzoli, A., Grenfell, B.T., Heesterbeek, H. and Dobson, A.P. (2002). The Ecology of Wildlife

Diseases. New York: Oxford University Press.

Keeling, M.J. and Gilligan, C.A. (2000). Bubonic plague: a metapopulation model of a zoonosis. Proceedings of

the Royal Society of London Series B-Biological Sciences 267 (1458), 2219–2230.



28 GENERALIZED THRESHOLD REGRESSION MODEL

McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models. 2nd edition. London: Chapman and Hall.

Meyer, R.M. (1973). A Poisson-Type Limit Theorem for Mixing Sequences of Dependent ’Rare’ Events. The

Annals of Probability 1, 480 – 483.

Nummelin, E. (1984). General irreducible Markov chains and non-negative operators. Cambridge: Cambridge

University Press.

Park, S., Chan, K.S., Viljugrein, H., Nekrassova, L., Suleimenov, B., Ageyev, V.S., Klassovskiy, N.L., Pole,

S.B. and Stenseth, N.C. (2005). Modelling Immunity Against Infectious Plague Bacteria in Great Gerbils in

Kazakhstan: a Continuous-time Markov Chain Approach. Under review.

Pinheiro, J.C. and Bates, D.M. (2002). Mixed-Effects Models in S and S-PLUS. New York: Springer-Verlag.

Tong, H. (1990). Non-linear Time Series. A Dynamical System Approach. New York: Oxford University Press.

van der Vaart, A.W. (2000). Asymptotic Statistics. Cambridge: Cambridge University Press.

Venables, W.N. and Ripley, B.D. (2002). Modern Applied Statistics with S. 4th edition. New York: Springer-

Verlag.


