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Abstract

Copulas have become a popular tool in multivariate modeling successfully applied in
many fields. A good open-source implementation of copulas is much needed for more
practitioners to enjoy the joy of copulas. This article presents the design, features,
and some implementation details of the R package copula. The package provides
a carefully designed and easily extensible platform for multivariate modeling with
copulas in R. S4 classes for most frequently used elliptical copulas and Archimedean
copulas are implemented, with methods for density/distribution evaluation, random
number generation, and graphical display. Fitting copula-based models with max-
imum likelihood method is provided as template examples. With the classes and
methods in the package, users can easily extend the package can be easily extended
by user-defined copulas and margins to solve problems.
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1 Introduction

Copulas have become a popular multivariate modeling tool in many fields
where the multivariate dependence is of great interest and the usual mul-
tivariate normality is in question. In actuarial science, copulas are used in
modeling dependent mortality and losses (Frees et al., 1996; Frees and Valdez,
1998; Frees and Wang, 2005). In finance, copulas are used in asset allocation,
credit scoring, default risk modeling, derivative pricing, and risk management
(Bouyè et al., 2000; Embrechts et al., 2003; Cherubini et al., 2004). In biomedi-
cal studies, copulas are used in modeling correlated event times and competing
risks (Wang and Wells, 2000; Escarela and Carrière, 2003). In engineering, cop-
ulas are used in multivariate process control and hydrological modeling (Yan,
2006b; Genest and Favre, 2006).
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A copula is a multivariate distribution whose marginals are all uniform over
(0, 1). For a p-dimensional vector U on the unit cube, a copula C is

C(u1, . . . , up) = Pr(U1 ≤ u1, . . . , Up ≤ up). (1)

Combined with the fact that any continuous random variable can be trans-
formed to be uniform over (0, 1) by its probability integral transformation,
copulas can be used to provide multivariate dependence structure separately
from the marginal distributions. Copulas first appeared in the probability met-
rics literature. Let F be a p-dimensional distribution function with margins
F1, . . . , Fp. Sklar (1959) first showed that there exists a p-dimensional copula
C such that for all x in the domain of F ,

F (x1, . . . , xp) = C{F1(x1), . . . , Fp(xp)}. (2)

The last two decades, particularly the last 10 years, witnessed the spread of
copulas in statistical modeling. Joe (1997) and Nelsen (1999) are the two com-
prehensive treatments on this topic. A frequently cited and widely accessible
reference is Genest and MacKay (1986), titled “The Joy of Copulas”, which
gives properties of an important family of copulas, Archimedean copulas; see
Section 2.

For the joy of copulas to be enjoyable by everyone in need, software implemen-
tation is important. Unfortunately, there are very few software packages avail-
able for copula-based modeling. One of the exceptions is the finmetrics mod-
ule (Insightful Corporation, 2002) of Splus (Insightful Corporation, 2005).
For an array of commonly used copulas, the finmetrics module provides
functions to evaluate their density and distribution, generate random num-
bers from them, and fit them for given data. These functionalities, however,
are limited because only bivariate copulas are implemented. Furthermore, the
software is commercial. It is desirable to have an open source platform for the
development of copula methods and applications.

“R is a free software environment for statistical computing and graphics”(R De-
velopment Core Team, 2006a). It runs on all platforms including Unix/Linux,
Windows, and MacOS. Cutting-edge statistical developments are easily in-
corporated into R by the mechanism of contributed packages with quality
assurance (R Development Core Team, 2006b). It provides excellent graphics
and interfaces easily with lower level compiled code such as C/C++ or FORTRAN.
An active developer-user interaction is available through the R-help mailing
list. Hundreds of contributed packages are available and many existing func-
tionalities, for example, the density and distribution functions of multivariate
normal and t distributions, can be used for copulas. Therefore, it is a natural
choice to write an R package for copulas.

The package copula (Yan, 2006a) is designed using the object-oriented fea-
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tures of the S language (Chambers, 1998). It is publicly available at the Com-
prehensive R Archive Network (CRAN, http://www.r-project.org). The
new S4-style classes are created for elliptical copulas, and Archimedean copu-
las with arbitrary dimension. For each copula family, methods of density, dis-
tribution, and random number generator are implemented. For visualization
purpose, methods of contour and perspective plots are provided for bivariate
copulas. Maximum likelihood method for fitting copula-based models is also
available and can be easily extended.

The rest of the article is organized as follows. Section 2 briefly presents the
S4-style classes defined in the package. Section 3 describe methods for cop-
ula classes, including density, distribution, random number generator, and
graphics. Section 4 discusses how to fit copula-based models to data. Section5
concludes.

In the sequel, all R code demonstration assumes that the package has been
loaded:

> library(copula)

The required packages mvtnorm(Genz et al., 2005), sn (Azzalini, 2005), and
scatterplot3d (Ligges and Mächler, 2003), if not already loaded, will too
be loaded by this call. To make all the illustrations reproducible, we set the
random seed:

> set.seed(1)

2 Classes

Two main classes are defined in the copula package: copula and mvdc. The
copula class is for defining copulas, while the mvdc class is for defining multi-
variate distributions via copula.

2.1 The copula class

Two most frequently used copula families are elliptical copulas and Archimedean
copulas. The copula package has implemented virtual classes ellipCopula

and archmCopula, both extending the virtual class copula. These virtual
classes are designed to provide a flexible way to associate actual classes, that
share some properties but have different representations (Chambers, 1998,
p.292).
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An elliptical copula is the copula corresponding to an elliptical distribution
by the Sklar’s theorem. General discussion about elliptical distributions can
be found in Fang et al. (1990). Let F be the multivariate CDF of an elliptical
distribution. Let Fi be CDF of the ith margin and F−1

i be its inverse function
(quantile function), i = 1, . . . , p. The elliptical copula determined by F is

C(u1, . . . , up) = F [F−1
1 (u1), . . . , F

−1
p (up)]. (3)

Elliptical copulas are have become very popular in finance and risk manage-
ment their easy implementation. Convenience in obtaining conditional distri-
butions is another advantage in using them for predicting (Frees and Wang,
2005).

Actual elliptical copula classes implemented in the package are normalCopula
for normal copula tCopula for t-copula, specified by multivariate normal and
multivariate t distribution. Both copulas has a dispersion matrix, inherited
from the elliptical distributions, and t-copula has one more parameter, the
degrees of freedom (df). Since copulas are invariant to monotonic transforma-
tion of the margins, the standardized dispersion matrix, or correlation matrix,
determines the dependence structure. Commonly used dispersion structures
are implemented: autoregressive of order 1 (ar1), exchangeable (ex), Toeplitz
(toep), and unstructured (un). The corresponding correlation matrices are,
for example, in the case of dimension p = 3,

1 ρ1 ρ2
1

ρ1 1 ρ1

ρ2
1 ρ1 1

 ,


1 ρ1 ρ1

ρ1 1 ρ1

ρ1 ρ1 1

 ,


1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

 , and


1 ρ1 ρ2

ρ1 1 ρ3

ρ2 ρ3 1

 , (4)

where ρj’s are dispersion parameters. The following code creates a normal-

Copula object and a tCopula object, with self-explanatory arguments:

> myCop.norm <- ellipCopula(family = "normal", dim = 3, dispstr = "ex",

param = 0.4)

> myCop.t <- ellipCopula(family = "t", dim = 3, dispstr = "toep",

param = c(0.8, 0.5), df = 8)

These objects can be used to apply methods defined in Section 3.

An Archimedean copula is constructed through a generator ϕ as

C(u1, . . . , up) = ϕ−1 {ϕ(u1) + · · ·+ ϕ(up)} , (5)

where ϕ−1 is the inverse of the generator ϕ. In order for (5) to be a copula, the
generator needs to be a complete monotonic function (see, for example, Nelsen,
1999, Theorem 4.6.2). A generator uniquely (up to a scalar multiple) deter-
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Table 1
Summary of three One-Parameter (α) Archimedean Copulas for p > 2

Family Parameter Generator Generator Inverse Frailty

Space ϕ(t) ϕ−1(s) Distribution

Clayton (1978) α ≥ 0 t−α − 1 (1 + s)−1/α Gamma

Frank (1979) α ≥ 0 ln
eαt − 1
eα − 1

α−1 ln (1 + es(eα − 1)) Log series

Gumbel (1960) α ≥ 1 (− ln t)α exp(−s1/α) Positive stable

mines an Archimedean copula. Details of generators for various Archimedean
copulas can be found in Nelsen (1999).

Implemented Archimedean copula classes in the package are commonly used
one-parameter families, such as calytonCopula for Clayton copula (Clayton,
1978), frankCopula for Frank copula (Frank, 1979), and gumbelCopula for
Gumbel copula (Gumbel, 1960). Constructors of these copulas are available.
For example:

> myCop.clayton <- archmCopula(family = "clayton", dim = 3, param = 2)

It is worth noting that Archimedean copulas with dimension 3 or higher
only allows positive association. Negative association is allowed for bivari-
ate Archimedean copulas. The three one-parameter multivariate Archimedean
copulas (p > 2) implemented in the package are summarized in Table 1. The
parameter value at the boundary of parameter space gives the independent
copula after taking the limit. The generator inverse and frailty distribution
are used in random number generation.

2.2 The mvdc class

The mvdc class is designed to construct multivariate distributions with given
margins using copulas as in (2). This class is an actual class. It has three
major components: copula specifies the copula C in (2); margins specifies
the names of the marginal distributions F1, . . . , Fp; and paramMargins is a
list of list, each specifying the parameter values of the corresponding margin.

The following code creates a mvdc object which represents a trivariate distri-
bution with standard normal margins and Clayton copula:

> myMvd <- mvdc(copula = myCop.clayton, margins = c("norm", "norm",

"norm"), paramMargins = list(list(mean = 0, sd = 2), list(mean = 0,

sd = 1), list(mean = 0, sd = 2)))
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R provides a comprehensive set of statistical distributions R Development Core
Team (2006a), such as norm, t, gamma, lnorm, weibull, etc. They can be
used to specify the margins. User-defined distributions can be used as long as
the PDF, CDF, and quantile function of the distribution, with prefix d, p, and
q, are available. For instance, if functions dfancy, pfancy, and qfancy have
been supplied, then distribution fancy can be used in the margins. Of note is
that these functions should be vectorized.

3 Methods

3.1 Distribution and Density

The method functions for distribution and density for a copula object are
pcopula and dcopula

For an elliptical copula, the distribution is (3). Evaluation of (3) needs im-
plementation of the joint CDF of the elliptical distribution and univariate
quantile functions for each margin. Differentiating (3) gives the density of an
elliptical copula

c(u1, . . . , up) =
f [F−1

1 (u1), . . . , F
−1
p (up)]∏p

i=1 fi[F
−1
i (ui)]

, (6)

where f is the joint PDF of the elliptical distribution, and f1, . . . , fp are
marginal density functions. For example, after some algebra, the density of
a Gaussian copula with dispersion matrix Σ is (Song, 2000)

c(u1, . . . , up|Σ) = |Σ|−1/2 exp
{

1

2
c>(Ip − Σ−1)c

}
, (7)

where c = (q1, . . . , qp)
> with qi = Φ−1(ui) for i = 1, . . . , p, and Φ is the CDF of

N(0, 1). Evaluation of (6) needs implementation of f and f1, . . . , fp in addition
to the univariate quantiles F−1

1 , . . . , F−1
p . Fortunately, the R package mvtnorm

and sn provide F and f for multivariate normal and multivariate t. Other
functions are available in the R base.

For an Archimedean copula, the distribution and density both depend on the
generator function and its inverse function. These functions are defined for
each Archimedean copula. The density of (5) is to be obtained by differen-
tiation, which, in many situations, can be very tedious. Fortunately, R has
some simple symbolic differentiation facility. With this advantage, symbolic
expressions of CDF and PDF can be obtained and evaluated in fast vector
operation. For example:
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> myCop.clayton@exprdist$cdf

(1 + (u1^(-alpha) - 1 + u2^(-alpha) - 1 + u3^(-alpha) - 1))^(-1/alpha)

> myCop.clayton@exprdist$pdf

(1 + (u1^(-alpha) - 1 + u2^(-alpha) - 1 + u3^(-alpha) - 1))^((((-1/alpha) -
1) - 1) - 1) * ((((-1/alpha) - 1) - 1) * (u3^((-alpha) -
1) * (-alpha))) * (((-1/alpha) - 1) * (u2^((-alpha) - 1) *
(-alpha))) * ((-1/alpha) * (u1^((-alpha) - 1) * (-alpha)))

These expressions can be ported into other programming languages. As the
dimension p increases, the memory needed to do the symbolic differentiation
to obtain PDF expression increases dramatically. Since the PDF expression is
used in likelihood evaluation, a more elegant solution is needed. One possibility
is to compute once for a range of p values, for example, p < 20, and then store
it statically, as opposed to computing them on the fly.

The method functions for distribution and density for a mvdc are pmvdc and
dmvdc The distribution function is defined in (2). The density function is, by
differentiating (2),

f(x1, . . . , xp) = c[F1(x1), . . . , Fp(xp)]
p∏

i=1

fi(xi) (8)

where c is the density of C, and f1, . . . , fp are marginal densities.

Example code to evaluate distribution and density will be given in the next
subsection.

3.2 Random Number Generator

The random number generator method is rcopula for an copula object and
rmvdc for an mvdc object.

The random number generator of an elliptical copula is straightforward given
a random number generator of the corresponding elliptical distribution. The
Sklar’s theorem implies that random numbers from a copula can be gener-
ated by transforming each margin of random numbers from a multivariate
distribution with its probability integral transformation. The copula package
provides generators for normal copula and t-copula using the random number
generators for multivariate normal and multivariate t in package mvtnorm.

Generating variables form a general copula can be done by iterative condi-
tioning (Bouyè et al., 2000). For some commonly used Archimedean copulas
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with p > 2, however, fast algorithm exits when the inverse generator function
ϕ−1 is known to be the Laplace transform of some positive random variable
(Marshall and Olkin, 1988; Frees and Valdez, 1998). This positive random
variable is often referred to as frailty. Let γ be a realization of the frailty. Let
v1, . . . , vp be independent realizations of uniform variables over (0, 1). Then
ui = ϕ−1(−γ−1 log vi), i = 1, . . . , p, is a realization from the Archimedean cop-
ula with generator ϕ. This algorithm is very easy to implement and fast, given
that a random number generator of the frailty is available. It is known that
the frailty distribution for Clayton, Frank, and Gumbel copulas are gamma,
log-series, and positive stable, respectively; see Table 1. Gamma variable gen-
erator is available in the R base. Algorithms for generating positive stable and
log series variables can be found in Chambers et al. (1976) and Kemp (1981),
respectively. In particular, the copula uses a Fortran implementation of Nolan
(2006), which is a revised version of Chambers et al. (1976), to generate pos-
itive stable variables. From the compound construction, this algorithm only
allows positive association.

For bivariate Archimedean copulas (p = 2), negative association is allowed.
Random number generator for bivariate Archimedean copulas are therefore
separately implemented.

The following code illustrates the random number generation and evaluation
of distribution and density for the copula object myCop.t created in Section 2:

> u <- rcopula(myCop.t, 4)

> u

[,1] [,2] [,3]
[1,] 0.3508325 0.6165205 0.7459244
[2,] 0.3912433 0.2189641 0.2556491
[3,] 0.3925507 0.7579099 0.9157623
[4,] 0.9822296 0.9611676 0.8896553

> cbind(dcopula(myCop.t, u), pcopula(myCop.t, u))

[,1] [,2]
[1,] 2.265954 0.3081520
[2,] 3.493735 0.1359238
[3,] 1.878803 0.3777087
[4,] 31.481423 0.8771844

To generate random numbers from a mvdc object, one only needs to apply the
quantile function to random numbers of the specified copula on each margin.
The following code illustrates the random number generation and evaluation
of distribution and density for the mvdc object mymvd created in Section 2:

> x <- rmvdc(myMvd, 4)
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Fig. 1. Scatter plots of random numbers from a normal copula and a t-copula.

> x

[,1] [,2] [,3]
[1,] 1.2384606 0.2724823 2.8546293
[2,] -0.3988947 1.3611864 0.6201294
[3,] 0.9119850 0.6937386 0.1522380
[4,] -0.8224510 0.4412545 -0.5282348

> cbind(dmvdc(myMvd, x), pmvdc(myMvd, x))

[,1] [,2]
[1,] 0.009682354 0.5164269
[2,] 0.005771651 0.3668884
[3,] 0.021743229 0.4266208
[4,] 0.018830608 0.2562096

3.3 Graphics

Graphics are important tools for in illustrating and presenting the results
copula-based modeling. The 3D scatter plot from the package scatterplot3d
can be used to show scatters. For example, the following code plots 200 random
points from a trivariate normal copula and a trivariate t-copula in Figure 1.

> par(mfrow = c(1, 2), mar = c(2, 2, 1, 1), oma = c(1, 1, 0, 0),

mgp = c(2, 1, 0))

> u <- rcopula(myCop.norm, 200)

> scatterplot3d(u)

> v <- rcopula(myCop.norm, 200)

> scatterplot3d(v)
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Fig. 2. Contour plots

For both copula and mvdc objects, the copula package has implemented meth-
ods to draw perspective and contour plot for density and distribution. These
method functions are persp and contour. We illustrate the usage of contour
for mvdc objects. The following code plots the density contours of bivariate
distributions defined with Clayton, Frank, and Gumbel copulas, all with both
margins being standard normal:

> myMvd1 <- mvdc(copula = archmCopula(family = "clayton", param = 2),

margins = c("norm", "norm"), paramMargins = list(list(mean = 0,

sd = 1), list(mean = 0, sd = 1)))

> myMvd2 <- mvdc(copula = archmCopula(family = "frank", param = 5.736),

margins = c("norm", "norm"), paramMargins = list(list(mean = 0,

sd = 1), list(mean = 0, sd = 1)))

> myMvd3 <- mvdc(copula = archmCopula(family = "gumbel", param = 2),

margins = c("norm", "norm"), paramMargins = list(list(mean = 0,

sd = 1), list(mean = 0, sd = 1)))

> par(mfrow = c(1, 3), mar = c(2, 2, 1, 1), oma = c(1, 1, 0, 0),

mgp = c(2, 1, 0))

> contour(myMvd1, dmvdc, xlim = c(-3, 3), ylim = c(-3, 3))

> contour(myMvd2, dmvdc, xlim = c(-3, 3), ylim = c(-3, 3))

> contour(myMvd3, dmvdc, xlim = c(-3, 3), ylim = c(-3, 3))

The contour plots are shown in Figure 2. Note that the parameters of the
copulas are chosen such that the Kendall’s τ for all three distributions are 0.5.

The persp method can be called similarly. The first argument in these two
calls are the signature that determines which method to call. It should be
either a copula object or a mvdc object. The second argument specifies the
function for which the plots are to drawn, that is, PDF or CDF.
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4 Fit a Copula Model

With density functions for copula and mvdc objects available, one can easily
fit copula-based models with the maximum likelihood method. The package
provides functions loglikCopula and loglikMvdc to evaluate the loglikeli-
hood of the data under the specified copula model. These functions can be
passed to an optimizer to obtain the maximum likelihood estimate. The pack-
age provides functions fitCopula and fitMvdc to carry out the estimation
and report the results.

Suppose that we observe n indepent realizations from a multivariate distri-
bution, {(Xi1, . . . , Xip)

> : i = 1, . . . , n}. Suppose that the multivariate distri-
bution is specified by p margins with CDF Fi and PDF fi, i = 1, . . . , p, and
a copula with density c. Let β be the vector of marginal parameters and α
be the vector of copula parameters. The parameter vector to be estimated is
θ = (β>, α>)>. The loglikelihood function is

l(θ) =
n∑

i=1

log c {F1(Xi1; β), . . . , Fp(Xip; β); α}+
n∑

i=1

p∑
j=1

log fi(Xij; β). (9)

The ML estimator of θ is

θ̂ML = arg max
θ∈Θ

l(θ),

where Θ is the parameter space.

To illustrate, we generate a sample from a bivariate distribution with gamma
margins and a normal copula:

> myMvd <- mvdc(copula = ellipCopula(family = "normal", param = 0.5),

margins = c("gamma", "gamma"), paramMargins = list(list(shape = 2,

scale = 1), list(shape = 3, scale = 2)))

> n <- 200

> dat <- rmvdc(myMvd, n)

The parameters to be estimated consist of marginal parameters β = (2, 1, 3, 2)>

and copula parameter α = 0.5. The loglikelihood at the true parameter value
is:

> loglikMvdc(c(2, 1, 3, 2, 0.5), dat, myMvd)

[1] -781.1641

To obtain θ̂ML, one implements the loglikelihood function l(θ) and feed it to
an optimizer. The function fitMvdc is a wrapper to the optimization routine
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optim in R. An initial search point is needed for optim. Simpel method of
moments estimate will serve as initial point.

> mm <- apply(dat, 2, mean)

> vv <- apply(dat, 2, var)

> b1.0 <- c(mm[1]^2/vv[1], vv[1]/mm[1])

> b2.0 <- c(mm[2]^2/vv[2], vv[2]/mm[2])

> a.0 <- sin(cor(dat[, 1], dat[, 2], method = "kendall") * pi/2)

> start <- c(b1.0, b2.0, a.0)

> fit <- fitMvdc(dat, myMvd, start = start, optim.control = list(trace = TRUE,

maxit = 2000))

The first three arguments of function fitMvdc are the data, the mvdc object,
and a starting value. Control parameters to the optimizing routine can passed
in through argument optim.control. The starting values here are arbitar-
ily chosen. In real problems, the starting values of marginal parameters can
be chosen by fitting each margin separately. The result of the estimation is
summarized as:

> fit

The ML estimation is based on 200 observations.
Margin 1 :

Estimate Std. Error
m1.shape 1.830479 0.1689802
m1.scale 1.037388 0.1100475
Margin 2 :

Estimate Std. Error
m2.shape 3.515646 0.3362403
m2.scale 1.628037 0.1672812
Copula:

Estimate Std. Error
rho.1 0.419909 0.05820196
The maximized loglikelihood is -777.327
The convergence code is 0

As the dimension p gets large, the number of parameters increases, and the
optimization problem gets harder. Joe and Xu (1996) proposes a two-stage
estimation method called inference functions for margins (IFM). The IFM
method estimates the marginal parameters β in a first step by

β̂IFM = arg max
β

n∑
i=1

p∑
j=1

log fi(Xij; β), (10)
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and then estimates the association parameters α given β̂IFM by

α̂IFM = arg max
α

n∑
i=1

log c
(
F1(Xi1; β̂IFM), . . . , Fp(Xip; β̂IFM); α

)
. (11)

When each marginal distribution Fi has its own parameters βi so that β =
(β>1 , . . . , β>p )>, the first step consists of an ML estimation for each margin
j = 1, . . . , p:

β̂j IFM = arg max
βj

n∑
i=1

log f(Xij; βj). (12)

In this case, each maximization task has a very small number of parameters,
greatly reducing the computational difficulty. This approach is called the two-
stage parametric ML method by Shih and Louis (1995) in a censored data
setting. In our illustration, the method can be carried out with the function
fitCopula.

> loglik.marg <- function(b, x) sum(dgamma(x, shape = b[1], scale = b[2],

log = TRUE))

> ctrl <- list(fnscale = -1)

> b1hat <- optim(b1.0, fn = loglik.marg, x = dat[, 1], control = ctrl)$par

> b2hat <- optim(b2.0, fn = loglik.marg, x = dat[, 2], control = ctrl)$par

> udat <- cbind(pgamma(dat[, 1], shape = b1hat[1], scale = b1hat[2]),

pgamma(dat[, 2], shape = b2hat[1], scale = b2hat[2]))

> fit.ifl <- fitCopula(udat, myMvd@copula, start = a.0)

The estimate from the two stage is summarized as

> c(b1hat, b2hat, fit.ifl@est)

[1] 1.8301906 1.0375602 3.5167486 1.6284508 0.4199346

> fit.ifl

The ML estimation is based on 200 observations.
Estimate Std. Error z value Pr(>|z|)

rho.1 0.4199346 0.05368112 7.822762 5.107026e-15
The maximized loglikelihood is 19.41620
The convergence code is 0

Note that the IFM estimate is close to the ML estimate. The standard error
of α̂IFM is underestimated because the variation of β̂IFM is not appropriately
taken care of.

When consistent estimation of the dependence parameter α is important,
it can be estimated with the canonical ML (CML) method without speci-
fying the marginal distributions. This approach uses the empirical CDF of
each marginal distribution to transform the observations (Xi1, . . . , Xip)

> into

13



pseudo-observations with uniform margins (Ui1, . . . , Uip)
> and then estimates

α as

α̂CML = arg max
α

n∑
i=1

log c(Ui1, . . . , Uip; α). (13)

The method can be carried out with fitCopula as well:

> eu <- cbind((rank(dat[, 1]) - 0.5)/n, (rank(dat[, 2]) - 0.5)/n)

> fit.cml <- fitCopula(eu, myMvd@copula, start = a.0)

> fit.cml

The ML estimation is based on 200 observations.
Estimate Std. Error z value Pr(>|z|)

rho.1 0.4304444 0.05311244 8.1044 4.440892e-16
The maximized loglikelihood is 20.29229
The convergence code is 0

The CML estimate α̂CML is noticeably different from α̂ML and α̂IFM. It has the
advantage of not relying on marginal specifications.

Maximum likelihood estimation of copula-based models can be easily extended
to solve more complicated problems. For example, when covariates are to be
incorporated into the margins, all one needs to do is to write the loglikelihood
function (9), which is the summation of the loglikelihood of the copula and
the the loglikelihood of all the margins. Then, maximum likelihood estimates
can be obtained by feeding the loglikelihood function to an optimizer. Example
code for incorporating covariates into the margins is presented in the Appendix
where two margins are modeled by gamma regression and log-normal regres-
sion, respectively. Covariates can also be incorporated into copula parameters
in a similar fashion.

5 Discussion

This article presents the design, features, and some implementation details of
the R package copula for multivariate modeling with copulas. The package
provides functions to evaluate density/distribution, generate random numbers,
plot, and fit copula-based models. It is hoped that, through the dissemination
of the software, everyone who may need them may access easily copula-based
models in daily computing and therefore enjoy, as put by Genest and MacKay
(1986), the joy of copulas.

The random number generator of high dimensional Archimedean copulas in the
package currently uses the compound construction algorithm (Marshall and
Olkin, 1988; Frees and Valdez, 1998). When the frailty distribution is known,
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this algorithm is very efficient and elegant. Whelan (2004) proposed an algo-
rithm based on integral representations, and the algorithm can be used with
composite nested Archimedean copulas. Wu et al. (2006) recently proposed
an algorithm for sampling from exchangeable Archimedean copulas based on
an extension of the variable transformation technique from the bivariate case
to multivariate case (Genest and Rivest, 2001). These method can be useful
when the frailly distribution is unknown. An alternative in that case is to ob-
tain the frailty distribution with numerical inversion of Laplace transformation
(Melchiori, 2006).

Given a dataset, choosing a copula to fit the data is an important but difficult
problem (Durrleman et al., 2000). The true data generation mechanism is
unknown, for a given amount of data, it is possible that several candidate
copulas fit the data reasonably well or that none of the candidate fits the
data well. When maximum likelihood method is used, the general practice is
to fit the data with all the candidate copulas and choose the ones with the
highest likelihood (Frees and Wang 2005). A graphical tool to choose among
Archimedean copulas is based on the Kendall’s process (Genest and Rivest
1993). Recent works on goodness-of-fit tests of copulas are mostly chi-squared
type tests; see, for example, Fermanian (2005) and references therein. Copula
selection and goodness-of-fit are active research areas.

Although the package is still under active development, it can be easily ex-
tended under the carefully designed structure. A user can write one’s own
code to implement a copula that is not already implemented in the package.
That is, one only needs to implement dcopula, pcopula, and rcopula meth-
ods for this copula. As long as the class and method structure are followed,
the graphics and fitting facility in the package can be used without further
coding.

More facilities, such as extreme value copulas, association measures and tail
dependence measures, will be included in future releases of the package.

A Example Code with Covariates in Margins

This section illustrates how to construct the loglikelihood function using the
facilities in the copula package when covariates are to be incorporated into
the margins. Suppose that we observe n bivariate observations {(Yi1, Yi2) :
i = 1, . . . , n}, and for each margin, there is a corresponding covariate matrix.
The first margin Y1i follows a gamma distribution with shape exp(X>

1iβ1) and
scale ν. The second margin, after log transformation, log(Y2i) follows a normal
distribution with mean X>

2iβ2 and standard deviation σ.
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The following code defines the three components of the loglikelihood: gamma
margin, log-normal margin, and copula.

> loglik.m1 <- function(b, y, x) {

l <- length(b)

sum(dgamma(y, shape = exp(x %*% b[-l]), scale = b[l], log = TRUE))

}

> loglik.m2 <- function(b, y, x) {

l <- length(b)

sum(dlnorm(y, meanlog = x %*% b[-l], sdlog = b[l], log = TRUE))

}

> loglik.cop <- function(a, u, copula) {

copula@parameters <- a

sum(log(dcopula(copula, u)))

}

Note that the contribution from the copula needs to be fed with probability
integral transformed margins. The following code provides the transformation.

> probtrans.m1 <- function(b, y, x) {

l <- length(b)

pgamma(y, shape = exp(x %*% b[-l]), scale = b[l])

}

> probtrans.m2 <- function(b, y, x) {

l <- length(b)

plnorm(y, meanlog = x %*% b[-l], sdlog = b[l])

}

The loglikelihood function can be easily composed as:

> myloglik <- function(theta, y, xmat, copula) {

l1 <- ncol(xmat[[1]]) + 1

l2 <- ncol(xmat[[2]]) + 1

b1 <- theta[1:l1]

b2 <- theta[(l1 + 1):(l1 + l2)]

a <- theta[-(1:(l1 + l2))]

u <- cbind(probtrans.m1(b1, y[, 1], xmat[[1]]), probtrans.m2(b2,

y[, 2], xmat[[2]]))

copula@parameters <- a

loglik <- loglik.m1(b1, y[, 1], xmat[[1]]) + loglik.m2(b2,

y[, 2], xmat[[2]]) + loglik.cop(a, u, copula)

loglik

}

This function can then be fed to an optimization routine.

To illustrate, we define a function to generate response variables from given
parameter vector, design matrices, and copula structure:
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> genY <- function(theta, xmat, copula) {

l1 <- ncol(xmat[[1]]) + 1

l2 <- ncol(xmat[[2]]) + 1

b1 <- theta[1:l1]

b2 <- theta[(l1 + 1):(l1 + l2)]

a <- theta[-(1:(l1 + l2))]

n <- nrow(xmat[[1]])

u <- rcopula(copula, n)

y1 <- qgamma(u[, 1], shape = exp(xmat[[1]] %*% b1[-l1]),

scale = b1[l1])

y2 <- qlnorm(u[, 2], meanlog = xmat[[2]] %*% b2[-l1], sdlog = b2[l2])

cbind(y1, y2)

}

Now, we generate a sample of size n = 200. The design matrices are generated
from a continuous normal variable and a binary variable, respectively.

> n <- 200

> xmat <- list(model.matrix(~rnorm(n)), model.matrix(~rbinom(n,

prob = 0.5, size = 1)))

> b1 <- c(1, 0.5, 2)

> b2 <- c(2, -1, 3)

> a <- 0.5

> theta <- c(b1, b2, a)

> myCop <- normalCopula(a, dim = 2, dispstr = "ex")

> y <- genY(theta, xmat, myCop)

> myloglik(theta, y, xmat, myCop)

[1] -1281.640

The optimization routine needs an initial search point. The initial point may
be chosen based on regressions on each margin and MoM on the copula. For
illustration purpose, we use the true value as starting value and see how fast
it converges:

> fit <- optim(theta, myloglik, control = list(fnscale = -1, trace = 1),

y = y, xmat = xmat, copula = myCop, method = "BFGS")

initial value 1281.639657
iter 10 value 1279.312818
final value 1279.311152
converged

> fit

$par
[1] 1.0711075 0.5129254 1.7993063 2.2886217 -1.1995043 2.8907541 0.4166082
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$value
[1] -1279.311

$counts
function gradient

48 11

$convergence
[1] 0

$message
NULL

The variance matrix of the estimator can be estimated by inverting the Fisher
information matrix, which is approximated by the negative Hessian matrix.
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