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Summary

Zero-inflated data abound in ecological studies as well as in other scientific and quanti-
tative fields. Nonparametric regression with zero-inflated response may be studied via the
Zero-Inflated Generalized Additive Model (ZIGAM). ZIGAM assumes that the response
variable follows a probabilistic mixture distribution of a zero atom and a regular compo-
nent whose distribution belongs to some 1-parameter exponential family, where the zero
atom explicitly accounts for zero-inflation. We propose the COnstrained Zero-Inflated
Generalized Additive Model (COZIGAM) for analyzing zero-inflated data, with the fur-
ther assumption that the probability of non-zero-inflation is some monotone function of the
mean of the regular component. When the latter assumption obtains, the new approach
provides a unified framework for modeling zero-inflated data, which is more parsimonious
and efficient than the unconstrained ZIGAM. We develop an iterative algorithm for model
estimation based on the penalized likelihood approach, and derive formulas for construct-
ing confidence intervals of the maximum penalized likelihood estimator. Some asymptotic
properties including the consistency of the regression function estimator and the limiting
distribution of the parametric estimator are derived. We also propose a Bayesian model
selection criterion for choosing between the unconstrained and constrained ZIGAMs. The
new methods are illustrated with both simulated data and a real application.
Key Words: Asymptotic normality; Convergence rate; EM algorithm; Model selection;
Penalized quasi-likelihood.
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1 Introduction

Generalized additive models (GAMs) (Hastie and Tibshirani, 1990; Wood, 2006) are widely
used in applied statistics, see, for instance, Ciannelli et al. (2007) and the references therein
in ecological analysis. Penalized likelihood method provides a powerful tool for estimating
GAMs, see Green and Silverman (1994), Wood (2000) and Gu (2002). In the GAM
framework, the unknown smooth function components can be estimated by maximizing
the penalized likelihood which generally equals

L(η) − λ̃2J2(η) (1)

where η is the unknown regression function on the link scale, L(η) is the log-likelihood
function, J2(η) is some roughness penalty, and λ̃ is the smoothing parameter that controls
the trade-off between the goodness-of-fit and the smoothness of the function. A commonly
used roughness measure is J2(η) =

∫
‖Dkη‖2 whereDk is the k-th derivative operator with

k ≥ 1 as a fixed integer, and ‖ · ‖2 denotes the square norm. This roughness measure will
be adopted in the following discussions. Based on reproducing kernel Hilbert space theory
and under mild regularity conditions, it can be shown that the maximizer of (1) is a linear
combination of finitely many basis functions (the number of which generally increases with
sample size), see Wahba (1990) and Gu (2002). In particular, for k = 2, the maximizer
is a smoothing spline, being natural cubic spline in the 1-dimensional case and thin-plate
spline (Wood, 2003) in higher dimensional cases. These results extend to the case of GAM
when the mean function is the sum of more than one component functions on the link
scale, and form the basis of some approaches for empirical GAM analysis.

A common problem encountered in scientific data is the presence of high number of
zeroes, a problem known as zero-inflation. For example, fisheries trawl survey data often
contain a large number of zero catches, due to the fact that fish swim in schools influ-
enced by food availability and irregular current pattern. Zero-inflation also occurs in other
fields, for example, in marketing where data on consumer choice may contain many non-
purchase observations. Indeed, zero-inflated data abound in scientific and quantitative
studies. These data are often analyzed via a two-component mixture model specifying
that the distribution of the response variable belongs to a zero-inflated 1-parameter ex-
ponential family, that is, a probabilistic mixture of zero and a regular component whose
distribution (to be referred below as the regular distribution) belongs to the 1-parameter
exponential family; see Mullahy (1986), Lambert (1992), Heilbron (1994) and Lam et al.
(2006). GAM has been generalized to include the zero-inflated exponential family (Barry
and Welsh, 2002; Chiogna and Gaetan, 2007), which requires (i) linking a smooth function
of the covariates, say sp(T ) where T is the vector covariate, to the probability that the
response is not zero-inflated (not from the zero atom), and (ii) linking another smooth
function, say sµ(T ), to the mean of the (non-zero-inflated) 1-parameter exponential family
distribution; the generalization will be referred to as the zero-inflated generalized additive
model (ZIGAM).

The functional forms of the two smooth predictors sp(T ) and sµ(T ) are generally
unconstrained, because the zero-inflation process may be uncoupled from the process gen-
erating the (non-zero-inflated) data. However, for many ecological data, the zero-inflation
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process is coupled with the underlying population process. For example, in trawl survey
studies, zero-inflation often arises from the spatio-temporal aggregation of fish due to their
schooling behavior. For such data, the probability of positive catch is positively correlated
to the volume occupied by the schools of fish which increases with the mean (local) abun-
dance of the fish. On the other hand, some grasshopper species may suddenly change from
solitary behavior to swarm behavior as their abundance greatly increases upon suitable
environmental conditions. In the latter case, the probability of positive catch is a decreas-
ing function of the mean (local) abundance of the locusts, over the transition stage from
solitude to swarming. In sum, for survey data involving spatio-temporally aggregated sub-
jects, the probability of positive catch is likely a function of the mean (local) abundance of
the study population. Incorporating such a constraint in a ZIGAM reflects the mechanis-
tic nature of the zero-inflation process, and promotes estimation efficiency by effectively
reducing the degrees of freedom of the parameter space. Here, we implement this approach
with the simplifying assumption that, on the link scales, the non-zero-inflation probability
is a linear function of the conditional mean of the 1-parameter exponential family, that
is, we assume that sp(T ) = α + δsµ(T ) for some constants α and δ. This new model is
referred to as the constrained zero-inflated generalized additive model (COZIGAM) below.
A harbinger of our new approach is the ZIP(τ) model, proposed by Lambert (1992), which
is a parametric zero-inflated Poisson regression model with the zero-inflation probability
constrained to be proportional to the Poisson mean.

In practice, the validity of the constraint imposed by the COZIGAM needs to be
assessed, which can be checked via model selection between an unconstrained ZIGAM and
a COZIGAM. We derive a Bayesian model selection criterion, via Laplace approximation,
for choosing between a ZIGAM and a COZIGAM. It is interesting to note that the proposed
model selection criterion depends on the roughness penalty but otherwise does not depend
on the explicit form of the prior.

Another approach to modeling zero-inflated data proceeds in two stages: (i) model the
presence/absence pattern by a GAM and (ii) model the response given it is non-zero by
another GAM (Barry and Welsh, 2002). For the case of a continuous regular distribution,
the two approaches are equivalent, otherwise the two approaches are generally different. In
stage (ii), the two-stage approach generally specifies the conditional response distribution
given it is non-zero to belong to a zero-truncated 1-parameter exponential family, which
requires more complex link functions for non-continuous regular distributions. We will
not further pursue the two-stage approach.

The structure of this paper is as follows. We introduce the model formulation of the
unconstrained ZIGAM and the COZIGAM, and propose an estimation algorithm based
on the penalized likelihood approach in Section 2. Some large sample properties including
the convergence rate of the maximum penalized likelihood estimator and the limiting
distribution of the parametric part of the estimator are derived in Section 3, followed by
some discussion on the computation of the observed Fisher information in order to assess
the variability of the estimator. A Bayesian model selection criterion for choosing between
the unconstrained and constrained ZIGAMs is derived in Section 4. Some Monte Carlo
studies on the model estimation as well as the performance of the proposed model selection
criterion will be discussed in Section 5. In Section 6, we illustrate the COZIGAM by a
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real example. We briefly conclude in Section 7.

2 Model Formulation and Penalized Likelihood Estimation

2.1 Zero-Inflated Generalized Additive Model

Let the data be Y = (Y1, Y2, . . . , Yn)T and the covariates be T = (T1, T2, . . . , Tn) where Yi

are scalars and Ti are possibly high-dimensional vectors. Assume that given the covariate
Ti, the Yi’s are independently distributed. Moreover, the marginal conditional distribution
of Yi depends on the covariates only through ti, which is a mixture distribution given by

Yi|Ti = ti ∼ hi(yi) =

{
0 with probability 1 − pi

f(yi|ϑi) with probability pi,
(2)

where the zero atom models the zero-inflation explicitly, and f(yi|ϑi) is the probability
density (mass) function that belongs to some 1-parameter exponential family distribution
with ϑi as the canonical parameter (Nelder and Wedderburn, 1972). The exponential
family density can be expressed as

f(yi|ϑi) = exp

{
ωi(yiϑi − b(ϑi))

φ
+ ci(yi, φ)

}
,

where ωi are some known constants, often equal to 1, and φ is the dispersion parameter.
Then the expectation of Yi under f is µi = Ef (Yi) = ḃ(ϑi) (for any function h, ḣ denotes
its first derivative and ḧ its second derivative) and variance V arf (Yi) = φV (µi) = φb̈(ϑi).
Below we will refer to f as the regular (exponential family) distribution, and µi as the
regular mean.

The regular mean is assumed to be linked to some smooth function of the covariate:

gµ(µi) = η(ti),

where gµ(·) is the link function, and η(·) is some smooth function to be estimated by
the penalized likelihood approach. (The extension to the case of replacing η by a sum
of smooth functions with lower-dimensional arguments is straightforward.) The non-zero-
inflation probability pi is linked to the covariate as follows:

gp(pi) = ξ(ti), (3)

where gp(·) is another link function, for instance, the logit function and ξ(·) is an unknown
smooth function. If η and ξ are functionally orthogonal (infinite-dimensional) parameters,
the model is an unconstrained zero-inflated GAM (ZIGAM) in which case zero-inflation
could be caused by a mechanism different from that underlying the non-zero-inflated re-
sponses. On the other hand, if the zero-inflation process is coupled with the process gen-
erating the non-zero-inflated data, for example, data from surveys of spatio-temporally
aggregated subjects, we may expect some relationship between η and ξ. In particular, we
consider the case that ξ is constrained to be a linear function of η:

ξ = α+ δ · η, (4)
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where α and δ are some unknown parameters. Note that η must be a non-constant function
over the support of the covariate, otherwise the model is non-identifiable because α and δ
will then be non-unique. The constrained model assuming (4) adds only two more degrees
of freedom to a GAM. Hence, when the constraint (4) obtains, the constrained ZIGAM
provides a more parsimonious model that promotes estimation efficiency, as compared to
the unconstrained ZIGAM whose estimation generally requires much larger sample size
than the constrained ZIGAM; in particular, the estimation error of ξ of an unconstrained
ZIGAM could be substantial for small to moderate samples. On the other hand, if the
constraint does not hold, fitting a constrained ZIGAM introduces bias. Thus, it is im-
portant to assess the validity of (4), a task we shall return in Section 4. We will refer to
the zero-inflated model with constraint (4) as the COnstrained Zero-Inflated Generalized
Additive Model (COZIGAM). In Section 6, we will illustrate the use of COZIGAM by a
real application. Note that if α = ∞ and δ < ∞, then the model is a GAM whereas, in
the general case, the model is a zero-inflated GAM; if |α| < ∞ and δ ≡ 0, then the zero-
inflation probability is the same across all sampling points, in which case the COZIGAM
degenerates into a homogeneous ZIGAM.

To write the penalized log-likelihood function of the COZIGAM, first define the binary
variables Ei, i = 1, . . . , n, with

Ei =

{
1 if Yi 6= 0
0 if Yi = 0.

If the underlying regular exponential family distribution is continuous, for instance, Gaus-
sian, the penalized log-likelihood then equals

lp(α, δ, η) =
n∑

i=1

[
ei log{pif(yi|ϑi)} + (1 − ei) log (1 − pi)

]
− λ̃2

nJ
2(η), (5)

where η is an infinite-dimensional parameter, λ̃n is the smoothing parameter and J2(η) is
the roughness penalty of η.

If the regular distribution assigns positive probability to zero, which is the case for
many discrete distributions including Poisson and binomial, the penalized log-likelihood
function becomes somewhat complex

lp(α, δ, η) =

n∑

i=1

[
ei log pif(yi|ϑi) + (1 − ei) log (1 − pi + pif(0|ϑi))

]
− λ̃2

nJ
2(η). (6)

The complexity owes to the fact that a zero observation may result from the zero atom
or the regular distribution. In some literature, the zeroes from the zero atom are called
structural zeroes and those from the regular distribution are called sampling zeroes. If,
however, the nature of the zero observations is known, the likelihood becomes simpler.
This suggests the use of the EM algorithm (Dempster et al., 1977) for maximizing the
penalized likelihood in (6), whose M-step admits an iterative algorithm with closed-form
solutions. Augment the data by an indicator variable Z = (Z1, . . . , Zn)T defined as follows

Zi =

{
1 if Yi ∼ f(yi|ϑi)
0 if Yi ∼ 0.

(7)

5



The sequence {Zi}i=1,··· ,n is independently distributed, with the marginal distribution of
Zi being Bernoulli(pi). The joint density of the complete data equals

f(y,z|α, δ, η) =

n∏

i=1

{pif(yi|ϑi)}zi {(1 − pi)I(yi = 0)}1−zi , (8)

and after dropping some constant term which does not depend on the unknown parameters,
the complete-data penalized log-likelihood equals

lcp(α, δ, η) =

n∑

i=1

[
zi log{pif(yi|ϑi)} + (1 − zi) log (1 − pi)

]
− λ̃2

nJ
2(η).

Estimation can be done by maximizing the above complete-data penalized log-likelihood,
via an iterative algorithm detailed in Section 2.2. Below, a COZIGAM will be referred
to as a continuous (discrete) COZIGAM if its penalized likelihood function is given by
Equation (5) (Equation (6)).

2.2 Model Estimation

According to the reproducing kernel Hilbert space theory, under some mild conditions, the
maximum penalized likelihood estimator of the smooth function η is a linear combination
of some basis functions. More specifically, the functional value of η evaluated at ti can be
written as

η(ti) = Xiβ,

where Xi is the i-th row of the design matrix X of the basis functions, and β is the pa-
rameter vector to be estimated. So without loss of generality, for a given set of covariates,
we can reparametrize the infinite-dimensional parameter η as a finite-dimensional vector
parameter β for the model estimation purpose. (The dimensionality may be further re-
duced by knot-based or principle component approximation.) Moreover, the penalty term
λ̃2

nJ
2(η) can often be expressed as a quadratic form λ̃2

nβT Sβ/2 where S is a penalty ma-
trix, see Gu (2002) and Wood (2006). (In the case that η equals a sum of smooth functions,
S is block diagonal, with each block submatrix corresponding to a smooth component and
the smoothing-parameter multiplier being component-specific. For ease of exposition, we
shall confine to the case that η is a single smooth function.) Hence the penalized likelihood
functions of the continuous and discrete COZIGAMs become

lp(α, δ,β) =

n∑

i=1

[
ei log{pif(yi|ϑi)} + (1 − ei) log (1 − pi)

]
− 1

2
λ̃2

nβT Sβ, (5’)

and

lp(α, δ,β) =
n∑

i=1

[
ei log pif(yi|ϑi) + (1 − ei) log (1 − pi + pif(0|ϑi))

]
− 1

2
λ̃2

nβT Sβ. (6’)

We propose an iterative algorithm to find the maximizers of (5’) and (6’) with respect to
the parameter θ = (α, δ,βT )T .
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The proposed algorithm for estimating the COZIGAM is motivated by the Penalized
Iteratively Reweighted Least Squares (PIRLS) method (Wood, 2006, pg. 169-170) and
the Penalized Quasi-Likelihood (PQL) method. The PQL method was exploited by Green
(1987) for semiparametric regression. See, also, Breslow and Clayton (1993) for its use in
estimating generalized linear mixed models.

For a discrete COZIGAM, direct optimization of the penalized likelihood (6’) is chal-
lenging because it complicates the use of generalized cross validation (GCV) or unbiased
risk estimation (UBRE) for choosing the smoothing parameters. Instead, we develop an
estimation scheme based on the EM algorithm. The EM algorithm relies on the fact that
were the latent binary indicator variable Z defined by (7) available, the complete-data
likelihood lcp is simpler, the optimization of which admits an iterative algorithm each step
of which has a closed-form solution with known smoothing parameter, and, moreover,
GCV or UBRE can be applied iteratively to determine the smoothing parameters; see
Wood (2006, Chapter 4) for further discussions about GCV and UBRE. In particular, the
optimization of the penalized likelihood can be implemented via the EM algorithm with
Z as missing data. The penalized likelihood (5’) of a continuous COZIGAM, however,
can be maximized directly without the E-step, because Z is observable and coincides with
the indicator E. Throughout this section, the analysis will be done conditional on the
observed values of the covariate t. For simplicity, the dependency on t is generally sup-
pressed from the notations. For ease of exposition, the smoothing parameter is initially
assumed known in the derivation below.

We first derive the conditional distribution of Z given the data. Write f(yi|ϑi) =
f(yi). From the joint density of (Y ,Z) given in (8), the conditional distribution of the
components of Z given Y are independent with marginal conditional pdf

f(zi|yi;θ) =
f(yi, zi|θ)

f(yi|θ)
=

{pif(yi)}zi {(1 − pi)I(yi = 0)}1−zi

pif(yi) + (1 − pi)I(yi = 0)
.

Therefore

Zi|yi;θ ∼ Bernoulli

(
pif(yi)

pif(yi) + (1 − pi)I(yi = 0)

)
.

Denote ψi = E(Zi|yi;θ) = pif(yi)
/
{pif(yi) + (1 − pi)I(yi = 0)}. Armed with these re-

sults, we can now state the EM algorithm for maximizing the penalized likelihood. Given
the r-th parameter iterate θ[r], in the E-step, compute

ψ
[r]
i = E(Zi|yi,θ

[r]) =
p
[r]
i f(yi|ϑ[r]

i )

p
[r]
i f(yi|ϑ[r]

i ) + (1 − p
[r]
i )I(yi = 0)

.

Then, up to an additive constant, the expected complete-data penalized log-likelihood
equals

E{lcp(θ)|y,θ[r]} =

n∑

i=1

[
ψ

[r]
i log{pif(yi|ϑi)} + (1 − ψ

[r]
i ) log (1 − pi)

]
− 1

2
λ̃2

nβT Sβ.

Denote the above objective function as l̃cp. In the M-step we want to find the maximizer

of l̃cp with respect to the parameter θ. Taking the first derivatives of the objective function,

7



we get

∂l̃cp
∂βj

=
1

φ

n∑

i=1

ψ
[r]
i (yi − µi)

V (µi)

∂µi

∂βj
+

n∑

i=1

ψ
[r]
i − pi

pi(1 − pi)

∂pi

∂βj
− λ̃2

n[Sβ]j , j = 1, . . . ,K, (9a)

∂l̃cp
∂α

=
n∑

i=1

ψ
[r]
i − pi

pi(1 − pi)

1

ġp(pi)
, (9b)

∂l̃cp
∂δ

=
n∑

i=1

ψ
[r]
i − pi

pi(1 − pi)

gµ(µi)

ġp(pi)
, (9c)

where β is assumed to be K-dimensional. Equation (9) can be solved iteratively by
modifying the PIRLS algorithm. The major obstacle for applying the PIRLS algorithm
is that (9a) involves two GAMs, one defined in terms of µ and another through p. The
solution to this problem may be better understood by considering a more general equation:

1

φ1

n∑

i=1

w1i(y1i − µ1i)

V1(µ1i)

∂µ1i

∂βj
+

1

φ2

n∑

i=1

w2i(y2i − µ2i)

V2(µ2i)

∂µ2i

∂βj
− λ̃2

n[Sβ]j = 0, for all j,

where the two sums correspond to contributions from two GAMs with mean µki linked to
Xkβ by the link function gk, and variance function Vk, k = 1, 2. However, these equations
are exactly the optimality conditions for finding β that minimizes the following non-linear
weighted least squares:

Sp = S1 + S2 + λ̃2
nβT Sβ,

where, for k = 1, 2,

Sk =
n∑

i=1

wki(yki − µki)
2

φkVk(µki)
,

assuming the weights V1(µ1) and V2(µ2) were known and independent of β.
The nonlinear least square problem can be solved iteratively. Let β[r] be the r-th iterate of

β. Denote µ
[r]
k as the value of µk evaluated at β[r]. Defining diagonal matrices V k[r] with

the diagonal elements Vk[r]ii = Vk(µ
[r]
ki ), and the diagonal matrices W ∗

k withW ∗
kii = wki/φk,

k = 1, 2, we have

Sk =
∥∥∥
√

V −1
k[r]W

∗
k (yk − µk(β))

∥∥∥
2

, k = 1, 2

Next approximate µk by its first order Taylor expansion around the r-th estimate β[r].
Hence,

Sk ≈
∥∥∥
√

V −1
k[r]W

∗
kG

−1
k[r]

(
Gk[r](yk − µ

[r]
k ) + η

[r]
k − Xkβ

)∥∥∥
2
, k = 1, 2,

where Gk[r] is a diagonal matrix with elements Gk[r]ii = ġk(µ
[r]
ki ). Furthermore, by defining

the ‘pseudodata’

z
[r]
ki = ġk(µ

[r]
ki )(yki − µ

[r]
ki ) + η

[r]
ki

8



and the diagonal weight matrices W
[r]
k with elements

W
[r]
kii =

wki

φkVk(µ
[r]
ki )ġ

2
k(µ

[r]
ki )

we have

Sk ≈
∥∥∥∥
√

W
[r]
k

(
z

[r]
k − Xkβ

)∥∥∥∥
2

, k = 1, 2.

Hence, at the r-th iteration,

Sp ≈
∥∥∥∥
√

W
[r]
1

(
z

[r]
1 − X1β

)∥∥∥∥
2

+

∥∥∥∥
√

W
[r]
2

(
z

[r]
2 − X2β

)∥∥∥∥
2

+ λ̃2
nβT Sβ,

which can be readily combined into a single penalized sum of squares by appropriately
defining z[r],X and W [r]:

Sp ≈
∥∥∥
√

W [r]
(
z[r] − Xβ

)∥∥∥
2
+ λ̃2

nβT Sβ,

the minimization of which yields the next iterate of β. In the case of unknown smoothing
parameter, it can be estimated, e.g., by minimizing the GCV or UBRE of the model corre-
sponding to the preceding approximate weighted least squares; see Wood (2006, Chapter
4).

We apply this modified PIRLS algorithm for solving Equation (9a). After updating
β using the modified PIRLS algorithm, the parameters (α, δ) can be updated by fitting
the generalized linear model with ψi as the response, using the quasi-binomial family that
links pi to α+δηi via the link function gp where, given the current estimate of β, ηi = Xiβ

is known. The iteration can be repeated until all parameters converge according to some
stopping criterion.

3 Asymptotic Properties and the Observed Information

3.1 Asymptotic Properties

In this section, we derive some asymptotic properties of the proposed penalized likeli-
hood estimator of the COZIGAM. Our approach builds on earlier work on the asymp-
totics of semiparametric inference, see Mammen and van de Geer (1997) and van der
Vaart (1998). For the theoretical analysis, recall the original parameter space Θ ={
θ = (α, δ, η)T : α, δ ∈ R, J(η) <∞

}
, and assume that the roughness penalty takes the

form J2(η) =
∫
‖Dkη‖2. Below, we derive the consistency and convergence rate of the

estimator θ̂n, as well as the asymptotic normality of (α̂n, δ̂n)T under suitable regularity
conditions. For ease of exposition, we state the main results under the assumptions that
(R1) the covariate T takes value in the unit interval [0, 1] over which the probability den-
sity function is bounded away from 0, (R2) the function η is non-constant over [0, 1], (R3)
the data {(Yi, Ti), i = 1, 2, . . . , n} are independent and identically distributed, (R4) the
function Q1(y;µ) (defined by Equation (15)) is a concave function of µ for every y, and
(R5) any zero observation must come from the zero atom. Condition (R5) entails that
we deal with the case of continuous COZIGAM. For discrete COZIGAM, the regularity
conditions are more cumbersome, which will be discussed at the end of this section.
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3.1.1 Notations and Further Assumptions

Reparametrize the smoothing parameter by λ2
n = λ̃2

n/n, and denote F1 = g−1
µ , F2 = g−1

p .
Then,

µ(t) = E(Y |T = t, Z = 1) = F1(η(t)),

p(t) = E(Z|T = t) = F2(ξ(t)).

The true parameter is denoted as θ0 = (α0, δ0, η0) (so that the functions ξ0 = α0 + δ0 · η0,
µ0 = F1◦η0 and p0 = F2◦ξ0, where ◦ denotes function composition.) Write W = Y −µ0(T )
and R = Z − p0(T ), which are of zero mean.

Suppose that f1(x) = dF1(x)/dx and f2(x) = dF2(x)/dx exist for all x ∈ R, and
denote l1(x) = f1(x)/V (F1(x)), l2(x) = f2(x)/F2(x)(1 − F2(x)), where recall V is the
variance function of the regular distribution. Write l10 = l1 ◦η0, f10 = f1 ◦η0, l20 = l2 ◦ ξ0,
and f20 = f2 ◦ ξ0. For any measurable function a : R× [0, 1] → R, E(a(Y, T )) denotes the
expectation of a(Y, T ) under the true distribution and the following norms will be useful:
‖a‖2 = Ea2(Y, T ), ‖a‖2

n = 1
n

∑n
i=1 a

2(Yi, Ti) and |a|∞ = supt∈[0,1] |a(t)|.
The asymptotic properties of the estimators depend on the smoothing parameter λn

as n → ∞. Recall the roughness functional J(η) equals the integral of the squared k-th
derivative of η. We assume that (R6) λn = oP(n−1/4) and 1/λn = OP(nk/(2k+1)), and (R7)
given T , W and R are uniformly sub-Gaussian (that is, for some constant 0 < C0 <∞,

E0

(
exp(W 2/C0)|T

)
≤ C0 almost surely,

and a similar inequality holds for R), as well as some technical conditions (R8)-(R14)
listed in Appendix A. Note that assumptions (R6) and (R7) are standard conditions used
in the literature, see Mammen and van de Geer (1997).

3.1.2 Main Results

Theorem 1. Under conditions (R1) to (R13), it holds that

J2(η̂n) = OP(1),

‖η̂n − η0‖n = OP(λn), (10)

|α̂n − α0| = OP (λn) , (11)

|δ̂n − δ0| = OP (λn) .

The above convergence rate can be proved by adapting the arguments in Mammen and
van de Geer (1997), and hence we omit the proof for saving space.

Before stating the asymptotic normality result for (α̂n, δ̂n)T , we define the following
two functions:

h1(t) = − δ0f20(t)l20(t)

p0(t)f10(t)l10(t) + δ20f20(t)l20(t)
,

h2(t) = − δ0η0(t)f20(t)l20(t)

p0(t)f10(t)l10(t) + δ20f20(t)l20(t)
.
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Theorem 2. Suppose that all conditions of Theorem 1 hold, and that assumption (R14)
listed in Appendix A is valid. Moreover, assume that

J(hi) <∞, i = 1, 2, (12)

p0(t)f10(t)l10(t) + δ20f20(t)l20(t) 6= 0, ∀ t ∈ [0, 1].

Then
(√

n(α̂n − α0),
√
n(δ̂n − δ0)

)T
is asymptotically bivariate normal with zero mean

and covariance matrix equal to A−1V A−1 with the elements of A given by

a11 =
∥∥∥(m0p0f10f20)

1/2
∥∥∥

2
,

a12 = a21 =
∥∥∥(m0p0η0f10f20)

1/2
∥∥∥

2
,

a22 =
∥∥∥(m0p0f10f20)

1/2 η0

∥∥∥
2
,

and V equals the covariance matrix of m0(T ){Rp0(T )f10(T )−δ0WZf20(T )}(1, η0)
T , where

m0(t) =
l10(t)l20(t)

p0(t)f10(t)l10(t) + δ20f20(t)l20(t)
.

An outline of the proof is given in Appendix B; detailed proofs of Theorems 1 and 2 are
given in Appendix E.

Finally, we remark that condition (R5) holds only for continuous COZIGAMs, but it
can be relaxed by the following device. In a discrete COZIGAM, the conditional response
distribution can be alternatively represented as a mixture of zero and a positive regular
distribution. This can be done by merging the original zero atom with the zero realized
under the original regular distribution, and redefine the regular distribution as the con-
ditional regular distribution given that it is non-zero. This reparametrization, however,
leads to much more complex regularity conditions. Theorems 1 and 2 can be generalized
for discrete COZIGAMs under further assumptions including the boundedness of the pa-
rameter space, in which case the concavity condition (R4) can be dispensed with. Note
that among discrete COZIGAMs, the zero-inflated Bernoulli model does not satisfy one
of the regularity conditions, and it is not identifiable because the zero-truncated Bernoulli
degenerates into a singleton. See Appendix E for the details and proofs.

3.2 Computing the Observed Information

Although we have shown the consistency of the maximum penalized likelihood estimator
of the smooth function η, it is not useful for assessing the accuracy of the estimator.
Even in the simplest case of a single spline regression function plus noise model, there
is currently no theoretical results on the asymptotic distribution of the estimator of the
smooth function. Because the maximum penalized likelihood estimator can be regarded as
the Bayesian posterior mode, with the roughness penalty inducing an improper Gaussian
prior (Gu, 2002), Wahba (1983) proposed to use the Bayesian confidence intervals for
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the smoothing splines, whose frequency properties was investigated by Nychka (1988),
among other authors. We follow this approach of making use of the observed information
matrix of the penalized likelihood to compute pointwise confidence intervals of the smooth
functions, as well as computing the standard errors of α̂ and δ̂; this approach is preferred to
computing their standard errors based on their complex forms of the asymptotic formula
given in Theorem 2. (Note that the calculation is conditional on the finite basis functions
chosen for the data on hand.) It can be shown that the two methods of computing
the standard errors of α̂ and δ̂ are asymptotically equivalent for some simple cases; see
Appendix E. The empirical performance of the confidence intervals so constructed will be
studied in Section 5 by the Monte Carlo method.

Since the likelihood of a COZIGAM has an explicit form given by (5’) or (6’), the
computation of the information matrix can be readily done by computing the Hessian
matrix, even though it is tedious. The covariance matrix of the estimator can be approxi-
mately computed by inverting the observed information matrix. Normal approximation of
the sampling distribution of the estimators then yields a simple approach for constructing
pointwise confidence intervals. The formulas for computing the observed information are
listed in Appendix C.

4 Model Selection

In statistical analysis, one important issue is model selection or model comparison among
multiple competing models. In this section, we introduce a Bayesian model selection
criterion for selecting between the unconstrained ZIGAM and the COZIGAM. One of
the widely used model selection criteria is the BIC, which selects the model with max-
imum posterior model probability. In the Bayesian framework and assuming constant
prior model probabilities, the posterior probability of a model, say Mi, is proportional
to the the marginal likelihood P (D|Mi) =

∫
P (D|θ,Mi)P (θ|Mi)dθ, where D denotes

the data, θ is the parameter under the model Mi. Therefore we will use the maximum
marginal likelihood as the model selection criterion, as in the case of the BIC. The model
with larger marginal likelihood will be preferred. For the unconstrained ZIGAM and the
COZIGAM, there is generally no closed-form solution for the integral in the marginal
likelihood. Laplace method (see, for example, Tierney and Kadane, 1986) will be used to
approximately compute the marginal likelihood. Below, all marginal likelihood calcula-
tions are conditional on the finite basis functions chosen for the data on hand.

The penalized likelihood of the constrained model defined by (5’) or (6’) implicitly

assumes a Gaussian prior with pdf ∝ exp
{
−1

2 λ̃
2
nβT Sβ

}
, which is generally improper.

In Appendix D, we first consider the use of proper priors obtained by multiplying the
preceding Gaussian prior by g̃(θ) and show that, under some mild regularity conditions
on g̃, the logarithmic marginal likelihood is equal to

logE ≈ lp(α̂, δ̂, β̂) − K + 2

2
log n− 1

2
log
∣∣H
∣∣+ K + 2 −m

2
log 2π +

1

2
log
∣∣λ̃2

nS+

∣∣,

up to an error term of OP(1), where θ̂ = (α̂, δ̂, β̂
T
)T is the maximum penalized likelihood

estimator, K = dim(β), H is the negative Hessian matrix of lp/n evaluated at θ̂, and S+ is
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the submatrix in the penalty matrix S associated with the basis functions having positive
roughness penalties, so that S+ is of full rank. Moreover, by passing to the limit, it is
shown in Appendix D that the approximate formula holds also for the case of the improper
Gaussian prior discussed above. Similarly, we can derive the Laplace approximation of
the logarithmic marginal likelihood of an unconstrained ZIGAM, see Appendix D.

5 Simulation Results

In this section we first examine the empirical coverage probabilities of the confidence inter-
vals constructed via the observed information. Then we report some simulation results on
the success rates of the proposed Bayesian model selection criterion for choosing between
the unconstrained ZIGAM and the COZIGAM. All simulation results reported below are
based on 1000 replications.

Assuming asymptotic normality for the estimators, pointwise confidence intervals can
be readily constructed for each parameter and the smooth functions. The confidence
intervals are constructed based on the assumption that the smoothing parameters are
fixed, while in fact they are estimated from the data by some criterion, for example, GCV
or UBRE which was adopted in our simulation study. The simulation results reported
below suggest that the omission of the variability in the smooth parameter seems to have
asymptotically negligible effects on the coverage rate of the confidence intervals.

The simulations are based on two test functions, denoted by s1 and s2, which are taken
from Wood (2006, pg. 197). The test function s1 has a 1-dimensional argument, while s2
has a 2-dimensional argument (see Figure 1).

s1(t) = 0.2t11(10(1 − t))6 + 10(10t)3(1 − t)10, 0 ≤ t ≤ 1

s2(t1, t2) = 0.3 × 0.4π
{

1.2e−(t1−0.2)2/0.32−(t2−0.3)2 + 0.8e−(t1−0.7)2/0.32−(t2−0.8)2/0.42
}
, 0 ≤ t1, t2 ≤ 1.

Both Gaussian and Poisson regular distributions are considered. Responses from the
regular distributions are generated so that, on the link scale, the regular means equal the
test functions after some rescaling. Zero-inflation occurs at a rate that is proportional to
the regular mean on the link scale. The smoothing parameter is chosen by the GCV for
Gaussian regular distribution and UBRE for Poisson regular distribution, as explained in
Section 2.2. The fitting results for two sets of simulated zero-inflated Poisson count data
are shown in Figure 1. Notice that the plots are on the link scale.

We examined the performance of confidence intervals by checking the Average Coverage
Probability (ACP), as was discussed by Wahba (1983) and Gu (2002). The ACP is defined
as the coverage rate over the sampling points as follows.

ACP(q) =
1

n
♯
{
i :
∣∣ŝ(ti) − s(ti)

∣∣ < zq/2σ̂s(ti)

}

where ŝ(ti) is the predictor at point ti obtained by assuming that the estimated smoothing
parameter as known and fixed; denote σ̂s(ti) as the standard error of the predictor and zq/2

as the upper q/2 quantile of standard normal distribution. The main results are listed in
Table 1, with nominal coverage probability 0.95.
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Table 1: Model Estimation and Coverage Probabilities

Mean α̂ SD α̂ Cov. α̂ Mean δ̂ SD δ̂ Cov. δ̂ ACPc η̂ ACPu η̂ ACPu ξ̂

Gaussian
True −0.500 0.950 0.600 0.950 0.950 0.950 0.950
s1

n = 100 −0.532 0.545 0.948 0.626 0.344 0.962 0.926 0.955 0.892
n = 200 −0.541 0.375 0.951 0.614 0.236 0.956 0.914 0.948 0.874
s2

n = 200 −0.535 0.500 0.955 0.612 0.246 0.961 0.939 0.980 0.921
n = 400 −0.515 0.343 0.946 0.601 0.169 0.953 0.943 0.974 0.928

Poisson
True −0.500 0.950 1.000 0.950 0.950 0.950 0.950
s1

n = 200 −0.535 0.470 0.959 1.053 0.372 0.958 0.941 0.898 0.792
n = 400 −0.513 0.320 0.958 1.015 0.252 0.947 0.940 0.906 0.851
s2

n = 400 −0.681 0.398 0.945 1.137 0.307 0.943 0.954 0.944 0.812
n = 600 −0.651 0.318 0.937 1.111 0.244 0.942 0.952 0.952 0.871

The simulation results show that the empirical coverage probabilities are very close
to the nominal levels in each case with different regular distributions and test functions.
The test data are highly zero-inflated and about 30% to 50% of the responses are zeroes,
with the true constraint coefficients α0 = −0.5 and δ0 = 0.6 in the Gaussian case and
α0 = −0.5 and δ0 = 1.0 in the Poisson case. For both test functions, with increasing
sample size, the bias of the estimators decreases. There is a tendency of overestimating
the parameter δ which is the slope of the proportional constraint. A similar problem
arises in a simulation study with Lambert’s ZIP(τ) model reported by Lambert (1992); the
ZIP(τ) model is a special case of the COZIGAM in the parametric zero-inflated Poisson
regression setting with the intercept term α fixed to be 0. We also fit (unconstrained)
ZIGAMs to the data and compare the ACPs of the smooth functions from both models (
ACPc η̂ and ACPu η̂ denote the ACP of η for the constrained and unconstrained models
respectively, and similarly defined is ACPu ξ̂). We find that the discrepancy between the
ACPs and the nominal 95% level is generally greater for a ZIGAM than a COZIGAM.
The discrepancy is greatest for the function estimate of ξ based on the unconstrained
ZIGAM, as its estimation is based on the presence/absence data. This confirms that
fitting a COZIGAM gains efficiency when the constraint obtains. Note that the estimator
of α has larger variability than that of δ, which is expected because both test functions
are non-negative, rendering lesser information for estimating the intercept term.

These simulation studies suggest that the observed information matrix provided ad-
equate approximation for assessing the variability in the estimator. Furthermore, the
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Table 2: Proportions of Choosing the True Model

s1 Regular Distribution n = 100 n = 200 n = 300

Unconstrained Model Gaussian 0.538 0.755 0.857
Poisson 0.753 0.899 0.954

Constrained Model Gaussian 0.808 0.863 0.963
Poisson 0.776 0.866 0.936

s2 n = 300 n = 400 n = 500

Unconstrained Model Gaussian 0.772 0.924 0.983
Poisson 0.932 0.962 0.983

Constrained Model Gaussian 0.960 0.931 0.926
Poisson 0.881 0.961 0.977

simulation results lend support to the result that

E[ACP(q)] ≈ 1 − q,

see Wahba (1983). We remark that this frequency property may not hold for estimating
the functional value at a specific point but it seems to hold on average across the sampling
points.

Table 2 shows that the proposed Bayesian model selection criterion correctly chooses
the true models with very high proportions in several different situations. In general the
proportions increase with the sample size within each case. For the COZIGAMs, the data
generating processes are same as above. For the (unconstrained) ZIGAMs, the non-zero-
atom probability is linked to ξ(t) = 2 sin(πt) − 1 for the model using test function s1 and
linked to ξ(t1, t2) = 2t1− t22 in the model using s2 as the test function, both via the logistic
link function.

6 A Real Application: Pollock Egg Density

The data analyzed in this example is part of an extensive survey data on walleye pollock
egg density (numbers 10m−2) collected during the ichthyoplankton surveys of the Alaska
Fisheries Science Center (AFSC, Seattle) in the Gulf of Alaska (GOA) from 1972 to 2000.
Ciannelli et al. (2007) showed that the spatial-temporal distribution of the pollock egg
in the GOA underwent a change around 1989-90. However, their analysis was confined
to positive catch data and zero catches were ignored. Here, we illustrate the use of the
COZIGAM for extracting information from all data including zero catches. For simplicity,
we only analyze the data in the year 1987 which contain 274 observations sampled from
the 93th to the 116th Julian day over sites with bottom depth ranging 28-5200m. Among
the 274 observations, 84 are zeroes, which make up over 30% of the data. The main goal
is to explore the spatial patterns of pollock spawning aggregations in the GOA. Pollock
egg density is the response variable, and the covariates include longitude, latitude, and
(log-transformed) bottom depth. (Preliminary analysis suggests that the covariate Julian

15



day does not enter the model due to the relatively short period of the sampling dates
in this year, and hence not included in the analysis.) We assume that the conditional
response is a mixture distribution that equals zero with probability 1− p but otherwise is
log-normal with mean µ given by

µ = c+ s(lon, lat) + s(log(depth)), (13)

and
logit(p) = α+ δ · µ, (14)

where c, α, δ are parameters, each function s in (13) is assumed to be a distinct smooth
function; for model identifiability, the smooth functions are constrained to be of zero mean
and hence the corresponding function estimates are centered over the data.

Under the above model assumptions, the regression function specified by (13) with
constraint (14) may be estimated by fitting a COZIGAM. We have also fitted an uncon-
strained ZIGAM to the data. Using the model selection criterion developed in Section 4,
the logarithmic marginal likelihood of the unconstrained model equals −464.24, whereas
that of the COZIGAM equals −455.88. Thus it provides some justification for choosing
the COZIGAM over the unconstrained model.

Figure 2 shows the estimated smooth functions of the location and bottom depth effects
based on the COZIGAM fitted with all data. The estimated smooth functions give the
spatial density distribution of pollock egg in the GOA in the year 1987 and the density
seemed to be more concentrated over deeper areas than shallower areas. The estimated
parametric coefficients in Equation (14) are α̂ = −1.816 (0.347) and δ̂ = 0.489 (0.064)
which is significantly positive. Thus, there is strong evidence indicating that zero-inflation
is more likely to occur at locations with less egg density.

The validity of the fitted COZIGAM may be explored based on the residuals for the
cases with non-zero catch. The model diagnostic plots including the Q-Q normal score
plot of these residuals and the plot of residuals vs. fitted values (unreported) suggest that
the model assumptions for the positive data are generally valid. Therefore the log-normal
regression assumption is reasonable according to the model diagnostics.

7 Conclusion

In summary, we have presented a new approach for analyzing zero-inflated data, and a
modified penalized-iteratively re-weighted least squares algorithm for model estimation.
Some large sample properties of the maximum penalized likelihood estimator including
consistency and asymptotic normality have been proved. We propose a Bayesian model
selection criterion for choosing between the unconstrained ZIGAM and the COZIGAM.
The new methods are illustrated with both simulation studies and a real example with
application to the pollock egg density data analysis.

So far we have considered imposing proportional constraints (on the link scales) on the
non-zero-inflation probability in the COZIGAM. An interesting problem is to relax the
proportional constraint to allow possibly different proportionality coefficients for different
covariates for the zero-inflation process. Another future problem is to relax the linear
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constraint to other more general constraints. Currently not much is known about the
limiting distributions of the smooth components even in simple cases such as a spline
function plus noise model. These are some interesting directions for future work.
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Appendix A: Regularity Conditions Needed For Theorems 1

And 2

The proof of the convergence rate and asymptotic normality makes heavy use of the
empirical process theory (see Pollard (1984) and the references therein). We first list the
conditions used in the proof of the consistency and convergence rate: for some constants
0 < C1, C2, C3, C4 <∞,

V (s) ≥ 1/C1, ∀ s ∈ F1(R), (R8)

1/C2 ≤ |l̄1(x)| ≤ C2, ∀ x ∈ R, (R9)

|f2(x)| ≤ C3, ∀ x ∈ R, (R10)

and
1/C4 ≤ F2(ξ0(t)) ≤ 1 − 1/C4, ∀ t ∈ [0, 1], (R11)

where l̄1(x) = f1(x)/V (F̄1(x)) and F̄1(x) = {F1(x) + F1(η0)} /2. Also, for some constants
0 < C5, h, b <∞ and for all t ∈ [0, 1], we have

|f2(x)| ≥ 1/C5, for all |x− ξ0| ≤ h, (R12)

together with an identifiability condition

inf
‖ξ−ξ0‖>b

‖F2(ξ) − F2(ξ0)‖ > 0, for all b > 0. (R13)

Furthermore, we have the assumption

fi and li, i = 1, 2, are bounded and Lipschitz continuous functions. (R14)

Appendix B: Proof of Theorem 2

We now list some key steps for proving the asymptotic normality result stated in Theorem
2. It follows from Theorem 1 and because T has a probability density that is bounded
away from zero over its support, it can be shown by similar arguments as in Mammen
and van de Geer (1997) that we can, without loss of generality, assume that the unknown
functions η and ξ satisfy the condition that for some constants 0 < d1, d2 <∞,

|η − η0|∞ ≤ d1 and |ξ − ξ0|∞ ≤ d2.

The proof exploits some properties of the penalized quasi-likelihood estimation method.
Define the quasi-(log-)likelihood functions

Q1(y;µ) =

∫ µ

y

(y − s)

V (s)
ds, (15)

Q2(z; p) =

∫ p

z

(z − t)

t(1 − t)
dt.
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The quasi-likelihood equals

Q(α, δ, η) = Q̄1n(F1(η)) + Q̄2n(F2(α+ δη)),

and hence the penalized quasi-likelihood becomes

Qp(α, δ, η) = Q(α, δ, η) − λ2
nJ

2(η), (16)

where

Q̄1n(µ) =
1

n

n∑

i=1

ZiQ1(Yi;µ(Ti)),

Q̄2n(p) =
1

n

n∑

i=1

Q2(Zi; p(Ti)).

Then the penalized quasi-likelihood (PQL) estimator equals

θ̂n = arg max
θ∈Θ

Qp(α, δ, η).

We then perturb θ̂n along two paths s 7→ θ̂ns,

θ̂
I

ns = θ̂ns + s(1, 0, h1)
T

θ̂
II

ns = θ̂ns + s(0, 1, h2)
T ,

for some measurable functions h1, h2 (to be determined below) and s ∈ R. Thus,

d

ds

{
Q(θ̂

I

ns) − λ2
nJ

2(η̂I
ns)
} ∣∣∣

s=0
= 0 ,

d

ds

{
Q(θ̂

II

ns) − λ2
nJ

2(η̂II
ns)
} ∣∣∣

s=0
= 0 ,

where η̂I
ns = η̂n + sh1 and η̂II

ns = η̂n + sh2. By routine analysis, it can be shown that

d

ds
λ2

nJ
2(η̂I

ns)
∣∣∣
s=0

≤ 2λ2
nJ(η̂n)J(h1) = oP(n−1/2), (17)

d

ds
λ2

nJ
2(η̂II

ns)
∣∣∣
s=0

≤ 2λ2
nJ(η̂n)J(h2) = oP(n−1/2).

It remains to choose h1 and h2 such that both dQ(θ̂
I

ns)/ds
∣∣
s=0

and dQ(θ̂
II

ns)/ds
∣∣
s=0

admit

a linear stochastic expansion in terms of α̂n − α0 and δ̂n − δ0, specifically

d

ds
Q(θ̂

I

ns)
∣∣∣
s=0

=
1

n

∑
{ZiWil10(Ti)h1(Ti) +Ril20(Ti)(1 + δ0h1(Ti))}

−(α̂n − α0)
1

n

∑
f20(Ti)l20(Ti)(1 + δ0h1(Ti))

−(δ̂n − δ0)
1

n

∑
η0(Ti)f20(Ti)l20(Ti)(1 + δ0h1(Ti))

− 1

n

∑
(η̂n(Ti) − η0(Ti))

{
Zif10(Ti)l10(Ti)h1(Ti)

+δ0f20(Ti)l20(Ti)(1 + δ0h1(Ti))
}

+oP(n−1/2), (18)
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which can be shown to hold if

h1(t) = − δ0f20(t)l20(t)

p0(t)f10(t)l10(t) + δ20f20(t)l20(t)
,

using similar techniques employed in the proof of Theorem 2.4 in Mammen and van de
Geer (1997). Combining (17) and (18), we obtain

0 =
1

n

∑
{ZiWil10(Ti)h1(Ti) +Ril20(Ti)(1 + δ0h1(Ti))}

−(α̂n − α0)
1

n

∑
f20(Ti)l20(Ti)(1 + δ0h1(Ti))

−(δ̂n − δ0)
1

n

∑
η0(Ti)f20(Ti)l20(Ti)(1 + δ0h1(Ti))

+oP(n−1/2). (19)

Similarly, for the second path, if we let

h2(t) = − δ0η0(t)f20(t)l20(t)

p0(t)f10(t)l10(t) + δ20f20(t)l20(t)
,

then

0 =
1

n

∑
{ZiWil10(Ti)h2(Ti) +Ril20(Ti)(η0(Ti) + δ0h2(Ti))}

−(α̂n − α0)
1

n

∑
f20(Ti)l20(Ti)(η0(Ti) + δ0h2(Ti))

−(δ̂n − δ0)
1

n

∑
η0(Ti)f20(Ti)l20(Ti)(η0(Ti) + δ0h2(Ti))

+oP(n−1/2). (20)

The asymptotic normality result stated in Theorem 2 follows from (19) and (20) and
the fact that both A and V can be readily checked to be finite matrices and that A is
non-singular.

Appendix C: Formulas for Computing the Observed Infor-

mation

The observed information matrix is given by

Iθ = − ∂2lp

∂θ∂θT

∣∣∣∣
θ=bθ

= −




∂2lp
∂α2

∂2lp
∂α∂δ

∂2lp
∂α∂βT

∂2lp
∂δ∂α

∂2lp
∂δ2

∂2lp
∂δ∂βT

∂2lp
∂β∂α

∂2lp
∂β∂δ

∂2lp
∂β∂βT




∣∣∣∣∣∣∣∣
θ=bθ

. (21)

For a continuous COZIGAM, let ρ and τ be n×1 vectors with components ρi = ei−pi

ġp(pi)pi(1−pi)
,

and τi = ei(yi−µi)
ġµ(µi)φV (µi)

, i = 1, . . . , n. To simplify the notations, in some of the following
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derivations we will suppress the arguments in the functions gµ(µi), V (µi), gp(pi) and their
derivatives. By routine analysis, we have

ρ̇i =
∂ρi

∂pi
=

−ġppi(1 − pi) − (ei − pi) {g̈ppi(1 − pi) + ġp(1 − 2pi)}
ġ2
pp

2
i (1 − pi)2

,

τ̇i =
∂τi
∂µi

=
ei

[
−ġµV − (yi − µi)

{
g̈µV + ġµV̇

}]

φġ2
µV

2(µi)
.

Then each element in Equation (21) can be evaluated via the following formulas
∂2lp
∂α2 =

1T Gρ1,
∂2lp
∂δ2 = ηT Gρη,

∂2lp
∂α∂δ = 1T Gρη,

∂2lp
∂β∂α = δXT Gρ1,

∂2lp
∂β∂δ = δXT Gρη + XT ρ, and

∂2lp
∂β∂βT = XT GτX +δ2XT GρX− λ̃2

nS, where Gτ and Gρ are two diagonal matrices with

elements Gτii = τ̇i

ġµ(µi)
and Gρii = ρ̇i

ġp(pi)
respectively, and η = (η(t1), . . . , η(tn))T .

For a discrete COZIGAM, define ρ∗ and τ ∗ to be n × 1 vectors whose components

equal to ρ∗i = ei−pi(1−fi)
ġppi(1−pi+pifi)

, and τ∗i = {ei(1−pi)+pifi}(yi−µi)
(1−pi+pifi)ġµφV respectively. If Ei = 1,

∂τ∗i
∂µi

=
∂ρ∗i
∂pi

= −1 and
∂τ∗i
∂pi

=
∂ρ∗i
∂µi

= 0. Otherwise, if Ei = 0, denote f0
i = f(Yi = 0|µi) and

Ai = 1 − pi + pif
0
i , then we have

∂τ∗i
∂µi

= − pi

φġµV Ai



f

0
i −

µif
0
i

(
g̈µV + ġµV̇

)

ġµV
+ (1 − pi)µiḟ

0
i

/
Ai



 ,

∂τ∗i
∂pi

= − µif
0
i

φġµV A
2
i

,

and

∂ρ∗i
∂µi

=
ḟ0

i

ġpA2
i

,

∂ρ∗i
∂pi

=

(
1 − f0

i

) {
g̈pAi − ġp(1 − f0

i )
}

ġ2
pA

2
i

.

Let Gτµ, Gτp, Gρµ, and Gρp be four diagonal matrices with elements on the leading

diagonals Gτµii = 1
ġµ(µi)

∂τ∗i
∂µi

, Gτpii = 1
ġp(pi)

∂τ∗i
∂pi

, Gρµii = 1
ġµ(µi)

∂ρ∗i
∂µi

, and Gρpii = 1
ġp(pi)

∂ρ∗i
∂pi

re-

spectively. Then the second derivatives in (21) are given as follows:
∂2lp
∂α2 = 1T Gρp1,

∂2lp
∂δ2 =

ηT Gρpη,
∂2lp
∂α∂δ = 1T Gρpη,

∂2lp
∂β∂α = XT (Gρµ + δGρp)1,

∂2lp
∂β∂δ = XT (Gρµ + δGρp) η +

XT ρ∗, and
∂2lp

∂β∂βT = XT
(
Gτµ + δGτp + δGρµ + δ2Gρp

)
X − λ̃2

nS.

Appendix D: Justification of the Laplace Approximation

For a COZIGAM, partition the parameter vector β = (βT
0 ,β

T
1 )T , where, after relabelling

the basis functions if needed, β0 corresponds to the basis functions belonging to the
null space of the roughness penalty, and β1 corresponds to those with positive penalties.
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Denote S+ as the submatrix in the penalty matrix S associated with β1. Therefore S+

is of full rank and βT Sβ = βT
1 S+β1, and hence the implicit Gaussian prior with pdf

∝ exp
{
−1

2 λ̃
2
nβT Sβ

}
is improper whenever β0 is present. To bypass the problem of an

improper prior in the calculation of the marginal likelihood, we first consider the case with
a proper prior and derive the marginal likelihood by Laplace approximation. Specifically,
consider the following prior density

g(α, δ,β) =

∣∣λ̃2
nS+

∣∣1/2

(2π)m/2
exp

{
−1

2
λ̃2

nβT
1 S+β1

}
g̃(θ),

where m = dim(β1), g̃(θ) is some prior information on the other parameters, with the
assumption that it is continuous, bounded and locally bounded away from zero, which is
similar to the condition imposed on the prior by Schwarz (1978). For example, g̃(θ) may
represent some proper Gaussian prior on β0, α and δ. It follows from (5’) and (6’) that
the marginal likelihood of the COZIGAM equals

∫
p(y|α, δ,β)g(α, δ,β)dαdδdβ =

∣∣λ̃2
nS+

∣∣1/2

(2π)m/2

∫
exp

{
nl̄p(α, δ,β)

}
g̃(θ)dαdδdβ,

where l̄p(α, δ,β) = 1
n lp(α, δ,β) is the normalized penalized log-likelihood.

Note that θ = (α, δ,βT )T and assume that with probability going to 1 as n→ ∞, ∀ ε >
0, ∃ 0 < ̺ < exp

{
l̄p(θ̂)

}
, such that Θ̂ =

{
θ : exp

{
l̄p(θ)

}
> ̺
}
⊆ Dε =

{
θ :
∥∥θ− θ̂

∥∥ ≤ ε
}
,

where θ̂ is the point at which l̄p(θ) attains its global maximum. This assumption is similar
to the condition of well-separated point of maximum discussed by van der Vaart (1998),
and it holds if l̄p(θ) is strictly concave, which is the case for unconstrained zero-inflated
Gaussian models with canonical links. For other cases, local concavity may still hold but
is not easy to prove because of the complexity of model specification, where more future
work needs to be done. By employing similar arguments in the proof of Lemma 2 in
Schwarz (1978), we can show that, as n→ ∞,

log

∫
exp

{
nl̄p(θ)

}
g̃(θ)dθ = log

∫

bΘ
exp

{
nl̄p(θ)

}
g̃(θ)dθ + oP(1). (22)

The Taylor expansion of l̄p(θ) over Dε gives l̄p(θ) = l̄p(θ̂)− 1
2(θ− θ̂)T H(θ̃)(θ− θ̂), where

θ̃ lies between θ and θ̂, so that
∥∥θ̃ − θ̂

∥∥ ≤ ε. Hence the integral on the right hand side of
Equation (22) becomes

exp
{
nl̄p(θ̂)

}∫

bΘ
exp

{
−n

2
(θ − θ̂)T H(θ̃)(θ − θ̂)

}
g̃(θ)dθ.

Notice that we can and shall choose ̺ to make θ̃ and θ̂ sufficiently close so that log
∣∣H(θ̃)

∣∣ =
log
∣∣H(θ̂)

∣∣+oP(1). Moreover, the difference H(θ̃)−H(θ̂) does not depend on the smooth-
ing parameter. Then, from the properties of g̃(θ) and using similar arguments as in
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Schwarz (1978), it is not difficult to show that

log

∫

bΘ
exp

{
−n

2
(θ − θ̂)T H(θ̃)(θ − θ̂)

}
g̃(θ)dθ

=
K + 2

2
log 2π − K + 2

2
log n− 1

2
log
∣∣H(θ̂)

∣∣+OP(1).

Therefore, the logarithmic marginal likelihood is equal to

logE = lp(θ̂) − K + 2

2
log n− 1

2
log
∣∣H(θ̂)

∣∣+ K + 2 −m

2
log 2π +

1

2
log
∣∣λ̃2

nS+

∣∣+OP(1).

Notice that this approximation holds uniformly for continuous g̃ that are uniformly bounded,
and uniformly locally bounded away from 0. Hence, the above approximate logarithmic
marginal likelihood does not depend on the explicit form of g̃, and so it holds for the
original improper Gaussian prior density by a limiting argument.

Similarly, for an unconstrained ZIGAM, the smooth function ξ in (3) is functionally
orthogonal to η. Write the functional value of ξ as

ξ(ti) = M iγ,

where M i is the i-th row of the design matrix M of ξ and γ is the parameter vector. Also
the roughness penalty of ξ could be written as a quadratic form in γ. Then the penalized
log-likelihood of the unconstrained continuous and discrete ZIGAM equal

lp(β,γ) =
n∑

i=1

[
ei log{pif(yi|ϑi)} + (1 − ei) log (1 − pi)

]
− 1

2
λ̃2

1nβT S1β − 1

2
λ̃2

2nγT S2γ,

and

lp(β,γ) =

n∑

i=1

[
ei log pif(yi|ϑi)+(1−ei) log (1 − pi + pif(0|ϑi))

]
−1

2
λ̃2

1nβT S1β−
1

2
λ̃2

2nγT S2γ,

respectively, where S1, S2 are two penalty matrices, and λ̃2
1n, λ̃2

2n are the smoothing
parameters, corresponding to η and ξ respectively. Let the joint prior density of β and γ

equal

g(β,γ) =

∣∣S1+

∣∣1/2

(2π)m1/2
exp

{
−1

2
λ̃2

1nβT S1β

} ∣∣S2+

∣∣1/2

(2π)m2/2
exp

{
−1

2
λ̃2

2nγT S2γ

}
g̃(θ),

where Si+, i = 1, 2 is an mi ×mi nonsingular submatrix of Si associated with the basis
functions having positive roughness penalties. The marginal likelihood of the uncon-
strained ZIGAM equals

∫
p(y|β,γ)g(β,γ)g̃dβdγ =

∣∣λ̃2
1nS1+

∣∣1/2∣∣λ̃2
2nS2+

∣∣1/2

(2π)(m1+m2)/2

∫
exp

{
nl̄p(β,γ)

}
g̃(θ)dβdγ.
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By Laplace approximation,

logE = lp(β̂, γ̂) − K1 +K2

2
log n− 1

2
log
∣∣H(β̂, γ̂)

∣∣

+
K1 +K2 − (m1 +m2)

2
log 2π +

1

2
log
∣∣λ̃2

1nS1+

∣∣+ 1

2
log
∣∣λ̃2

2nS2+

∣∣+OP(1),

where (β̂
T
, γ̂T )T is the maximum penalized likelihood estimator, K1 = dim(β), K2 =

dim(γ). The negative Hessian matrix H(β̂, γ̂) can be computed similarly as in the case
of COZIGAM, and hence omitted.
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Figure 1: Simulation Study. The upper two plots display the true test functions. Model
fits of two simulated series are listed in the lower two panels: the lower left panel depicts an
estimate of the test function s1/4 with true α0 = −0.5, δ0 = 1.0 and sample size n = 300,
whose estimated values are α̂ = −0.658 (0.367), δ̂ = 1.112 (0.299). The gray dots are the
true functional values, the black line is the estimated function, and the dashed lines are
the 95% pointwise confidence bands; The lower right panel displays an estimate of the test
function 3.5s2 with true α0 = −0.5, δ0 = 1.0 and sample size n = 500, whose estimated
values are α̂ = −0.404 (0.319), δ̂ = 1.021 (0.246).
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Figure 2: Effects of Location and Bottom Depth: the left diagram shows the contour plot
of s(lon, lat) on the right side of Equation (13); the right diagram depicts the bottom
depth effect s(log(depth)) with 95% pointwise confidence band.
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Appendix E: Further Asymptotic Results and Detailed Tech-

nical Proofs

As we mentioned before, in the case that (R5) does not hold, that is, the regular distri-
bution from the exponential family admits zero with positive probability (e.g. Poisson,
binomial), we can still derive the consistency and limiting distribution of the estimator by
adapting and augmenting the regularity conditions. Let’s first state two theorems parallel
to the results of Theorem 1 and 2.

Denote f0(µ) = Pr(Y = 0|µ) as the probability mass at zero under the regular expo-
nential family distribution with mean µ. Let

Ei =

{
1 if Yi 6= 0
0 if Yi = 0.

Then the incomplete-data log-likelihood equals

l =

n∑

i=1

Ei log pif(yi|ϑi) + (1 − Ei) log (1 − pi + pif(0|ϑi))

which could be rewritten as

l =

n∑

i=1

Ei log

(
f(yi|ϑi)

1 − f(0|ϑi)

)
+

n∑

i=1

Ei log (pi(1 − f(0|ϑi))) + (1 − Ei) log (1 − pi + pif(0|ϑi)),

where the first summand corresponds to the log-likelihood of another exponential family
with mean µ∗ = µ/(1 − f0(µ)). The second summand is exactly the log-likelihood of a
Bernoulli process with probability of success equal to p∗ = p(1 − f0(µ)). Let

µ∗ =
F1(η)

1 − f0(F1(η))
:= F ∗

1 (η)

and
p∗ = F2(ξ){1 − f0(F1(η))}.

In order to prove the consistency result, we assume that the parameter space of (α, δ)T

to be bounded. Specifically, let the parameter space be Θ∗ =
{
θ = (α, δ, η)T : |α|, |δ|, |η|∞ ≤ C, J(η) <∞

}
.

The penalized likelihood estimator equals

θ̂n = arg max
θ∈Θ∗

[
Q̄1n{F ∗

1 (η)} + Q̄2n{F2(ξ)(1 − f0(F1(η)))} − λ2
nJ

2(η)
]
,

with only a slight change in the form of Q1(y;µ) by replacing V by V ∗, where V ∗(µ∗) =
V (µ)(dµ∗/dµ). And

V ∗(s) ≥ 1/C ′
1, ∀ s ∈ F ∗

1 (R). (R8’)

Then the convergence rate of the estimator can be verified via Lemma 3.1 in Mammen and
van de Geer (1997) under conditions (R1)-(R3), (R6), (R8’), and the sub-Gaussianality
of W ∗ = Y ∗ − µ∗0(T ), R∗ = E − p∗0(T ) where Y ∗ denotes a random variable whose
distribution equals the conditional distribution of Y given Y 6= 0, µ∗0 = F ∗

1 (η0), and p∗0 =
F2(ξ0){1 − f0(F1(η0))}. Notice that condition (R8’) ensures that the zero-inflated model
is identifiable and excludes the situation where the regular non-zero-inflated exponential
family distribution is Bernoulli (V ∗ = 0).
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Theorem 3. Under conditions (R1)-(R3), (R6), (R8’), and the sub-Gaussianality of W ∗

and R∗, and assuming the parameter space Θ∗, we have

J(η̂n) = OP(1),

‖η̂n − η0‖n = OP(λn),

‖ξ̂n − ξ0‖n = OP(λn),

and

|α̂n − α0| = OP (λn) ,

|δ̂n − δ0| = OP (λn) .

For proving the asymptotic normality, let f∗1 (x) = dF ∗
1 (x)/dx, ζ(x) = 1 − f0(F1(x))

,ζ0 = ζ ◦ η0 (ζ̂n = ζ ◦ η̂n), and ζ̇(x) = dζ/dx. Also write F20 = F2 ◦ ξ0, p̂∗n = F2(ξ̂n)ζ̂n.
Assume that

f∗1 , l
∗
1, ζ, F2ζ̇/v, and f2ζ/v are bounded and Lipschitz continuous functions. (R1’)

where l∗1(x) = f∗1 (x)/V (F1(x)), v(θ) = F2(ξ)ζ(η){1 − F2(ξ)ζ(η)}, and v0 = v(θ0). Let
w0 = δ0f20ζ0 +F20ζ̇0, l

∗
10 = l∗1 ◦η0, and f∗10 = f∗1 ◦η0. Choose the directions of perturbation

as

h∗1 = − w0f20ζ0
p∗0f

∗
10l

∗
10v0 + w2

0

,

h∗2 = − w0η0f20ζ0
p∗0f

∗
10l

∗
10v0 + w2

0

.

Theorem 4. Assume that the results in Theorem 3 hold with λn = oP(n−1/4), and as-
sumption (R1’) is valid. Moreover, assume that

J(h∗i ) <∞, i = 1, 2,

p∗0(t)f
∗
10(t)l

∗
10(t)v0 +w2

0 6= 0, ∀ t ∈ [0, 1].

Then
(√

n(α̂n − α0),
√
n(δ̂n − δ0)

)T
is asymptotically bivariate normal with zero mean

and covariance matrix equal to A∗−1V ∗A∗−1 with the elements of A∗ given by

a∗11 =
∥∥∥(m∗

0p
∗
0f

∗
10f20ζ0)

1/2
∥∥∥

2
,

a∗12 = a∗21 =
∥∥∥(m∗

0p
∗
0f

∗
10f20ζ0η0)

1/2
∥∥∥

2
,

a∗22 =
∥∥∥(m∗

0p
∗
0f

∗
10f20ζ0)

1/2 η0

∥∥∥
2
.

and V ∗ equals the covariance matrix of m∗
0(T ){R∗p∗0(T )f∗10(T ) − W ∗Ew0(T )}(1, η0)

T ,
where

m∗
0(t) =

l∗10(t)f20(t)ζ0(t)

p∗0f
∗
10(t)l

∗
10(t)v0(t) + w2

0(t)
.
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Proof of the Convergence Rate

Proof of Theorem 1.

Let F̄1(η̂n) = {F1(η̂n) + F1(η0)}/2 = (µ̂n + µ0)/2. We have

Q̄1n(F̄1(η̂n)) − Q̄1n(F1(η0)) = Q̄1n

(
F1(η̂n) + F1(η0)

2

)
− Q̄1n(F1(η0))

≥ 1

2

{
Q̄1n(F1(η̂n)) + Q̄1n(F1(η0))

}
− Q̄1n(F1(η0))

=
1

2

{
Q̄1n(F1(η̂n)) − Q̄1n(F1(η0))

}

where the inequality holds because of the concavity of Q1(y; ·). For a fixed y0, write

γη =

∫ F̄1(η)

y0

1

V (s)
ds,

and γ̂n = γη̂n
, γ0 = γη0

. Then

Q̄1n(F̄1(η̂n)) − Q̄1n(F1(η0)) =
1

n

n∑

i=1

Zi

∫ F̄1(η̂n)

F1(η0)

(Yi − s)

V (s)
ds

=
1

n

n∑

i=1

Zi

∫ F̄1(η̂n)

F1(η0)

Wi

V (s)
ds− 1

n

n∑

i=1

Zi

∫ F̄1(η̂n)

F1(η0)

s− µ0(Ti)

V (s)
ds

=
1

n

n∑

i=1

WiZi (γ̂n(Ti) − γ0(Ti)) −
1

n

n∑

i=1

Zi

∫ 1

2
(µ̂n+µ0)

µ0

s− µ0(Ti)

V (s)
ds

For γ =
∫ 1

2
(µ+µ0)

y0
V (s)−1ds, it can be readily checked that

d

dγ

∫ 1

2
(µ+µ0)

µ0

s− µ0

V (s)
ds =

1

2
(µ− µ0)

d2

dγ2

∫ 1

2
(µ+µ0)

µ0

s− µ0

V (s)
ds = V

(
µ+ µ0

2

)

So by mean value theorem,

∫ 1

2
(µ̂n+µ0)

µ0

s− µ0(Ti)

V (s)
ds =

1

2
V

(
µ̃+ µ0

2

)
(γ̂n − γ0)

2

where µ̃ is some value between µ̂n and µ0. Therefore, by Cauchy-Schwartz inequality and
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(R8),

Q̄1n(F̄1(η̂n)) − Q̄1n(F1(η0)) ≤ 1

n

n∑

i=1

WiZi (γ̂n(Ti) − γ0(Ti))

− 1

2C1

m

n





1

m

∑

{i:Zi=1}
(γ̂n(Ti) − γ0(Ti))

2





≤ m

n





1

m

∑

{i:Zi=1}
Wi(γ̂n(Ti) − γ0(Ti))



− 1

2C1

m

n
‖γ̂n − γ0‖2

m

=

(
1

n

n∑

i=1

W 2
i

)1/2√
m

n
‖γ̂n − γ0‖m − 1

2C1

m

n
‖γ̂n − γ0‖2

m,

where m =
∑n

i=1 Zi as the number of observations coming from the regular response
distribution. Because of (R11), n/m = OP(1) as n→ ∞.

We now develop a similar inequality For Q2. Notice that Q2(z; p) = z log p + (1 −
z) log(1 − p), which is the exact log-likelihood of a Bernoulli random variable. Define
F̄2(ξ) = {F2(ξ) + F2(ξ0)} /2. By the concavity of the log-function, it is easy to verify that

Q̄2n(F̄2(ξ̂n)) − Q̄2n(F2(ξ0)) =
1

n

n∑

i=1

Zi log

(
F̄2(ξ̂n(Ti))

F2(ξ0(Ti))

)

+
1

n

n∑

i=1

(1 − Zi) log

(
1 − F̄2(ξ̂n(Ti))

1 − F2(ξ0(Ti))

)

≥ 1

2

{
Q̄2n(F2(ξ̂n)) − Q̄2n(F2(ξ0))

}

On the other hand, because log(x) = 2 log(
√
x) ≤ 2(

√
x− 1),

Q̄2n(F̄2(ξ̂n)) − Q̄2n(F2(ξ0)) ≤ 2

n

n∑

i=1

Zi



√
F̄2(ξ̂n(Ti))

F2(ξ0(Ti))
− 1




+
2

n

n∑

i=1

(1 − Zi)



√

1 − F̄2(ξ̂n(Ti))

1 − F2(ξ0(Ti))
− 1




≤ 2

n

n∑

i=1

Ri√
F2(ξ0(Ti))

{√
F̄2(ξ̂n(Ti)) −

√
F2(ξ0(Ti))

}

+
2

n

n∑

i=1

−Ri

{√
1 − F̄2(ξ̂n(Ti)) −

√
1 − F2(ξ0(Ti))

}

√
1 − F2(ξ0(Ti))

−
∥∥∥
√
F̄2(ξ̂n) −

√
F2(ξ0)

∥∥∥
2

n

−
∥∥∥
√

1 − F̄2(ξ̂n) −
√

1 − F2(ξ0)
∥∥∥

2

n
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By the definition of the maximum penalized likelihood estimator and Equation (16),
we have

Q̄1n(F1(η̂n)) + Q̄2n(F2(ξ̂n)) − λ2
nJ

2(η̂n) ≥ Q̄1n(F1(η0)) + Q̄2n(F2(ξ0)) − λ2
nJ

2(η0)

hence,

Q̄1n(F̄1(η̂n)) − Q̄1n(F1(η0)) + Q̄2n(F̄2(ξ̂n)) − Q̄2n(F2(ξ0))

≥ 1

2

{
Q̄1n(F1(η̂n)) − Q̄1n(F1(η0)) + Q̄2n(F2(ξ̂n)) − Q̄2n(F2(ξ0))

}

≥ 1

2
λ2

n

(
J2(η̂n) − J2(η0)

)

Let A be a subset of a metric space (L, ρ) of real-valued functions. Define the ε-entropy
as H(ε,A, ρ) = logN(ε,A, ρ), where the ε-covering number N(ε,A, ρ) of A is the smallest
value of N for which there exist functions a1, · · · , aN in L, such that for each a ∈ A,
ρ(a, aj) ≤ ε for some j ∈ {1, · · · , N}.

Because the class of smooth functions η satisfies the entropy growth condition, i.e.

sup
ε>0

ε1/kH (ε, {η : |η|∞ ≤ C, J(η) ≤ C}, | · |∞) <∞,

it can be shown that

sup
ε>0

ε1/kH (ε, {ξ = α+ δη : |α|, |δ|, |η|∞ ≤ C, J(η) ≤ C}, | · |∞) <∞.

Use similar argument in Mammen and van de Geer (1997), it follows from (R9) that,

sup
ε>0

ε1/kH

(
ε,

{
γη − γη0

1 + J(η)
: J(η) <∞,

|γη |∞
1 + J(η)

≤ C

}
, | · |∞

)
<∞

Then from the sub-Gaussianality of W , applying Theorem 2.2 in Mammen and van de
Geer (1997), and using the fact that ‖γ̂n − γ0‖n ≥ (1/C2)‖η̂n − η0‖n, we have

(1/m)
∑

Zi=1Wi(γ̂n(Ti) − γ0(Ti))

‖η̂n − η0‖1−1/(2k)
m (1 + J(η̂n))1/(2k) ∨ (1 + J(η̂n))m−(2k−1)/2(2k+1)

= OP(m−1/2).

Similarly, if (R10) and (R11) hold true, the entropy condition holds for the class
{√

F̄2(ξ) −
√
F2(ξ0)√

F2(ξ0)(1 + J(η))
: θ ∈ Θ

}
.

Thus by the sub-Gaussianality of R,

(1/n)
∑n

i=1Ri

(√
F̄2(ξ̂n(Ti)) −

√
F2(ξ0(Ti))

)/√
F2(ξ0(Ti))

‖
√
F̄2(ξ̂n) −

√
F2(ξ0)‖1−1/(2k)

n (1 + J(η̂n))1/(2k) ∨ (1 + J(η̂n))n−(2k−1)/2(2k+1)

= OP(n−1/2),
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and

(1/n)
∑n

i=1Ri

(√
1 − F̄2(ξ̂n(Ti)) −

√
1 − F2(ξ0(Ti))

)/√
1 − F2(ξ0(Ti))

‖
√

1 − F̄2(ξ̂n) −
√

1 − F2(ξ0)‖1−1/(2k)
n (1 + J(η̂n))1/(2k) ∨ (1 + J(η̂n))n−(2k−1)/2(2k+1)

= OP(n−1/2).

Using similar procedure as in the proof of Lemma 3.1 in Mammen and van de Geer (1997),
we find that J(η̂n) = OP(1), and

‖η̂n − η0‖n = OP(λn), (23)
∥∥∥
√
F̄2(ξ̂n) −

√
F2(ξ0)

∥∥∥
n

= OP(λn), (24)

∥∥∥
√

1 − F̄2(ξ̂n) −
√

1 − F2(ξ0)
∥∥∥

n
= OP(λn). (25)

Equations (24) and (25) imply

∥∥F2(ξ̂n) − F2(ξ0)
∥∥

n
= OP(λn).

Then (R12) and (R13) entail that

‖ξ̂n − ξ0‖n = OP(λn). (26)

Finally, the stated convergence rates of α̂n and δ̂n follow from the following lemma.

Lemma 5. If (23), (26) and (R2) hold, then

|α̂n − α0| = OP (λn) ,

|δ̂n − δ0| = OP (λn) .

Proof of Lemma 5.

Suppose (R2) is true so that for some t1 6= t2, η0(t1) 6= η0(t2). It follows from (23) and
(26) that

|η̂n(t1) − η0(t1)| = OP(λn) and |ξ̂n(t1) − ξ0(t1)| = OP(λn),

|η̂n(t2) − η0(t2)| = OP(λn) and |ξ̂n(t2) − ξ0(t2)| = OP(λn).

Then α̂n, δ̂n satisfy {
ξ̂n(t1) = α̂n + δ̂nη̂n(t1)

ξ̂n(t2) = α̂n + δ̂nη̂n(t2),

and similarly, {
ξ0(t1) = α0 + δ0η0(t1)
ξ0(t2) = α0 + δ0η0(t2),
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Because η0(t1) 6= η0(t2), when n is large enough η̂n(t1) 6= η̂n(t2), with probability → 1.
Hence we can invert both groups of equations to obtain the solutions for α̂n, δ̂n, α0 and
δ0. Then it follows from the convergence rate of η̂n and ξ̂n that α̂n and δ̂n share the same
convergence rate, i.e.

|α̂n − α0| = OP (λn) , |δ̂n − δ0| = OP (λn) .

Proof of the Asymptotic Normality

Proof of Theorem 2.

We now elaborate the derivation of (18) as follows:

d

ds
Q(θ̂

I

ns)
∣∣∣
s=0

=
d

ds
Q̄1n(F1(η̂

I
ns))

∣∣∣
s=0

+
d

ds
Q̄2n(F2(ξ̂

I
ns))

∣∣∣
s=0

:= AI +BI ,

where ξ̂I
ns = α̂n + s+ δ̂n(η̂n + sh1).

AI =
1

n

∑
Zi{Yi − F1(η̂n(Ti))}l1(η̂n(Ti))h2(Ti)

=
1

n

∑
ZiWil1(η̂n(Ti))h1(Ti) −

1

n

∑
Zi{F1(η̂n(Ti)) − F1(η0(Ti))}l1(η̂n(Ti))h1(Ti)

:= CI −DI

We shall make repeated use of the following technique. The class

A = {a(Y,Z, T ) = Z(Y − µ0(T ))[l1(η(T )) − l1(η0(T ))]h1(T ) : |η − η0|∞ ≤ d1, J(η) ≤ C}

satisfies condition (2.7) of Theorem 2.4 in Mammen and van de Geer (1997), which implies
that 1√

n

∑n
i=1{a(Yi, Zi, Ti)−E(a)} = oP(1) uniformly for a ∈ A with ||a|| → 0. Note that

for fixed a ∈ A, E(a) = 0. This result implies that

CI =
1

n

∑
ZiWil10(Ti)h1(Ti) + oP(n−1/2),

To see this, note that Z(Y − µ0(T )) is a centered random variable with finite variance,
and h1(T ) is a fixed bounded function. Also by (R14), ||η̂n − η0||n = oP(1) implies
||l̂1n − l10||n = oP(1), where we write l̂1n = l1 ◦ η̂n (and l̂2n = l2 ◦ ξ̂n for later use).

Next, we write DI as

DI =
1

n

∑
Zi{F1(η̂n(Ti)) − F1(η0(Ti))}l̂1n(Ti)h1(Ti)

=
1

n

∑
Zi(η̂n(Ti) − η0(Ti))f10(Ti)l10(Ti)h1(Ti)

+
1

n

∑
Zi{F1(η̂n(Ti)) − F1(η0(Ti)) − (η̂n(Ti) − η0(Ti))f10(Ti)}l10(Ti)h1(Ti)

+
1

n

∑
Zi{F1(η̂n(Ti)) − F1(η0(Ti))}(l̂1n(Ti) − l10(Ti))h1(Ti)

:= DIa +DIb +DIc.
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By the mean value theorem and (R14), there exist a constant C that may differ in each
occurrence that

|DIb| =
1

n

∑
Zi|η̂n(Ti) − η0(Ti)||f1(η̃(Ti)) − f10(Ti)||l10(Ti)h1(Ti)|

≤ C
1

n

∑
Zi(η̂n(Ti) − η0(Ti))

2|l10(Ti)h1(Ti)|

≤ C|h1|∞ · ||η̂n − η0||2n = oP(n−1/2),

where η̃(Ti) lies between η0(Ti) and η̂n(Ti); note that |h1|∞ < ∞ follows from (12) and
(R14). Similarly, it can be shown that

|DIc| = oP(n−1/2).

Thus, we have

DI =
1

n

∑
Zi(η̂n(Ti) − η0(Ti))f10(Ti)l10(Ti)h1(Ti) + oP(n−1/2).

Hence,

AI =
1

n

∑
ZiWil10(Ti)h1(Ti)

− 1

n

∑
Zi(η̂n(Ti) − η0(Ti))f10(Ti)l10(Ti)h1(Ti) + oP(n−1/2).

Next, let us write BI as

BI =
1

n

∑
{Zi − F2(ξ̂n(Ti))}l2(ξ̂n(Ti))(1 + δ̂nh1(Ti))

=
1

n

∑
{Zi − F2(ξ0(Ti))}l̂2n(Ti)(1 + δ̂nh1(Ti))

− 1

n

∑
{F2(ξ̂n(Ti)) − F2(ξ0(Ti))}l̂2n(Ti)(1 + δ̂nh1(Ti))

:= EI − FI

By (R14), and applying the argument in the case of CI , ||ξ̂n − ξ0||n = oP(1) implies that
||l̂2n − l20||n = oP(1). Together with |δ̂n − δ0| = oP(1), we have

EI =
1

n

∑
Ril20(Ti)(1 + δ0h1(Ti)) + oP(n−1/2).

FI could be written as

FI =
1

n

∑
{F2(ξ̂n(Ti)) − F2(ξ0(Ti))}l̂2n(Ti)(1 + δ0h1(Ti))

+
1

n

∑
{F2(ξ̂n(Ti)) − F2(ξ0(Ti))}l̂2n(Ti)(δ̂n − δ0)h1(Ti).

It follows from (10) and assumption (R14) that the second term in the above equation is
of the order oP(n−1/2). That is,

FI =
1

n

∑
{F2(ξ̂n(Ti)) − F2(ξ0(Ti))}l̂2n(Ti)(1 + δ0h1(Ti)) + oP(n−1/2).

35



It can be further written as

FI =
1

n

∑
(ξ̂n(Ti) − ξ0(Ti))f20(Ti)l20(Ti)(1 + δ0h1(Ti))

+
1

n

∑
{F2(ξ̂n(Ti)) − F2(ξ0(Ti)) − (ξ̂n(Ti) − ξ0(Ti))f20(Ti)}l20(Ti)(1 + δ0h1(Ti))

+
1

n

∑
{F2(ξ̂n(Ti)) − F2(ξ0(Ti))}(l̂2n(Ti) − l20(Ti))(1 + δ0h1(Ti)) + oP(n−1/2)

:= FIa + FIb + FIc + oP(n−1/2).

By the same argument as before, we can show that

|FIb| = oP(n−1/2),

|FIc| = oP(n−1/2).

Furthermore,

ξ̂n(Ti) − ξ0(Ti) = α̂n − α0 + (δ̂nη̂n(Ti) − δ0η0(Ti))

= (α̂n − α0) + (δ̂n − δ0)η0(Ti) + δ0(η̂n(Ti) − η0(Ti))

+(δ̂n − δ0)(η̂n(Ti) − η0(Ti)).

Again, it follows from (10) and (11) that

1

n

∑
(δ̂n − δ0)(η̂n(Ti) − η0(Ti))f20(Ti)l20(Ti)(1 + δ0h1(Ti)) = oP(n−1/2).

Therefore,

FI = (α̂n − α0)
1

n

∑
f20(Ti)l20(Ti)(1 + δ0h1(Ti))

+(δ̂n − δ0)
1

n

∑
η0(Ti)f20(Ti)l20(Ti)(1 + δ0h1(Ti))

+
1

n

∑
(η̂n(Ti) − η0(Ti))δ0f20(Ti)l20(Ti)(1 + δ0h1(Ti)) + oP(n−1/2).

Note that

BI =
1

n

∑
Ril20(Ti)(1 + δ0h1(Ti))

−(α̂n − α0)
1

n

∑
f20(Ti)l20(Ti)(1 + δ0h1(Ti))

−(δ̂n − δ0)
1

n

∑
η0(Ti)f20(Ti)l20(Ti)(1 + δ0h1(Ti))

− 1

n

∑
(η̂n(Ti) − η0(Ti))δ0f20(Ti)l20(Ti)(1 + δ0h1(Ti)) + oP(n−1/2).
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Hence,

d

ds
Q(θ̂

I

ns)
∣∣∣
s=0

=
1

n

∑
{ZiWil10(Ti)h1(Ti) +Ril20(Ti)(1 + δ0h1(Ti))}

−(α̂n − α0)
1

n

∑
f20(Ti)l20(Ti)(1 + δ0h1(Ti))

−(δ̂n − δ0)
1

n

∑
η0(Ti)f20(Ti)l20(Ti)(1 + δ0h1(Ti))

− 1

n

∑
(η̂n(Ti) − η0(Ti)) {Zif10(Ti)l10(Ti)h1(Ti) + δ0f20(Ti)l20(Ti)(1 + δ0h1(Ti))}

+oP(n−1/2).

Recall

h1(t) = − δ0f20(t)l20(t)

p0(t)f10(t)l10(t) + δ20f20(t)l20(t)
, (27)

where p0(t) = F2(ξ0(t)) = E0(Z|T = t), so an application of Theorem 2.4 in Mammen and
van de Geer (1997) yields

d

ds
Q(θ̂

I

ns)
∣∣∣
s=0

=
1

n

∑
{ZiWil10(Ti)h1(Ti) +Ril20(Ti)(1 + δ0h1(Ti))}

−(α̂n − α0)
1

n

∑
f20(Ti)l20(Ti)(1 + δ0h1(Ti))

−(δ̂n − δ0)
1

n

∑
η0(Ti)f20(Ti)l20(Ti)(1 + δ0h1(Ti))

+oP(n−1/2).

On the other hand, under the assumption that J(η̂n) = OP(1), J(h1) < ∞ and λn =
oP(n−1/4),

d

ds
λ2

nJ
2(η̂I

ns)
∣∣∣
s=0

≤ 2λ2
nJ(η̂n)J(h1) = oP(n−1/2).

We obtain

0 =
1

n

∑
{ZiWil10(Ti)h1(Ti) +Ril20(Ti)(1 + δ0h1(Ti))}

−(α̂n − α0)
1

n

∑
f20(Ti)l20(Ti)(1 + δ0h1(Ti))

−(δ̂n − δ0)
1

n

∑
η0(Ti)f20(Ti)l20(Ti)(1 + δ0h1(Ti))

+oP(n−1/2),

which is Equation (19).

Now let us work on the second path of perturbation,

d

ds
Q(θ̂

II

ns)
∣∣∣
s=0

=
d

ds
Q̄1n(F1(η̂

II
ns))

∣∣∣
s=0

+
d

ds
Q̄2n(F2(ξ̂

II
ns))

∣∣∣
s=0

:= AII +BII ,
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where ξ̂II
ns = α̂n + (δ̂n + s)(η̂n + sh2). By similar procedure as AI , we can write

AII =
1

n

∑
Zi{Yi − F1(η̂n(Ti))}l̂1n(Ti)h2(Ti)

=
1

n

∑
ZiWil10(Ti)h2(Ti)

− 1

n

∑
Zi(η̂n(Ti) − η0(Ti))f10(Ti)l10(Ti)h2(Ti) + oP(n−1/2).

Also,

BII =
1

n

∑
{Zi − F2(ξ̂n(Ti))}l2(ξ̂n(Ti))(η̂n(Ti) + δ̂nh2(Ti))

=
1

n

∑
Ril20(Ti)(η0(Ti) + δ0h2(Ti))

−(α̂n − α0)
1

n

∑
f20(Ti)l20(Ti)(η0(Ti) + δ0h2(Ti))

−(δ̂n − δ0)
1

n

∑
η0(Ti)f20(Ti)l20(Ti)(η0(Ti) + δ0h2(Ti))

− 1

n

∑
(η̂n(Ti) − η0(Ti))δ0f20(Ti)l20(Ti)(η0(Ti) + δ0h2(Ti)) + oP(n−1/2).

Recall

h2(t) = − δ0η0(t)f20(t)l20(t)

p0(t)f10(t)l10(t) + δ20f20(t)l20(t)
, (28)

and
d

ds
λ2

nJ
2(η̂II

ns)
∣∣∣
s=0

≤ 2λ2
nJ(η̂n)J(h2) = oP(n−1/2),

Therefore, we have

0 =
1

n

∑
{ZiWil10(Ti)h2(Ti) +Ril20(Ti)(η0(Ti) + δ0h2(Ti))}

−(α̂n − α0)
1

n

∑
f20(Ti)l20(Ti)(η0(Ti) + δ0h2(Ti))

−(δ̂n − δ0)
1

n

∑
η0(Ti)f20(Ti)l20(Ti)(η0(Ti) + δ0h2(Ti))

+oP(n−1/2),

which is Equation (20). Write the two score equations (19) and (20) in matrix form as

(
a11 a12

a21 a22

)( √
n(α̂n − α0)√
n(δ̂n − δ0)

)
=

(
b1
b2

)
. (29)
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By (27) and (28), and using the law of large numbers, we obtain

a11 =
1

n

∑ p0(Ti)f10(Ti)l10(Ti)f20(Ti)l20(Ti)

p0(Ti)f10(Ti)l10(Ti) + δ20f20(Ti)l20(Ti)
=

∥∥∥∥∥

(
p0f10l10f20l20

p0f10l10 + δ20f20l20

)1/2
∥∥∥∥∥

2

+ oP(1),

a12 =
1

n

∑ p0(Ti)η0(Ti)f10(Ti)l10(Ti)f20(Ti)l20(Ti)

p0(Ti)f10(Ti)l10(Ti) + δ20f20(Ti)l20(Ti)
=

∥∥∥∥∥

(
p0η0f10l10f20l20
p0f10l10 + δ20f20l20

)1/2
∥∥∥∥∥

2

+ oP(1),

a21 =
1

n

∑ p0(Ti)η0(Ti)f10(Ti)l10(Ti)f20(Ti)l20(Ti)

p0(Ti)f10(Ti)l10(Ti) + δ20f20(Ti)l20(Ti)
=

∥∥∥∥∥

(
p0η0f10l10f20l20
p0f10l10 + δ20f20l20

)1/2
∥∥∥∥∥

2

+ oP(1),

a22 =
1

n

∑ p0(Ti)η
2
0(Ti)f10(Ti)l10(Ti)f20(Ti)l20(Ti)

p0(Ti)f10(Ti)l10(Ti) + δ20f20(Ti)l20(Ti)
=

∥∥∥∥∥

(
p0η

2
0f10l10f20l20

p0f10l10 + δ20f20l20

)1/2
∥∥∥∥∥

2

+ oP(1).

Moreover,

b1 =
1√
n

∑ l10(Ti)l20(Ti)
{
Rip0(Ti)f10(Ti) − δ0WiZif20(Ti)

}

p0(Ti)f10(Ti)l10(Ti) + δ20f20(Ti)l20(Ti)
+ oP(1),

b2 =
1√
n

∑ η0(Ti)l10(Ti)l20(Ti)
{
Rip0(Ti)f10(Ti) − δ0WiZif20(Ti)

}

p0(Ti)f10(Ti)l10(Ti) + δ20f20(Ti)l20(Ti)
+ oP(1).

Letting

m0(t) =
l10(t)l20(t)

p0(t)f10(t)l10(t) + δ20f20(t)l20(t)
,

the above formulas can be further simplified as follows,

a11 =
∥∥∥(m0p0f10f20)

1/2
∥∥∥

2
+ oP(1),

a12 = a21 =
∥∥∥(m0p0η0f10f20)

1/2
∥∥∥

2
+ oP(1),

a22 =
∥∥∥(m0p0f10f20)

1/2 η0

∥∥∥
2
+ oP(1),

and

b1 =
1√
n

∑
m0(Ti) {Rip0(Ti)f10(Ti) − δ0WiZif20(Ti)} + oP(1),

b2 =
1√
n

∑
m0(Ti)η0(Ti) {Rip0(Ti)f10(Ti) − δ0WiZif20(Ti)} + oP(1).

By checking the coefficient matrix on the left hand side of (29), it follows from the Cauchy-
Schwartz inequality that it is nonnegative definite, and it is singular if and only if η0(Ti)
is a constant for all i = 1, · · · , n, which holds with probability → 0 as n → ∞, given
assumptions (R1) and (R2). Hence,

√
n(α̂n − α0, δ̂n − δ0)

T is asymptotically bivariate
normal. The explicit form of the covariance matrix can be obtained by solving (29) and
plug in the specific expressions for the coefficients.
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Proof of Theorem 3.

The proof of Theorem 3 follows from the proof of Lemma 3.1 in Mammen and van de Geer
(1997) with the parameter space being bounded, so it is omitted here.

Proof of Theorem 4.

Almost the same as the the proof of Theorem 2, but with the following directions of
perturbation:

h∗1 = − w0f20ζ0
p∗0f

∗
10l

∗
10v0 + w2

0

,

h∗2 = − w0η0f20ζ0
p∗0f

∗
10l

∗
10v0 + w2

0

.

The score equations then become

0 =
1

n

∑
{
EiW

∗
i l

∗
10(Ti)h

∗
1(Ti) +R∗

i

f20(Ti)ζ0(Ti)(1 + δ0h
∗
1(Ti)) + F20(Ti)ζ̇0(Ti)h

∗
1(Ti)

v0(Ti)

}

−(α̂n − α0)
1

n

∑
f20(Ti)ζ0(Ti)

f20(Ti)ζ0(Ti)(1 + δ0h
∗
1(Ti)) + F20(Ti)ζ̇0(Ti)h

∗
1(Ti)

v0(Ti)

−(δ̂n − δ0)
1

n

∑
η0(Ti)f20(Ti)ζ0(Ti)

f20(Ti)ζ0(Ti)(1 + δ0h
∗
1(Ti)) + F20(Ti)ζ̇0(Ti)h

∗
1(Ti)

v0(Ti)

+oP(n−1/2),

and

0 =
1

n

∑
{
EiW

∗
i l

∗
10(Ti)h

∗
2(Ti) +R∗

i

f20(Ti)ζ0(Ti)(η0(Ti) + δ0h
∗
2(Ti)) + F20(Ti)ζ̇0(Ti)h

∗
2(Ti)

v0(Ti)

}

−(α̂n − α0)
1

n

∑
f20(Ti)ζ0(Ti)

f20(Ti)ζ0(Ti)(η0(Ti) + δ0h
∗
2(Ti)) + F20(Ti)ζ̇0(Ti)h

∗
2(Ti)

v0(Ti)

−(δ̂n − δ0)
1

n

∑
η0(Ti)f20(Ti)ζ0(Ti)

f20(Ti)ζ0(Ti)(η0(Ti) + δ0h
∗
2(Ti)) + F20(Ti)ζ̇0(Ti)h

∗
2(Ti)

v0(Ti)

+oP(n−1/2),

leading to the required conclusion.

A Simple Justification of Computing the Asymptotic Variance by Invert-

ing the Fisher Information

In Theorem 2, we proved the asymptotic normality of the estimators α̂n and δ̂n, with
a rather complex formula for the asymptotic covariance matrix. However, how does it
compare with the results obtained from inverting the observed Fisher information? Here
we will illustrate their asymptotic equivalence in a simplest case where the regular response
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follows an additive model and we use the logit link for the probability of the inflated zero
atom.

For the additive model, suppose the dispersion parameter is known and, without loss
of generality, equal to 1. Then we have: F1(η) = η, V = 1, f1 = 1 and l1 = 1. If F2 is the
inverse logit function, then f2 = p(1−p) and l2 = 1. Now the formulas could be simplified
as follows:

m0 =
1

p0(1 + δ20(1 − p0))
,

a11
.
= E

{
p0(1 − p0)

1 + δ20(1 − p0)

}
,

a12
.
= E

{
η0p0(1 − p0)

1 + δ20(1 − p0)

}
,

a22
.
= E

{
η2
0p0(1 − p0)

1 + δ20(1 − p0)

}
.

Also,

b1
.
=

1√
n

∑{
1

1 + δ20(1 − p0(Ti))
Ri −

δ0(1 − p0(Ti))

1 + δ20(1 − p0(Ti))
WiZi

}
,

b2
.
=

1√
n

∑{
η0(Ti)

1 + δ20(1 − p0(Ti))
Ri −

δ0η0(Ti)(1 − p0(Ti))

1 + δ20(1 − p0(Ti))
WiZi

}
.

Solving Equation (29) we have

√
n(α̂n − α0) =

a22b1 − a12b2
a11a22 − a2

12

,

√
n(δ̂n − δ0) =

a11b2 − a12b1
a11a22 − a2

12

.

Using the fact that V ar(R|T ) = p0(T )(1 − p0(T )), V ar(ZW |T ) = p0(T )(1 − p0(T )) and
noting that R and W are conditionally uncorrelated given T , then by the central limit
theorem the limiting distribution of

√
n(α̂n − α0) is Normal(0, vα), where vα is

E

{
(a22 − a12η0)

2p0(1 − p0)

1 + δ20(1 − p0)

}

multiplied by the constant
(
a11a22 − a2

12

)−2
. Notice we have suppressed T from the nota-

tions, even though the expectation is taken with respect to T . Similarly,
√
n(δ̂n − δ0) is

asymptotically Normal(0, vδ), with vδ equal to

E

{
(a12 − a11η0)

2p0(1 − p0)

1 + δ20(1 − p0)

}

multiplied by
(
a11a22 − a2

12

)−2
. Considering the specific forms of a11, a12 and a22, we have

the approximations

vα ∝ E
(
η2
0p0(1 − p0)

)
,

vδ ∝ E
(
p0(1 − p0)

)
.
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In comparison, the information matrix of α and δ equals

Iαδ =

( ∑
pi(1 − pi)

∑
ηipi(1 − pi)∑

ηipi(1 − pi)
∑
η2

i pi(1 − pi)

)
,

hence the claimed asymptotic equivalence.
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