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Summary. Zero inflation problem is very common in ecological studies as well as other areas.
We propose the COnstrained Zero-Inflated Generalized Additive Model (COZIGAM) for analyz-
ing zero-inflated data. Our approach assumes that the response follows some distribution from
the zero-inflated 1-parameter exponential family, with the further assumption that the probabil-
ity of zero inflation is some monotone function of the mean response function. When the latter
assumption obtains, the new approach provides a unified framework for modeling zero-inflated
data. This bypasses the problems of two popular methods for analyzing zero-inflated data that
either focus only on the non-zero data or model the presence-absence data and the non-zero
data separately. We develop an iterative algorithm for penalized likelihood estimation with a
COZIGAM, and derive formulas for constructing confidence intervals. The new approach is
illustrated with both simulated data and two real applications.

Keywords: EM algorithm; Observed information; Penalized-iteratively re-weighted least
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1. Introduction

Generalized additive models (GAMs) (Hastie and Tibshirani, 1990; Wood, 2006) are widely
used in applied statistics, e.g., in ecological analysis; see, e.g., Ciannelli et al. (2008) and
the references therein. Penalized likelihood methods provide powerful tools for estimating
GAMs, see Wahba (1983), Green and Silverman (1994), Gu (2002) ,Wood (2000) and Wood
(2006). In the GAM framework, the unknown smooth component functions can be estimated
by maximizing the penalized likelihood which, in a simple case, equals

L(f) − (λ/2)J(f) (1)

where f is the unknown regression function on the link scale, L(f) is the log likelihood
function, J(f) is some roughness penalty and λ is the smoothing parameter that controls
the trade-off between the goodness-of-fit and the smoothness of the function. A commonly
used roughness measure is J(f) =

∫

‖D2f‖2 where D2 is the second derivative operator
and ‖ · ‖ denotes the square norm. This roughness measure will be adopted in the real
applications. Based on reproducing kernel Hilbert space theory and under mild regularity
conditions, it can be shown that the maximizer of (1) is a linear combination of finitely
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many basis functions (the number of which generally increases with sample size), see Gu
(2002). In particular, for J(f) =

∫

‖D2f‖2, the maximizer is a smoothing spline, being
natural cubic spline in the 1-dimensional case and thin-plate spline in higher dimensional
cases, see Wood (2003) and Gu (2002). These results extend to the case of GAM when the
mean function is the sum of more than 1 component functions on the link scale, and form
the basis of some approaches for empirical GAM analysis; see Gu (2002) and Wood (2006).

A common problem encountered in ecological data is the presence of high number of
zeroes, a problem known as zero inflation. For example, fisheries trawl survey data often
contain a large number of zero catches, due to the fact that fish swim in schools influenced
by food availability and irregular current pattern, see Ciannelli et al. (2008). Zero-inflation
also occur in other fields, for example, in marketing where data on consumer choice may
contain many non-purchase observations. Indeed, zero-inflated data abound in science and
quantitative studies. Zero-inflated data are often analyzed via a mixture model that specifies
the response variable as a probabilistic mixture of zero and a random variable belonging to
some 1-parameter exponential family, the latter of which will be referred to as the regular
component of the response, or simply regular response. See Rigby and Stasinopoulos (2005).
The mixture model is sometimes analyzed with a two-stage approach that firstly analyzes the
data with the responses dichotomized into zero or non-zero, the so-called absence-presence
analysis, and then a second analysis with all non-zero data. For example, if the response
distribution consists of a probabilistic mixture of zero and a log-normal distribution, then
the two-stage approach models the log-transformed positive data by some additive model
whereas the absence-presence pattern is performed by another GAM via, say, the logistic
link. A draw-back of the two-stage approach is that the two separate model fits may result in
conflicting conclusions. The same potential problem persists even with a likelihood analysis
using all data including zeroes and non-zero data, as the regression function linked to the
zero-inflation probability and that linked to the mean regular response are unconstrained.
In other words, it is not surprising that different conclusions might be drawn from the
zero data and the non-zero data under an unconstrained model. On the other hand, the
presence-absence analysis are generally much less informative than the analysis with the
non-zero data so that, even if the true regression functions are alike on the link scales,
their estimates may well show conflicting conclusions owing to sampling variability. For
recent surveys on zero-inflated data, see, e.g., Welsh et al. (1996), Agarwal et al. (2002) and
Cunningham and Lindenmayer (2005).

In some cases, it is reasonable to expect that the mixing probability of the zero atom
is a monotone function of the mean response. For example, if zero inflation results from
under-reporting, then its probability may increase with lower mean response. Incorporating
such a constraint on the GAM with zero-inflated data effectively removes the potential
problem of having conflicting conclusions from a two-stage analysis. Here, we implement
this new approach with the simplifying assumption that, on the link scales, the mixing
probability of the zero atom is a linear function of the mean regular response which itself is
modeled by a GAM with 1-parameter exponential-family response; below this new model
is referred to as the COnstrained Zero-Inflated Generalized Additive Model (COZIGAM).
We propose to estimate the COZIGAM by penalized likelihood. We introduce several
useful parametrizations of the COZIGAM in Section 2, and propose an iterative algorithm
for maximizing the constrained penalized likelihood. In the case that zero is a possible
outcome for the regular response, e.g. if the regular response is conditionally Poisson, the
penalized likelihood becomes more complex and the iterative estimation procedure has to
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be augmented by steps based on the expectation-maximization (EM) algorithm (Dempster
et al., 1977). The iterative estimation method and the formula for computing the observed
Fisher information are presented in Section 3, together with some Monte-Carlo studies on
the empirical coverage rates of associated confidence intervals. In Section 4, we illustrate
the COZIGAM by two real examples. We briefly conclude in Section 5.

2. Model Formulation

2.1. Parametrization 1: Homogeneous Zero Inflation
Let the data be Y = (Y1, Y2, . . . , Yn)T and the covariates be X = (X1, X2, . . . , Xn) where
Yi are scalars and Xi are possibly high-dimensional vectors. In the first formulation, the
probability of zero inflation is assumed to be constant. Assume that given the covariates
X , the Yi’s are independently distributed. Moreover, the marginal conditional distribution
of Yi depends on the covariates only through xi, which is a mixture distribution given by

Yi|xi ∼ hi(yi) =

{

0 with probability 1 − p
f(yi|θi) with probability p,

(2)

where the zero atom models the zero inflation explicitly, and f(yi|θi) is the probability
density (mass) function pdf (pmf) that belongs to some 1-parameter exponential family
distribution with θi as the canonical parameter (Nelder and Wedderburn, 1972) to be linked
to the covariate xi (see below). The exponential-family density can be expressed as

f(yi|θi) = exp

{

yiθi − b(θi)

ai(φ)
+ ci(yi, φ)

}

,

where it is assumed that ai(φ) = φ
ωi

, with ωi being some known constants, often equal to
1, and φ is a dispersion parameter. Then

f(yi|θi) = exp

{

ωi(yiθi − b(θi))

φ
+ ci(yi, φ)

}

. (3)

In the GAM setting, on the link scale,

gµ(µi) = s(xi)

where µi = E(Yi) = b′(θi) is the expectation of Yi evaluated under f ; gµ(·) is the link func-
tion and s(·) some smooth function to be estimated by the penalized likelihood approach.
As discussed in the introduction, the penalized likelihood estimator of s generally equals
some linear combination of certain basis functions. Moreover, the smooth function evalu-
ated at xi could be expressed as Xiβ, where Xi is the ith row of the design matrix X of
the basis functions, and β is the parameter vector to be estimated. Consequently, without
loss of generality, we have

gµ(µi) = s(xi) = Xiβ. (4)

Hence, the unknown parameters of the model consist of Θ = (βT , p)T .
(The extension to the case of replacing s by a sum of smooth functions with lower-dimensional
arguments is straightforward.) Note that if p ≡ 1, then the model is a GAM whereas, in
the general case, the model is a Zero-Inflated Generalized Additive Model (ZIGAM); below
we shall refer the distribution with f as its pdf the regular distribution.
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If the regular distribution assigns positive probability to zero, which is the case for
many distributions including Poisson and binomial, the likelihood function becomes rather
complex. The complexity owes to the fact that a zero observation may result from the
zero atom or the regular distribution. If, however, the status of the zero observations are
known, the likelihood becomes more tractable. This suggests the use of the EM algorithm
for maximizing the penalized likelihood. Augment the data by the indicator variables
Z = (Z1, . . . , Zn) defined as follows

Zi =

{

1 if Yi ∼ f(yi|θi)
0 if Yi ∼ 0.

(5)

The sequence {Zi} is independent and identically distributed as Bernoulli(p). The joint
density of the complete data equals

f(y, z|p, β) =
n
∏

i=1

{pf(yi|θi)}
zi {(1 − p)I(yi = 0)}1−zi

and the complete-data log-likelihood equals

l(p, β) =

n
∑

i=1

zi log{pf(yi|θi)} + (1 − zi) log (1 − p) + (1 − zi) log(I(yi = 0)),

where I(·) is the indicator variable of the event enclosed in parentheses; 0 log(0) is defined to
be 0. Note that zi = 1 if yi 6= 0, in which case the above convention that 0 log(0) = 0 ensures
that the corresponding term (1 − zi) log(I(yi = 0)) has no contribution to the complete-
data log-likelihood, as it should be. The roughness penalty term (λ/2)J(f) can often be
expressed as a quadratic form 1

2β
TSβ where S is a penalty matrix that is known up to the

multiplicative smoothing parameter λ, see Gu (2002) and Wood (2006). Consequently, the
penalized complete-data log-likelihood becomes

lp(p, β) =

n
∑

i=1

[zi log{pf(yi|θi)} + (1 − zi) log(1 − p) + (1 − zi) log(I(yi = 0))] −
1

2
βTSβ.

(6)
Estimation can be done by maximizing the above penalized log-likelihood, via an iterative
algorithm detailed in Section 3.

2.2. Parametrization 2: Linear Constraint on the Zero Inflation Rate
A more general model is obtained by letting the zero-inflation probability to link to a
smooth function of the covariate. However, as argued in section 1, it is of interest to impose
the constraint that the smooth function linked to the zero-inflation probability is linearly
related to the smooth function linked to the mean regular response. Specifically, we put a
linear constraint on p on the link scale. Equation (2) is now modified to

Yi|xi ∼ h(yi) =

{

0 with probability 1 − pi
f(yi|θi) with probability pi,

(7)

with the constraint that for some constants α and δ,

gp(pi) = α+ δs(xi),
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where gp(·) is the link function of p, e.g., the logit function: gp(p) = logit(p) = log p
1−p .

Recall gµ(µi) = s(xi). Below, we sometimes write ηi for s(xi) so that gp(pi) = α + δηi.
Denote the parameters by Θ = (α, δ, βT )T . This constrained model will be called the
COnstrained Zero-Inflated Generalized Additive Model (COZIGAM). Notice that now the
zero atom contains information about β. Indeed,

∂pi
∂βj

=
δXij

ġp(pi)
, (8)

where for any function h, ḣ denotes its first derivative and ḧ its second derivative. The
penalized complete-data log-likelihood equals

lp(α, δ, β) =

n
∑

i=1

[zi log{pif(yi|θi)} + (1 − zi) log (1 − pi) + (1 − zi) log(I(yi = 0))]−
1

2
βTSβ,

(9)
with the smoothing parameter λ included in the penalty matrix S.

2.3. Parametrization 3: Linear Constraint on the Expectation
The preceding parametrization specifies gµ(µ) as a smooth function of the covariate and
that gp(p) is a linear function of gµ(µ). Such a parametrization facilitates a framework for
checking whether or not the zero inflation rate is homogeneous by testing whether or not
δ = 0. But it is invalid for the case that the expectation µ of the regular distribution is
constant whereas the zero inflation rate is non-homogeneous. To deal with this case, we
propose the third parametrization which specifies that gp(p) is a smooth function of the
covariate and puts the linear constraint on gµ(µ). The model is then defined by (7), but
with a different linear constraint:

gµ(µi) = α+ δ s(xi),

where gp(pi) = s(xi). Again, we shall write ηi for s(xi) so that the linear constraint becomes
gµ(µi) = α + δ ηi. Note that the second and third parametrizations are equivalent if the
slope parameter δ in one of the parametrizations is non-zero. The third parametrization,
however, enables us to check whether or not the expectation µ of the regular response is
homogeneous by testing whether or not δ = 0.

The above two COZIGAM parametrizations use different bases for setting up the linear
constraints. The two linear constraints can be subsumed as special cases of the constraint
that gp(p) and gµ(µ) are linearly related, i.e. there exist constants κ and ξ, not both zero,
such that κgp(p) + ξgµ(µ) is a constant. If both κ and ξ are non-zero, then the second
and third parametrizations are equivalent. However, if κ = 0, only the third parametriza-
tion is valid whereas if ξ = 0, only the second parametrization is valid. The advantage
of the second and third parametrizations of the COZIGAM is that they facilitate testing
for homogeneous zero inflation or homogeneous regular mean response. Furthermore, these
two parametrizations have clear interpretation, and admits computationally simpler esti-
mation algorithm (see below). However, before fitting the model, we may not know which
parametrization is valid. One way to bypass this problem is to use a representation that is
always valid under the general condition that gp(p) and gµ(µ) are linearly related. Below
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is such a representation:

{

gµ(µi) = α1 + δs(xi)
gp(pi) = α2 + (1 − δ)s(xi),

where αi, i = 1, 2 and δ are constants. This is a symmetric representation which essentially
uses the sum gµ(µ) + gp(p) as the basis function. In this parametrization, δ = 1 represents
the interesting hypothesis that gp(p) is a constant function (homogeneous zero-inflation)
whereas δ = 0 is equivalent to the constancy of gµ(µ) (constant mean regular response).
Note that for the model to be identifiable, the smooth function s(·) must be centered, i.e.,
of zero mean. The estimation algorithm for this more general parametrization is similar but
more complex than the other ones, especially when computing the observed information.
Recall that in the generic case when both κ and ξ are non-zero, the three COZIGAM
parametrizations are equivalent. For conciseness, all subsequent theoretical development
and real applications are carried out using the second parametrization, but the methods
can be readily lifted to the other parametrizations.

3. Model Estimation

The proposed algorithm for estimating a COZIGAM is motivated by the Penalized Itera-
tively Re-weighted Least Squares (PIRLS) method (Wood, 2006, page 169) and the Penal-

ized Quasi-Likelihood (PQL) method. The PQL method was exploited by Green (1987) for
semiparametric regression. See, also, Breslow and Clayton (1993) for its use in estimating
generalized linear mixed models (GLMM). As we mentioned earlier, if the regular distri-
bution assigns positive probability to zero, the nature of the zero observations is unknown.
The values of the indicator variable stating whether a zero observation is a realization of
the zero atom or the regular response are then missing. Were these missing data available,
the likelihood is more tractable. Thus, the EM algorithm will be made use in the proposed
algorithm. We shall also derive the formulas for computing the observed Fisher information
for the penalized estimators, which are useful for computing standard errors and confidence
intervals. Throughout this section, the analysis will be done conditional on the covariate x.
For simplicity, the dependency on x is generally suppressed from the notations, and we set
ωi ≡ 1. Furthermore, we assume that the smoothing parameter is known in the derivation
below. In practice, the smoothing parameter is generally unknown and need to be estimated
by various criteria, e.g., GCV or UBRE; see Wood (2006). We shall return to the issue of
estimating the smoothing parameter later.

3.1. Optimization with Homogeneous Zero Inflation

The optimization of the penalized likelihood of the homogeneous zero-inflated GAM can be
implemented via the EM algorithm with Z defined by (5) as missing data. We first derive
the conditional distribution of Z given the data. Write f(yi|θi) = f(yi). The joint density
of (Y,Z) equals

f(y, z|p, β) =

n
∏

i=1

{pf(yi)}
zi {(1 − p)I(yi = 0)}

1−zi ,
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hence the conditional distribution of Z given Y are independent with marginal conditional
pdf given by

f(zi|yi; p, β) =
f(yi, zi|p, β)

f(yi|p, β)
=

{pf(yi)}
zi {(1 − p)I(yi = 0)}

1−zi

pf(yi) + (1 − p)I(yi = 0)

Therefore

Zi|y; p, β ∼ Bernoulli

(

pf(yi)

pf(yi) + (1 − p)I(yi = 0)

)

.

Denote ψi = E(Zi|y; p, β) = pf(yi)
pf(yi)+(1−p)I(yi=0) . Armed with these results, we can now

state the EM algorithm for maximizing the penalized likelihood. Given the rth parameter
iterate, the E-step and M-step are implemented as follows.

E-step

Let

ψ
(r)
i = E(Zi|yi, p

(r), β(r)) =
p(r)f(yi|θ

(r)
i )

p(r)f(yi|θ
(r)
i ) + (1 − p(r))I(yi = 0)

.

Then, up to an additive constant, the expected complete-data log-likelihood equals

E(l(p, β)|Y, p(r), β(r)) =

n
∑

i=1

ψ
(r)
i log pf(yi|θi) + (1 − ψ

(r)
i ) log (1 − p)

and thence the expected penalized complete-data log-likelihood is given by

E(lp(p, β)|Y, p(r), β(r)) = E(l(p, β)|Y, p(r), β(r)) −
1

2
βTSβ.

M-step

• The next iterate for p equals

p(r+1) =
1

n

n
∑

i=1

ψ
(r)
i =

1

n

n
∑

i=1

p(r)f(yi|θ
(r)
i )

p(r)f(yi|θ
(r)
i ) + (1 − p(r))I(yi = 0)

.

For simplicity, we henceforth write Elp for E(lp(p, β|Z)|Y,Θ(r)).

• For estimating β, consider the score

∂Elp
∂βj

=
1

φ

n
∑

i=1

ψ
(r)
i (yi − µi)

V (µi)

∂µi
∂βj

− [Sβ]j j = 1, . . . ,K.

The next iterate β(r+1) can be obtained by maximizing Elp as a function of β, which

can be done via the PIRLS algorithm by simply treating ψ
(r)
i as ‘weight’ at each

iteration.
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3.2. Optimization with the Linear Constraint
The above procedure can be modified for estimating the COZIGAM. We illustrate the
proposed method in the setting of the second parametrization of the COZIGAM; the method
works similarly for other parametrizations. The E-step requires a slight modification as
follows: in the rth iteration,

ψ
(r)
i = E(Zi|yi,Θ

(r)) =
p
(r)
i f(yi|θ

(r)
i )

p
(r)
i f(yi|θ

(r)
i ) + (1 − p

(r)
i )I(yi = 0)

,

and

E(l(Θ)|Y,Θ(r)) =

n
∑

i=1

ψ
(r)
i log{pif(yi|θi)} + (1 − ψ

(r)
i ) log (1 − pi).

The objective function Elp for the M-step can then be readily computed.

The M-step is to find the maximizer ofElp with respect to the parameter Θ = (α, δ, βT )T .
Taking the first derivatives of the objective function, we get

∂Elp
∂βj

=
1

φ

n
∑

i=1

ψ
(r)
i (yi − µi)

V (µi)

∂µi
∂βj

+
n
∑

i=1

ψ
(r)
i − pi

pi(1 − pi)

∂pi
∂βj

− [Sβ]j , j = 1, . . . ,K, (10)

∂Elp
∂α

=

n
∑

i=1

ψ
(r)
i − pi

pi(1 − pi)

1

ġp(pi)
, (11)

∂Elp
∂δ

=

n
∑

i=1

ψ
(r)
i − pi

pi(1 − pi)

gµ(µi)

ġp(pi)
, (12)

where β is assumed to be K-dimensional. Let ρ and τ be n× 1 vectors whose components
equal

ρi =
Zi − pi

ġp(pi)pi(1 − pi)
,

τi =
Zi(yi − µi)

ġµ(µi)φV (µi)
. (13)

Define ρ̃(r) = E
(

ρ|Θ(r)
)

, and τ̃ (r) = E
(

τ |Θ(r)
)

. Then equation (10) becomes

∂Elp
∂β

= δXT ρ̃(r) + XT τ̃ (r) − Sβ = 0.

The first set of equations (10) can be solved iteratively by modifying the PIRLS algorithm.
The major obstacle for applying the PIRLS algorithm is that (10) involves two GAMs, one
defined in terms of µ and another through p. The solution to this problem may be better
understood by considering a more general equation:

1

φ1

n
∑

i=1

w1i(y1i − µ1i)

V1(µ1i)

∂µ1i

∂βj
+

1

φ2

n
∑

i=1

w2i(y2i − µ2i)

V2(µ2i)

∂µ2i

∂βj
− [Sβ]j = 0 ∀j,

where the two sums correspond to contributions from two GAMs with mean µki linked
to Xkβ by the link function gk, and variance function Vk(µki), k = 1, 2. However, these
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equations are exactly the optimality conditions for finding β that minimizes the following
non-linear weighted least squares:

Sp = S1 + S2 + βSβT ,

where

S1 =

n
∑

i=1

w1i(y1i − µ1i)
2

φ1V1(µ1i)
,

S2 =
n
∑

i=1

w2i(y2i − µ2i)
2

φ2V2(µ2i)
,

assuming the weights V1(µ1) and V2(µ2) were known and independent of β.

The nonlinear least square problem can be solved iteratively. Let β̂[k] be the kth iterate of

β. Denote µ
[k]
t as the value of µt evaluated at β̂[k]. Defining diagonal matrices Vt[k] with

the diagonal elements Vt[k]ii = Vt(µ
[k]
ti ), and the diagonal matrices W∗

t with W ∗

tii = wti/φt,
t = 1, 2, we have

St =
∥

∥

∥

√

V−1
t[k]W

∗

t (yt − µt(β))
∥

∥

∥

2

, t = 1, 2

Next approximate µt by its first order Taylor expansion around the kth estimate β̂[k]. Hence,

St ≈
∥

∥

∥

√

V−1
t[k]W

∗

tG
−1
t

(

Gt(yt − µ
[k]
t ) + η

[k]
t − Xtβ

)∥

∥

∥

2

, t = 1, 2,

where Gt is a diagonal matrix with elements Gtii = ġt(µ
[k]
ti ). Furthermore, by defining the

‘pseudodata’

z
[k]
ti = ġt(µ

[k]
ti )(yti − µ

[k]
ti ) + η

[k]
ti

and the diagonal weight matrices W
[k]
t with elements

W
[k]
tii =

wti

φtVt(µ
[k]
ti )ġ2

t (µ
[k]
ti )

we have

St ≈

∥

∥

∥

∥

√

W
[k]
t

(

z
[k]
t − Xtβ

)

∥

∥

∥

∥

2

, t = 1, 2.

Hence, at the kth iteration,

Sp ≈

∥

∥

∥

∥

√

W
[k]
1

(

z
[k]
1 − X1β

)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

√

W
[k]
2

(

z
[k]
2 − X2β

)

∥

∥

∥

∥

2

+ βSβT .

Write

W[k] =

(

W
[k]
1 0

0 W
[k]
2

)

and

z[k] =

(

z
[k]
1

z
[k]
2

)

, X =

(

X1

X2

)
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The two weighted sum of squares can be combined into a single penalized sum of squares:

Sp ≈
∥

∥

∥

√

W[k]
(

z[k] − Xβ
)∥

∥

∥

2

+ βSβT , (14)

the minimization of which yields the next iterate of β. In the case of unknown smoothing
parameter, it can be estimated, e.g., by minimizing the GCV of the model corresponding
to the preceding approximate weighted least squares; see Wood (2006) for a review of other
criteria and efficient algorithms.

We apply this modified PIRLS algorithm for solving equation (10). After updating β
using the modified PIRLS algorithm, the parameters (α, δ) can be updated by fitting the
generalized linear model with ψi as the response, using the quasi-binomial family that links
pi to α+ δηi where, given the current estimate of β, ηi = s(xi) is known. The iteration can
be repeated until all parameters converge according to some stopping criterion.

3.3. Computing the Observed Information
To compute the standard errors of the penalized likelihood estimators, we follow Louis’
method (Louis, 1982) for computing the observed information matrix. Normal approxi-
mation of the sampling distribution of the estimators then yields a simple approach for
constructing point-wise confidence intervals. Some simulation results will be given to ex-
amine the empirical performance of this approach.

3.3.1. Observed Information

We illustrate the application of Louis’ method only for the second parametrization of the
COZIGAM, as its application to other parametrizations is similar. We follow the notations
in Louis (1982). Write l∗p = Elp as the imputed penalized complete-data log-likelihood
where the expectation is conditional on the observed data and evaluated under the pe-
nalized parameter estimate. Recall Θ = (α, δ, βT )T . Let S(y,Z,Θ) and S∗(y,Θ) be the
gradient vectors of lp and l∗p respectively, and B(y,Z,Θ), B∗(y,Θ) be the corresponding
negative second derivative matrices. Let IΘ be the negative second derivative of the penal-
ized likelihood of the observed data. From Louis (1982),

IΘ = E {B(y,Z,Θ)} − E
{

S(y,Z,Θ)ST (y,Z,Θ)
}

+ S∗(y,Θ)S∗T (y,Θ), (15)

where all expectations within this section are conditional on the observed data and computed
under Θ.

The formula given in Louis (1982) is for the case of unpenalized likelihood estimation,
but its extension to the penalized likelihood is straightforward. An interesting question
arises as to how it relates to the observed information of the unpenalized log-likelihood
function. By routine algebra, it can be shown that

Ipenalized(Θ̂) = Iunpenalized(Θ̂) + S (16)

Thus, the penalized observed information is the unpenalized observed information plus the
prior information specified by S. In other words, we can view it as the observed posterior

information assuming the estimated smoothing parameters are fixed.
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We now implement the above approach for the COZIGAM. Partition IΘ into a 3 × 3
block matrix according to the partition Θ = (α, δ, βT )T , so that its (1, 1) block is denoted by
Iα, the (1, 2) denoted by Iαδ, etc. Recall the n-dimensional vectors ρ and τ with components
defined by (13). It is readily checked that

ρ̇i =
∂ρi
∂pi

=
−ġp(pi)pi(1 − pi) − (Zi − pi) {g̈p(pi)pi(1 − pi) + ġp(pi)(1 − 2pi)}

ġ2
p(pi)p

2
i (1 − pi)2

(17)

and

τ̇i =
∂τi
∂µi

=
Zi

{

−ġµ(µi)V (µi) − (yi − µi)
[

g̈µ(µi)V (µi) + ġµ(µi)V̇ (µi)
]}

ġ2
µ(µi)φV

2(µi)
.

Then the first derivatives of the penalized log-likelihood equal

∂lp
∂α

=
∑

ρi,

∂lp
∂δ

=
∑

ηiρi,

∂lp
∂β

= δXTρ+ XT τ − Sβ.

Also it can be readily checked that

EZiZj − ψiψj =

{

0 i 6= j
ψi(1 − ψi) i = j.

(18)

For the scalar parameter α, we have

∂2lp
∂α2

=
∑ ∂ρi

∂pi

∂pi
∂α

=
∑ ρ̇i

ġp(pi)
.

Combined with equation (18),

Iα =

n
∑

i=1

{

−Eρ̇i
ġp(pi)

−
ψi(1 − ψi)

ġ2
p(pi)p

2
i (1 − pi)2

}

(19)

Notice that in the above equation Eρ̇i has exactly the same form as ρ̇i defined by (17)
except that Zi is replaced by ψi. Similarly, since

∂2lp
∂δ2

=
∑

ηi
∂ρi
∂pi

∂pi
∂δ

=
∑ η2

i ρ̇i
ġp(pi)

∂2lp
∂α∂δ

=
∑ ∂ρi

∂pi

∂pi
∂δ

=
∑ ηiρ̇i

ġp(pi)
,

it can be shown that

Iδ =

n
∑

i=1

η2
i

{

−Eρ̇i
ġp(pi)

−
ψi(1 − ψi)

ġ2
p(pi)p

2
i (1 − pi)2

}

, (20)

and

Iαδ =

n
∑

i=1

ηi

{

−Eρ̇i
ġp(pi)

−
ψi(1 − ψi)

ġ2
p(pi)p

2
i (1 − pi)2

}

. (21)
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Now we turn to β. To get the second derivatives, first note that ∂τi

∂βj
= ∂τi

∂µi

∂µi

∂βj
=

τ̇iXij

ġµ(µi)
,

and ∂ρi

∂βj
= ∂ρi

∂pi

∂pi

∂βj
=

δρ̇iXij

ġp(µi)
. Let Gτ and Gρ be two diagonal matrices with elements

Gτii = −τ̇i

ġµ(µi)
and Gρii = −ρ̇i

ġp(µi)
respectively, then

∂2lp
∂β∂βT

= −XTGτX − δ2XTGρX − S.

It follows from (18) that

EττT − EτEτT = diag

{

ψi(1 − ψi)(yi − µi)
2

ġ2
µ(µi)φ

2V 2(µi)

}

:= Wτ

EρρT − EρEρT = diag

{

ψi(1 − ψi)

ġ2
p(pi)p

2
i (1 − pi)2

}

:= Wρ

E
(

τρT + ρτT
)

−
(

EτEρT + EρEτT
)

= diag

{

2ψi(1 − ψi)(yi − µi)

ġµ(µi)φV (µi)ġp(pi)pi(1 − pi)

}

:= 2Wτρ,

and hence

E

(

∂lp
∂β

∂lp
∂βT

)

− E

(

∂lp
∂β

)

E

(

∂lp
∂βT

)

= XT
{

Wτ + 2δWτρ + δ2Wρ

}

X.

So the observed information matrix of β equals

Iβ = XT
(

G̃τ − Wτ

)

X + δ2XT
(

G̃ρ − Wρ

)

X− 2δXTWτρX + S, (22)

where G̃τ = EGτ , G̃ρ = EGρ.
Similarly, it can be checked that

Iαβ = −δXTυ(α) − XT ν(α) (23)

where υ
(α)
i = Eρ̇i

ġp(pi)
+ ψi(1−ψi)

ġ2p(pi)p2i (1−pi)2
, and ν

(α)
i = ψi(1−ψi)(yi−µi)

ġµ(µi)φV (µi)ġp(pi)pi(1−pi)
;

Iδβ = −δXTυ(δ) − XT ν(δ), (24)

where υ
(δ)
i = ηi

{

Eρ̇i

ġp(pi)
+ ψi(1−ψi)

ġ2p(pi)p2i (1−pi)2

}

, and ν
(δ)
i = ψi−pi

ġp(pi)pi(1−pi)
+ ηiψi(1−ψi)(yi−µi)
ġµ(µi)φV (µi)ġp(pi)pi(1−pi)

.

Combining all the pieces together, we have the observed information matrix of Θ given
by

IΘ =





Iα Iαδ ITαβ
Iαδ Iδ ITδβ
Iαβ Iδβ Iβ



 . (25)

Then VΘ = I−1
Θ is the observed covariance matrix of the estimator Θ̂, and the square root

of its diagonal elements yield the standard errors of the estimates.
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3.3.2. Simulation Results

Assuming asymptotic normality for the estimators, point-wise confidence intervals can be
readily constructed for each parameter and the smooth functions. The confident intervals
are constructed based on the assumption that the smoothing parameters are fixed, while in
fact they are estimated from the data by some criterion, e.g., GCV. So in this section we
examine the empirical coverage probabilities of the confidence intervals via simulation.

The simulations are based on two test functions, denoted by s1 and s2, which are taken
from Wood (2006). The test function s1 has a 1-dimensional argument, while s2 has a
2-dimensional argument(see Fig. 1).

s1(x) = 0.2x11(10(1 − x))6 + 10(10x)3(1 − x)10

s2(x, z) = 0.3 × 0.4π
{

1.2e−(x−0.2)2/0.32
−(z−0.3)2 + 0.8e−(x−0.7)2/0.32

−(z−0.8)2/0.42
}

.

Poisson responses are generated so that, on the link scale, the mean equals the test func-

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

s1 (x)

x

s2 (x, z)

x

z

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 1. Test Functions

tion, after some rescaling. Zero inflation occurs at a rate that is proportional to the Poisson
mean on the logit scale (see the legend of Fig. 2). The smoothing parameter is chosen by
GCV, as explained in Section 3. The fitting results for one simulated data are shown in
Fig. 2. Notice that the plots are on the link scale and are centered.

We examined the performance of confidence intervals by checking the Across-the-Function
Coverage (AFC), as was discussed by Wahba (1983) and Gu (2002). The average coverage
proportion is defined as the coverage rate over the sampling points as follows.

ACP(α) =
1

n
♯
{

i : |ŝ(xi) − s(xi)| < zα/2σ̂s(xi)

}
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Fig. 2. Model Fits of Simulated Data: the left panel depicts an estimate of the test function s1

with true α = −0.5, δ = 1.5, whose estimated values are α̂ = −0.550(0.377), δ̂ = 1.529(0.315).
The gray dash-dot line is the true centered function, the black line is the estimated function, and
the dashed lines are the 95% point-wise confidence band; The right panel displays an estimate of
the test function s2 with true α = −1.0, δ = 1.5, whose estimated values are α̂ = −1.042(0.420),
δ̂ = 1.448(0.332). Sample size n = 400.

where ŝ(xi) is the predictor at point xi obtained by assuming that the estimated smoothing
parameter λ as known and fixed; denote σ̂s(xi) as the standard error of the predictor and
zα/2 as the upper α/2 quantile of standard normal distribution. The main results are listed
the Table 1 based on 1000 replications, with nominal coverage probability 0.95.

The simulation results showed that the empirical coverage probabilities were very close
to the nominal value for both the 1-dimensional and 2-dimensional test cases. As the test
data are highly zero-inflated and nearly 50% of the responses are zeroes, there are, on
the average, about 200 and 300 non-zero responses in each simulated dataset. For these
simulation studies, the observed information matrix provided adequate approximation for
assessing the variability in the estimator. Furthermore, the simulation results lend support

Table 1. Simulation Results
Avg. Coverage Prop. Coverage Prop. of α Coverage Prop. of δ

n = 400
s1 0.945 0.951 0.958
s2 0.942 0.946 0.948

n = 600
s1 0.944 0.953 0.957
s2 0.952 0.949 0.939
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to the result that
E[ACP(α)] ≈ 1 − α,

see Wahba (1983).

4. Two Real Applications

4.1. Pollock Egg Density
The data analyzed in this example is part of an extensive survey data on walleye pollock
egg density (numbers 10m−2) collected during the ichthyoplankton surveys of the Alaska
Fisheries Science Center (AFSC, Seattle) in the Gulf of Alaska (GOA) from 1972 to 2000.
Ciannelli et al. (2007) showed that the spatial-temporal distribution of the pollock egg in
the GOA underwent a change around 1989-90. However, their analysis was confined to
positive catch data and information from the zero catches were ignored. Here, we illustrate
the use of the COZIGAM for extracting information from all data including zero catches.
For simplicity, we only analyze the data from 1986 which contain 337 observations sampled
from the 88th to the 137th Julian day over sites with bottom depth ranging 24-4171m.
Among the 337 observations, 74 are zeroes, which make up over 20% of the data. The
histogram of the pollock egg data, combining the zero catches and the log-transformed
positive catches, in Fig. 3 shows the occurrence of high proportion of zero catches. The
main goal is to explore the spatial and timing patterns of pollock spawning aggregations
in the GOA. Pollock egg density is the response variable, and covariates include location
(longitude and latitude), bottom depth and Julian day of the year. Bottom depth is log-
transformed. We assume that the conditional response is a mixture distribution that equals
zero with probability 1 − p but otherwise is log-normal with mean µ given by

µ = c+ s(lon, lat) + s(day) + s(log(depth)) (26)

and
logit(p) = α+ δµ, (27)

where c, α, δ are parameters, s are assumed to be distinct smooth functions if they have
distinct arguments; for model identifiability, the smooth functions are constrained to be
of zero mean and hence the corresponding function estimates are centered over the data,
i.e. of zero mean. In this and the next application, the roughness measure of the smooth
functions are defined to be J(s) =

∫

‖D2s‖2 where D2 is the second derivative operator
and ‖ · ‖ denotes the square norm. In particular, the penalized likelihood estimators are
splines, being natural cubic spline in the 1-dimensional case and thin-plate spline in higher
dimensional cases.

Under the above model assumptions, the regression function specified by (26) may be
estimated by fitting an additive model with the log-transformed positive catch data, in
which case the second equation concerning logit(p) is dropped from the model. In partic-
ular, no systematic bias on the function estimates is expected from fitting the model with
positive data only, which is borne out by the almost identical function estimates (unre-
ported) whether we use only the positive data or all data in the model fit. Fig. 4 shows
the estimated location and time effects based on the COZIGAM fitted with all data. But
a narrower 95% point-wise confidence band for the bottom depth effect (Fig. 5) emerges
from the model fit using all data including zero catches, as it makes use of all information
in the data. These plots show that (i) egg density decreased monotonically starting from
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Fig. 3. Histogram of the combined log-transformed positive pollock egg catches and untransformed
zero catches in 1986 at GOA

Table 2. Pollock Egg Density Estimation
Parameter Point Estimate Standard Error

α −1.323 0.430
δ 0.536 0.093

the 88th Julian day and (ii) the density seemed to be more concentrated over deeper areas
than shallower areas, see Fig. 5.

Table 2 reports the parameter estimates for Equation (27). The proportionality param-
eter δ is significantly positive. Thus, there is strong evidence indicating that zero inflation
is more likely to occur at locations with less egg density.

As mentioned earlier, a two-stage approach that models the positive data and the
presence-absence data separately may lead to contradictory result. This point can be illus-
trated using the pollock egg data. For example, using only the presence-absence data, we
fit the model with Bernoulli response specified by the equation:

logit(p) = c+ s(lon, lat) + s(day) + s(log(depth)).

Fig. 6 shows the estimated Julian day effect and bottom depth effect from the model fit
with the presence-absence data. Note that these plots are very different from the fits from
the COZIGAM fit using all data, or the GAM using only positive data.

It is tricky to carry out model diagnostics for models with zero-inflated data. Nonethe-
less, the validity of the log-normal regression assumption for the positive data may be
explored with the model fit using only the non-zero data. Fig. 7 shows three model diag-
nostics plots: the normal QQ plot of residuals, residuals vs. fitted values plot, and observed
(log-transformed) egg density vs. fitted value plot. These plots suggest that the model
assumptions for the positive data are generally valid except for the presence of an outlier.
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Fig. 4. Effects of Location and Time: the left diagram shows the contour plot of s(lon, lat) on the right
side of Equation (26) and the right diagram displays s(day) with the partial residuals represented by
dots.

After removing the outlier and refitting the model, the results, however, do not change very
much. Therefore the log-normal regression assumption is reasonable according to the model
diagnostics.

4.2. Larynx Cancer
The second application concerns an analysis of the Iowa larynx cancer data, obtained from
SEER (http://seer.cancer.gov/data/access.html). The larynx, also known as the voice box,
is an organ in the neck, which plays a role in breathing, swallowing, and talking. Larynx
cancer is a ‘rare disease’ with an incidence rate of about 5 in 100,000 in the U.S.A. Although
the exact causes of larynx cancer are unknown, known risk factors include smoking, alcohol
consumption and exposure to sulfuric acid mist or nickel. The data analyzed below consist
of the number of larynx cancer cases in each county of the state of Iowa, U.S.A. from 1980 to
1981. There are 99 counties in Iowa, among which 27 reported zero cases over the two-year
period. A total of 286 larynx cancer cases were reported, see the histogram of the county
number of larynx cancer cases reported in Fig. 8. (Because of confidentiality requirement,
raw data cannot be reproduced herein.) So there are nearly 30% of zeroes in the dataset,
which suggests possible zero-inflation. Zero-inflation may occur due to, for example, under-
reporting of larynx cancer incidence which may be more likely to occur when the disease is
relatively rare.

Two interesting questions concern estimating the overall larynx cancer rate in Iowa
and its spatial variation over counties, after adjusting for zero inflation. We do this using
the COZIGAM framework, with comparison to results based on regular GAM, assuming
conditionally Poisson response. The covariates include geographic coordinates (longitude
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Fig. 5. Comparison of the COZIGAM (black) with the model using only the positive data (gray) on
bottom depth effect; the dots represent the partial residuals from the COZIGAM.

Table 3. Iowa Larynx Cancer Estimation
Parameter Point Estimate Standard Error

β0 −9.098 0.754
β1 0.925 0.065
α 1.165 0.975
δ 2.366 1.451

and latitude) and log-transformed county population size (sum of yearly population over
the study period). Specifically, the county numbers of larynx cancer cases constitute the
response which is modeled to have a mixture distribution which for the ith county is zero
with probability 1−pi but otherwise a Poisson random variable with mean µi. The Poisson
mean µi is a function of population, longitude and latitude:

log(µi) = β0 + s(log(popi)) + s(loni, lati)

where β0 is the intercept which is related to the overall incidence rate; s(log(popi)) and
s(loni, lati) are two smooth functions that are centered, i.e., of zero mean, over the obser-
vations. The probability pi is specified as

logit(pi) = α+ δ log(µi),

where α and δ are parameters. Preliminary analysis (unreported) suggests that the covariate
log(pop) affects the response linearly on the log scale, hence the model is simplified as follows:

log(µi) = β0 + β1 log(popi) + s(loni, lati)

The corresponding model estimation results are listed in Table 3.
Note that the slope parameter δ is marginally significant, suggesting that zero inflation

occurs more frequently with lower incidence of the disease. Because the location effect is
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Fig. 6. Estimated Bottom Depth and Time Effect from the Presence-Absence Analysis of the Pollock
Egg Data.

already centered at 0, the overall larynx cancer rate per 100,000 Iowans is estimated to be
100000β1eβ0 , which is 4.727 according to the COZIGAM fit. The estimated larynx cancer
incidence rate of 4.727 in 100,000 Iowans is close to the reported U.S. incidence rate of 5
in 100,000. In contrast, fitting the same dataset with a regular GAM with conditionally
Poisson response distribution yields the estimated incidence rate of 4.501 in 100,000, an
approximately 5% drop from the COZIGAM estimate. That the regular GAM yields a
lower estimate owes to the fact that it ignores zero inflation in the data.

Below, we report further inference and model diagnostics with the constrained GAM fit.
The county incidence rates per 100,000 Iowans can be estimated by 100000β1eβ0+s(loni,lati),
and they are shown in Fig. 9. Generally speaking, larynx cancer was relatively more preva-
lent in the southeast part of Iowa than its northwest counterpart. There were two areas
located in the east boundary and the south boundary of Iowa that had relatively higher
larynx cancer rates. The COZIGAM model pools information across counties to produce
county larynx cancer rates that vary more smoothly across space than the crude rates cal-
culated directly from raw data, the latter of which are subject to greater variability due to
the small number of cases.

Model diagnostics with GAM (Wood, 2006) may be proceeded by examining the Pearson
residuals, which are obtained by rescaling the raw residuals ǫ̂i = yi − µ̂i by their estimated
standard deviation:

ǫ̂pi =
yi − µ̂i
√

V (µ̂i)

For the COZIGAM, we can standardize the raw residuals in a similar way. Because of zero
inflation, the mean and variance of Yi have to be computed differently as follows.

E(Yi) = piµi

V ar(Yi) = piµi(1 + µi − piµi)

Hence, the standardized residuals are given by

ǫ̂∗i =
yi − p̂iµ̂i

√

p̂iµ̂i(1 + µ̂i − p̂iµ̂i)
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Fig. 7. Model Diagnostics Based on the Non-Zero Pollock Catch Data

Fig. 10 displays the Pearson residuals against the fitted values. Two outliers appear in
the diagram, namely, Wayne county and Pocahontas county. Both counties had more
larynx cancer cases in the years 1980 to 1981 relative to nearby counties after adjusting for
population size. An interesting epidemiological question is to identify factors causing these
two outliers.

5. Conclusion

In summary, we have presented a new approach for analyzing zero-inflated data, and a
modified penalized-iteratively re-weighted least squares algorithm for model estimation.
Simulation studies suggest that Louis’ method for computing the observed information
works well with the COZIGAM. The real data analysis reported in Section 4 illustrates the
usefulness of the new approach. So far, the COZIGAM studied in this paper imposes linear
constraints on the link scale. More general form of constraints remains to be studied. Also
it is of interest to develop tests for the constraints imposed by the COZIGAM, i.e., tests for
misspecification. Although simulation results in Section 3 provide some justification for our
estimation approach, the asymptotic properties of the estimator constitutes an interesting
open problem. These are some interesting directions for future work.
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