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Summary

We propose a new, block Gibbs sampling scheme for incomplete multinomial data. The new

approach facilitates maximal blocking, thereby reducing serial dependency and speeding up

the convergence of the Gibbs sampler. We compare the new method with the standard,

non-block Gibbs sampler via a numerical example.
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1. Introduction

Incomplete multinomial data abound in science. For example, in epidemiology, the strain

of a pathogen infecting some trapped rodents may be unknown due to contamination prob-

lems of the ensuing blood tests, resulting in incomplete multinomial data; Ahn et al. (2007).

Bayesian analysis with incomplete multinomial data may be carried out via Markov chain

Monte Carlo. A standard approach is to consider the counts of each category as the latent

complete data and impute these counts one by one and iteratively in the Monte Carlo, see

Gelman et al. (2003). However, Ahn et al. (2007) noted that for missingness resulted from

the presence of partially classified observations known to belong to one of several disjoint

groups of categories, the posterior distribution is tractable with a Dirichlet prior. Here, we

further develop this observation to derive a new block Gibbs sampling scheme for Bayesian

analysis with incomplete multinomial data. The novelty of the new approach lies in updating
1
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counts of groups of categories instead of updating counts of individual categories, i.e. the

new scheme promotes blocking in the Gibbs sampling.

The convergence properties of the Gibbs sampler have been extensively studied, see, e.g.

Chan (1993), Liu et al. (1994), Tierney (1994), Rosenthal (1995), Amit (1996), and Roberts &

Sahu (2001). Blocking in a Gibbs sampler generally speeds up its convergence to stationarity,

and reduces serial dependence. Roberts & Sahu (1997) showed that for a Gaussian target

distribution, convergence of a Gibbs sampler becomes faster with fewer blocks. Liu et al.

(1994) showed that blocking may lead to a faster convergence of the Gibbs sampler by

reducing the spectral norm of the underlying operator. We detail the new block Gibbs

sampling scheme for incomplete multinomial data and show that it is theoretically superior

than the non-block Gibbs sampling scheme in section 2. We compare the new method and

the non-block procedure via a numerical example in section 3.

2. The Block Gibbs Sampler

Let Y = (Y1, Y2, . . . , Yk) be the vector of latent counts of N independent and identically dis-

tributed observations each of which belongs to one of k mutually exclusive categories, labeled

from 1 to k, i.e. Yi is the count of the i-th category. Thus, Y follows the multinomial dis-

tribution with parameters (N, θ) where θ = (θ1, θ2, . . . , θk) is the vector of cell probabilities.

Consider the case that Y is unobservable because some observations are partially observable

in that their categories are unknown and that they are only known to belong to some subset

of categories. Specifically, let Aj be distinct non-singleton proper subsets of S = {1, 2, . . . , k},

j = 1, . . . ,m. The incomplete data consist of X = (X1, X2, . . . , Xk, XA1 , . . . , XAm) where Xi

is the count of fully classified subjects that belong to category i, and XAj
is the count of the

group of categories Aj, i.e. the count of partially classified subjects whose category belongs
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to Aj. We assume missing at random so that the probability density of X given θ is given

by

π(x|θ) =
n!

x1! · · ·xk!xA1 ! · · ·xAm !
θx1
1 · · · θxk

k

( ∑
i∈A1

θi

)xA1 · · ·
( ∑

i∈Am

θi

)xAm

,

where n =
∑k

i=1 xi +
∑m

i=1 xAi
and

∑k
i=1 θi = 1.

We now consider Bayesian analysis with the prior distribution for θ being the Dirichlet

distribution with parameter α = (α1, α2, . . . , αk), that is,

π(θ|α) ∝
k∏

i=1

θαi−1
i .

We first consider the special case that the A’s are disjoint. Define A0 = S −
⋃m

j=1 Aj. Then

it can be verified that the posterior density function is given by

π(θ|x) ∝ θα1+x1−1
1 · · · θαk+xk−1

k

( ∑
i∈A1

θi

)xA1 · · ·
( ∑

i∈Am

θi

)xAm

∝
∏
i∈A0

( θi∑
j∈A0

θj

)αi+xi−1 ∏
i∈A1

( θi∑
j∈A1

θj

)αi+xi−1

· · ·
∏

i∈Am

( θi∑
j∈Am

θj

)αi+xi−1

×
( ∑

i∈A0

θi

)P
j∈A0

(αj+xj−1)( ∑
i∈A1

θi

)xA1
+

P
j∈A1

(αj+xj−1)

· · ·
( ∑

i∈Am

θi

)xAm+
P

j∈Am
(αj+xj−1)

.

While the posterior distribution looks complex, it admits a simple representation. First, some

notations. Let Ap = {p1, . . . , pnp}, p = 0, . . . ,m. Ahn et al. (2007) showed that the posterior

distribution is tractable by re-parameterizing the model using the parameters defined by the

group probabilities U = (U0, U1, . . . , Um)T , where Uj =
∑

i∈Aj
θi, j = 0, 1, . . . ,m, and the

conditional probabilities of individual cells within each group VAj
= (θi/Uj, i ∈ Aj)

T , 0 ≤

j ≤ m. Clearly, the sum of the components in U and those of each VAj
are constrained to be

1. It is readily checked that θ and (U, VAj
, j = 0, . . . ,m) are equivalent parameterization as
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they bear a one-to-one relationship. Ahn et al. (2007) proved that the posterior distribution

of (U, VAj
, j = 0, 1, . . . ,m) enjoys the following properties:

(1) The group probabilities U and the random vectors of conditional probabilities of cells

within each group VAj
, j = 0, . . . ,m are jointly independent.

(2) The vector of group probabilities U = (
∑

i∈A0
θi,

∑
i∈A1

θi, . . . ,
∑

i∈Am
θi) has the

Dirichlet distribution with parameter vector (
∑

j∈A0
(αj + xj), xA1 +

∑
j∈A1

(αj +

xj), . . . , xAm +
∑

j∈Am
(αj + xj)).

(3) For the pth group, the conditional probability vector of the cells within the group

VAp = (
θp1P

j∈Ap
θj

, . . . ,
θpnpP
j∈Ap

θj
) follows the Dirichlet distribution with parameter vector

(αp1 + xp1 , . . . , αpnp
+ xpnp

) for p = 0, . . . ,m.

Based on the preceding characterizations of the posterior distribution, Ahn et al. (2007) ob-

tain the exact posterior mean and variance of θ. Moreover, independent random realizations

can be readily drawn from the posterior distribution.

Next, we study the general case that the A’s may overlap. The posterior distribution is no

longer tractable although inference may be drawn via Gibbs sampling. Define Zi|Ap be the

count of partially observed subjects included in the count of Ap whose category is i where

i = 1, . . . , k. Then, xAp =
∑k

i=1 Zi|Ap . A popular implementation of Gibbs sampling (Gelman

et al. 2003, p.533–539) runs as follows with the jth iterates obtained by the formulas: (the

notation ∼ read as “is distributed as”)

Y
(j)
i = xi +

m∑
p=1

Zi|Ap ,

θ(j+1) ∼ Dirichlet(α1 + y
(j)
1 , . . . , αk + y

(j)
k ),
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where (Z1|Ap , . . . , Zk|Ap) has a multinomial distribution with sample size xAp and cell proba-

bilities (θ1IAp(1), . . . , θkIAp(k))/
∑

i∈Ap
θi where IAp(j) = 1 if j ∈ Ap and 0 otherwise. Note

that this scheme updates the count of each category that falls in some A’s.

The tractability of the posterior distribution for the special case of disjoint A’s inspires

the following new approach. First, observe that the standard approach makes use of the

decomposition that each A is a union of all singleton subsets of A, which then leads to

a Gibbs sampling scheme that updates counts of individual categories belonging to some

A’s; the collection of such categories constitute the finest building blocks making up the

A’s. However, a set of coarser building blocks facilitates blocking in the Gibbs sampler, as

explained below. Specifically, let {P1, P2, . . . , Pd} be a collection of mutually disjoint subsets

of {1, 2, . . . , k} such that each A is the union of some P ’s and the union of A’s equal that

of the P ’s. The new Gibbs sampling scheme requires updating the counts of the P ’s in

each iteration. If the P ’s are large, d will be small, leading to more blocking in the Gibbs

sampling. The coarsest such building blocks of the A’s can be described as follows. Recall

that there are m A’s, labeled as A1 to Am. Enumerate all non-empty subsets of {1, . . . ,m}

as B`, ` = 1, . . . , 2m − 1. It can be shown that the collection of sets

P =
{

P : P =
⋂

j∈B`

Aj −
⋃

j∈Bc
`

Aj, for some ` = 1, 2, . . . , 2m − 1, P 6= ∅
}

provides the coarsest disjoint building blocks of the A’s.

Indeed,

Ai =
⋃

{B`: i∈B`}

( ⋂
j∈B`

Aj −
⋃

j∈Bc
`

Aj

)
,

where the index of the union ranges over all B` that contains i. For the case that m = 2

so that there are only A1 and A2, the preceding results follow from the decomposition of
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A1 ∪ A2 as the disjoint union of A1 ∩ A2, A1 − A2 and A2 − A1. The general case can then

be proved by mathematical induction, and hence omitted.

Now, instead of using Y as the complete data, we shall employ a different set of complete

data defined by W = {X1, . . . , Xq, ZP , P ∈ P} where ZP is the unobserved count of those

partially classified data whose category belongs to P . Thanks to the disjointness of the P ’s,

it follows from earlier discussion in this section that the conditional distribution of θ given W

and X is tractable; clearly this conditional distribution depends on W only. The update of

W given X and θ can be proceeded as follows. Corresponding to the count of a typical A, say

XA, it can be decomposed as the sum XA =
∑

P⊂A,P∈P ZP |A where ZP |A is the unobserved

count of those observations, enumerated in the count XA, whose category belongs to P . It is

readily seen that given X and θ, (ZP |A, P ∈ P) has a multinomial distribution with sample

size XA and cell probabilities
∑

i∈P∩A θi/
∑

i∈A θi, P ∈ P ; these multinomial distributions of

the A’s are jointly independent, given X and θ. Then compute ZP =
∑m

i=1 ZP |A, where the

sum need only be taken over P ⊆ A. Thus, Gibbs sampling can be readily carried out by

cycling the two steps of (i) updating θ given W and (ii) updating W given θ and X.

We now apply Theorem 5.1 of Liu et al. (1994) to show that the block Gibbs sampler

is more efficient than its non-block counterpart. Below, the notation [A|B] denotes the

conditional distribution of A given B for any two random vectors A and B. The block

Gibbs sampler aims to draw Markov-chain realizations from [θ, F |X] where F = (ZP |Aj
, P ∈

P , j = 1, . . . ,m). It does so by drawing from [θ|F, X] and [F |θ,X] iteratively. On the other

hand the non-block version attempts to draw Markov-chain realizations from [θ, G|X] where

G = (Zi|Aj
, i = 1, . . . , k, j = 1, . . . ,m), by drawing from [θ|G, X] and [G|θ,X] iteratively.

Because ZP |Aj
=

∑
i∈P Zi|Aj

for j = 1, . . . ,m, we can reparameterize G as (F, H) for some H
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Elapsed Time (sec.) User CPU Time (sec.)

Block Gibbs Sampler 30.53 30.19

Non-Block Gibbs Sampler 29.31 28.98

Table 1. Computing times of the block Gibbs sampler and the non-block

version, with a computer running a Mobile AMD Sempron(tm), Processor

3500+, 1.79 GHz, with 1.87 GB of RAM

⊂ {Zi|Aj
; i = 1, . . . , k, j = 1, . . . ,m}. Thus, the non-block version draws dependent sample

from [θ|(F, H), X] and [(F, H)|θ, X] iteratively. So it follows from Theorem 5.1 of Liu et al.

(1994) that the operator norm of the underlying Markov chain for the block Gibbs sampler

is less than or equal to that of the non-block version. Liu et al. (1994) showed that the

operator norm equals the maximal correlation of consecutive iterates. Hence, the new block

Gibbs sampler has a faster convergence rate and less autocorrelation.

3. Example

We study an artificial example motivated by epidemiology in which, based on blood tests,

a number of trapped rodents were classified into 9 categories: Category 1 through 8 indicate

that an examined rodent was infected by the bartonella bacterium of variants 1 through

8, respectively, and category 9 denotes the state of no detected bartonella. Suppose the

counts are given by x = (x1, . . . , x9, xA1 , xA2 , xA3) = (20, 17, 15, 11, 8, 5, 10, 4, 655, 34, 21, 18),

where (x1, . . . , x9) are cell counts of the completely classified observations, but xA1 , xA2 ,

and xA3 are counts of partially classified data, and where A1 = {2, 3}, A2 = {4, 5, 6},

and A3 = {5, 6, 7, 8}. It is readily seen that the A’s are disjoint unions of some of the

following sets: P1 = {2, 3}, P2 = {4}, P3 = {5, 6} and P4 = {7, 8}. Note that A1 =
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P1, A2 = P2 ∪ P3 and A3 = P3 ∪ P4. So the updating of the ZP ’s are straightforward:

Z{2,3} ≡ x{2,3}, Z4 = Z4|{4,5,6} = Bin(x{4,5,6}, θ4/(θ4 + θ5 + θ6)), Z{5,6}|{4,5,6} = x{4,5,6} − Z4,

Z{5,6}|{5,6,7,8} = Bin(x{5,6,7,8}, (θ5 + θ6)/
∑8

i=5 θi). Hence, Z{5,6} = x{4,5,6} − Z4 + Z{5,6}|{5,6,7,8}

and Z{7,8} = x{5,6,7,8}−Z{5,6}|{5,6,7,8}. Below, we write Z for the vector consisting of ZP , P ∈

P .

Thus, the complete-data posterior density function is given by

π(θ|x, Z) ∝ θ1
20θ2

17θ3
15θ4

11+Z4|{4,5,6}θ5
8θ6

5θ7
10θ8

4θ9
655

× (θ2 + θ3)
34(θ5 + θ6)

21−Z4|{4,5,6}+Z{5,6}|{5,6,7,8}(θ7 + θ8)
18−Z{5,6}|{5,6,7,8}

∝
( θ2

θ2 + θ3

)17( θ3

θ2 + θ3

)15( θ5

θ5 + θ6

)8( θ6

θ5 + θ6

)5( θ7

θ7 + θ8

)10( θ8

θ7 + θ8

)4

× θ1
20(θ2 + θ3)

66θ4
11+Z4|{4,5,6}(θ5 + θ6)

34−Z4|{4,5,6}+Z{5,6}|{5,6,7,8}(θ7 + θ8)
32−Z{5,6}|{5,6,7,8}θ9

655.

Since the P ’s are disjoint, the conditional distributions of the θ’s given x and Z can be

characterized as follows:

θ2

θ2 + θ3

∼ Beta(18, 16),

θ5

θ5 + θ6

∼ Beta(9, 6),

θ7

θ7 + θ8

∼ Beta(11, 5),

(θ1, θ2 + θ3, θ4, θ5 + θ6, θ7 + θ8, θ9) ∼ Dirichlet(21, 68, 12 + Z4|{4,5,6},

36− Z4|{4,5,6} + Z{5,6}|{5,6,7,8}, 34− Z{5,6}|{5,6,7,8}, 656).

Thus, the block Gibbs sampling algorithm iterates are given by:

Z4|{4,5,6}
(j) ∼ Bin(21, θ4

(j)/

6∑
i=4

θi
(j)),

Z{5,6}|{5,6,7,8}
(j) ∼ Bin(18, (θ5

(j) + θ6
(j))/

8∑
i=5

θi
(j)),
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θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9

Block Gibbs Sampling 1.000 1.000 1.000 0.528 0.708 0.806 0.709 0.851 1.000

Non-Block Gibbs Sampling 1.000 0.440 0.413 0.525 0.305 0.268 0.609 0.571 0.964

Table 2. Comparison of the efficiency for the block Gibbs sampler and the

non-block Gibbs sampler.

U1
(j+1) =

( θ2

θ2 + θ3

)(j+1)

∼ Beta(18, 16),

U2
(j+1) =

( θ5

θ5 + θ6

)(j+1)

∼ Beta(9, 6),

U3
(j+1) =

( θ7

θ7 + θ8

)(j+1)

∼ Beta(11, 5),

(V1
(j+1), . . . , V6

(j+1)) = (θ1
(j+1), (θ2 + θ3)

(j+1), θ4
(j+1), (θ5 + θ6)

(j+1), (θ7 + θ8)
(j+1), θ9

(j+1))

∼ Dirichlet(21, 68, 12 + Z4|{4,5,6}
(j), 36− Z4|{4,5,6}

(j) + Z{5,6}|{5,6,7,8}
(j),

34− Z{5,6}|{5,6,7,8}
(j), 656),

θ1
(j+1) = V1

(j+1), θ2
(j+1) = U1

(j+1)V2
(j+1), θ3

(j+1) = (1− U1)
(j+1)V2

(j+1),

θ4
(j+1) = V3

(j+1), θ5
(j+1) = U2

(j+1)V4
(j+1), θ6

(j+1) = (1− U2)
(j+1)V4

(j+1),

θ7
(j+1) = U3

(j+1)V5
(j+1), θ8

(j+1) = (1− U3)
(j+1)V5

(j+1), θ9
(j+1) = V6

(j+1).

In particular, it can be seen that the iterates of θ1, θ2, θ3 and θ9 are independent processes.

The block Gibbs sampling scheme essentially generates dependent realizations from the con-

ditional distribution of (Z{2,3}, Z{5,6}, Z{7,8}, θ) given X = x where Z{2,3} = xA1 is constant.

In contrary, for the approach that uses the counts of each category as the complete data,

the Gibbs sampler can be viewed as generating dependent data from the conditional distri-

bution of (Z2, Z3, Z5, Z6, Z7, Z8, θ) given X = x; below, this scheme will be referred to as
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the non-block Gibbs sampler. It is then clear that the new approach facilitates maximal

blocking.

We compare the block Gibbs sampler with the non-block version by drawing 110000 sam-

ples with the initial value of θ set to be (1/9, . . . , 1/9). The first 10000 transient samples were

deleted from subsequent analysis. The posterior mean (unreported) of θ for both methods

were found to be very close. Table 1 displays the CPU times needed for the simulation, which

shows that the two methods are roughly equally fast. Also the Auto-Correlation Function

(ACF) plots (Figure 1) show that the iterates from the block Gibbs sampler are much less

serially correlated than the non-block version. As expected from theory, for the block Gibbs

sampler, the iterates of θ2 and θ3 are serially uncorrelated although they are serially corre-

lated for the unblocked version. The ACFs of the iterates of θ1 for both methods are omitted

from Figure 1 as they should and indeed found to be consistent with the pattern induced

by white noise. Table 2 compares the efficiency of both algorithms, with the efficiency of

a sampling scheme w.r.t. a scaler parameter defined as 1/(1 + 2
∑∞

i=1 ρi), where ρi are the

lag-i auto-correlations of the samples of the parameter of interest. In table 2, the efficiency

is estimated by replacing ρi by their sample analogues; non-significant correlations are re-

placed by zero in the formula. Note that the efficiency is close to 1 for an almost independent

sampling scheme, but it is much less than 1 for a strongly, positively dependent sampling

scheme. Table 2 shows that the block Gibbs sampler is clearly much more efficient than the

non-block version. The authors gratefully acknowledge the National Science Foundation,

U.S.A. for partial support.
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