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Abstract

In regression problems where covariates can be naturally grouped, the group Lasso
is an attractive method for variable selection, since it respects the grouping structure in
the data. We study the selection and estimation properties of the group Lasso in high-
dimensional settings when the number of groups exceeds the sample size. We provide
sufficient conditions under which the group Lasso selects a model whose dimension is
comparable with the underlying model with high probability and is estimation consistent.
However, the group Lasso is in general not selection consistent and tends to also select
groups that are not important in the model. To improved the selection results, we propose
an adaptive group Lasso method, which is a generalization of the adaptive Lasso and
requires an initial estimator. We show that the adaptive group Lasso is consistent in
group selection under certain conditions, if the group Lasso is used as the initial estimator.

AMS 2000 subject classification: Primary 62J05, 62J07; secondary 62H25.
Keywords: group selection, high-dimensional data, penalized regression, rate consistency,
selection consistency.

1 Introduction

Consider the linear regression model with p groups of covariates

Yi =
p∑

k=1

X ′
ikβk + εi, i = 1, · · · , n,

where Yi is the response variable, εi is the error term, Xik is a dk × 1 covariate vector
representing the kth group and, βk is the dk×1 vector of corresponding regression coefficients
of the kth group. For such a model, the group Lasso (Yuan and Lin 2005, Antoniadis and Fan
2001) is an attractive method for variable selection since it respects the grouping structure in
the covariates. This method is a natural extension of the Lasso (Tibshirani 1996), in which
an `2 norm of the coefficients associated with a group of variables is used as a component
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in the penalty function. However, the group Lasso is in general not selection consistent and
tends to select more groups than there are in the model. To improve the selection results of
the group Lasso, we consider an adaptive group Lasso method, which is a generalization of
the adaptive Lasso (Zou 2006). We provide sufficient conditions under which the adaptive
group Lasso is selection consistent, if the group Lasso is used as the initial estimator.

The need to select groups of variables arises in many statistical modeling and applied
problems. For example, in multifactor analysis of variance, a factor with multiple levels can
be represented by a group of dummy variables. In nonparametric additive regression, each
component can be expressed as a linear combination of a set of basis functions. In both cases,
the selection of important factors or nonparametric components amounts to the selection of
groups of variables. Several recent papers have considered group selection using penalized
methods. In addition to the group Lasso, Yuan and Lin (2006) proposed the group lasso,
group Lars and group nonnegative garrote methods. Kim, Kim and Kim (2006) considered the
group Lasso in the context of generalized linear models. Zhao, Rocha and Yu (2008) proposed
a composite absolute penalty for group selection, which can be considered a generalization
of the group Lasso. Meier, van de Geer and Bühlmann (2008) studied the group Lasso for
logistic regression. They showed that the group Lasso is consistent under certain conditions
and proposed a block coordinate descent algorithm that can handle high-dimensional data.
Huang, Ma, Xie and Zhang (2008) proposed a group bridge method that can be used for
simultaneous group and individual variable selection.

There have been much work on the penalized methods for variable selection and esti-
mation with high-dimensional data. Several approaches have been proposed, including the
least absolute shrinkage and selection operator (Lasso, Tibshirani 1996), the smoothly clipped
absolute deviation (SCAD) penalty (Fan and Li 2001, Fan and Peng 2004), the elastic net
(Enet) penalty (Zou and Hastie 2006), and the minimum concave penalty (Zhang 2007).
Much progress has been made in understanding the statistical properties of these methods
in both fixed p and p À n settings. In particular, several recent studies considered the Lasso
with regard to its variable selection, estimation and prediction properties, see for example,
Knight and Fu (2001); Greenshtein and Ritov (2004); Meinshausen and Buhlmann (2006);
Zhao and Yu (2006); Meinshausen and Yu (2008); Huang, Ma and Zhang (2006); van de Geer
(2008); and Zhang and Huang (2008), among others. All these studies are concerned with
the Lasso for individual variable selection.

In this article, we study the asymptotic properties of the group Lasso and the adaptive
group Lasso in high-dimensional settings when p À n. We generalize the results about the
Lasso obtained in Zhang and Huang (2008) to the group Lasso. We show that, under a
generalized sparsity condition (GSC) and the sparse Riesz condition introduced in Zhang
and Huang (2008) as well as certain regularity conditions, the group Lasso selects a model
whose dimension has the same order as the underlying model, selects all groups whose `2

norms are of greater order than the bias of the selected model and is estimation consistent.
In addition, under a narrow-sense sparsity condition (NSC) and using the group Lasso as the
initial estimator, the adaptive group Lasso can correctly select important groups with high
probability.

Our theoretical and simulation results suggest the following one-step approach to group
selection in high-dimensional settings. First, we use the group Lasso to obtain an initial
estimator and reduce the dimension of the problem. Then we use the adaptive group Lasso
to select the final set of groups of variables. Since the computation of the adaptive group
Lasso estimator can be carried using the same algorithm and program for the group Lasso,
the computational cost of this one-step approach is approximately twice that of a single group
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Lasso computation. This approach that iteratively uses the group Lasso twice follows the
idea of adaptive Lasso (Zou 2006) a proposal by Bühlmann and Meier (2008) in the context
of individual variable selection.

The rest of the paper is organized as follows. In Section 2, we state the results on the
selection, bias of the selected model and the convergent rate of the group Lasso estimator.
In Section 3, we describe the selection and estimation consistency results about the adaptive
group Lasso. In Section 4, we use simulation to compare the group Lasso and adaptive group
Lasso. Proofs are given in Section 5. Concluding remarks are given in Section 6.

2 The asymptotic properties of the group Lasso

Let Y = (Y1, . . . , Yn)′ and X = (X1, · · · , Xp), where Xk is the n × dk covariate sub-
matrix corresponding to the kth group. For a given penalty level λ ≥ 0, the group Lasso
estimator of β = (β′1, . . . , β

′
p)
′ is

β̂ = arg min
β

1
2
(Y −Xβ)T (Y −Xβ) + λ

p∑

k=1

√
dk‖βk‖2, (2.1)

where β̂ = (β̂′1, · · · , β̂′p)′.
We consider the model selection and estimation properties of β̂ under a generalized

sparsity condition (GSC) of the model and a sparse Riesz condition (SRC) on the covariate
matrix. These two conditions were first formulated in the study of the Lasso estimator (Zhang
and Huang 2008). The GSC assumes that, for some η1 ≥ 0, there exists an A0 ∈ {1, · · · , p}
such that

∑
k∈A0

‖βk‖2 ≤ η1, where ‖ · ‖2 denotes the `2 norm. Without loss of generality,
let A0 = {q + 1, · · · , p}. Then the GSC is

p∑

k=q+1

‖βk‖2 ≤ η1. (2.2)

Thus the number of the true important groups is q. A more rigid way to describe sparsity is
to assume η1 = 0, that is,

‖βk‖2 = 0, k = q + 1, . . . , p. (2.3)

This is a special case of the GSC and we call it the narrow-sense sparsity condition (NSC). In
practice, the GSC is a more realistic formulation of a sparse model. However, the NSC can
often be considered a reasonable approximation to the GSC, especially when η1 is smaller
than the noise level associated with model fitting.

The SRC controls the range of eigenvalues of sub-matrix consisted of a fixed number of
design vectors xj . For A ⊂ {1, · · · , p}, define

XA = (Xk, k ∈ A), ΣAA = X ′
AXA/n.

Note that XA is an n × ∑
k∈A dk matrix. The design matrix X satisfies the sparse Riesz

condition (SRC) with rank q∗ and spectrum bounds 0 < c∗ < c∗ < ∞ if

c∗ ≤ ‖XAν‖2
2

n‖ν‖2
2

≤ c∗,∀A with q∗ = |A| = #{k : k ∈ A} and ν ∈ R
∑

k∈A dk . (2.4)

Let
Â = {k : ‖β̂k‖2 > 0, 1 ≤ k ≤ p}
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which is the set of indices of the groups selected by the group Lasso. An important quantity
is the cardinality of Â, defined as

q̂ = |Â| = #{k : ‖β̂k‖2 > 0, 1 ≤ k ≤ p}, (2.5)

which determines the dimension of the selected model. If q̂ = O(qn), the selected model has
comparable dimension as the underlying model.

Following Zhang and Huang (2008), we also consider two measures of the selected model.
The first measures the error of the selected model,

ω̃ = ‖(I − P̂ )Xβ‖2 (2.6)

where P̂ is the projection matrix from Rn to the linear span of the set of selected groups
and I ≡ In×n is the identity matrix. Thus ω̃2 is the sum of squares of the mean vector not
explained by the selected model. To measure the important groups missing in the selected
model, define

ζ2 = (
∑

k/∈A0

‖βk‖2
2I{‖β̂k‖2 = 0})1/2. (2.7)

We now describe several quantities that will be useful in describing the main results.
Let da = max1≤k≤p dk, db = min1≤k≤p dk, d = da/db and Nd =

∑p
k=1 dk.

Define

r1 ≡ r1(λ) =
(

nc∗
√

daη1

λdbq

)1/2

, r2 ≡ r2(λ) =
(

nc∗η2
2

λ2dbq

)1/2

, c̄ =
c∗

c∗
(2.8)

where η2 ≡ maxA⊂A0 ‖
∑

k∈A Xkβk‖2,

M1 ≡ M1(λ) = 2 + 4r2
1 + 4

√
dc̄ r2 + 4dc̄, (2.9)

M2 ≡ M2(λ) =
2
3

(
1 + 4r2

1 + 2dc̄ + 4
√

2d(1 +
√

c̄)
√

c̄ r2 +
16
3

dc̄2
)
, (2.10)

M3 ≡ M3(λ) =
2
3

(
1 + 4r2

1 + 4
√

dc̄(1 + 2
√

1 + c̄ )r2 + 3r2
2 +

2
3
dc̄(7 + 4c̄)

)
. (2.11)

Let
λn,p = 2σ

√
8(1 + c0)dad2q∗c̄nc∗ log(Nd ∨ an),

where c0 ≥ 0, an ≥ 0, satisfying pda/(Nd ∨ an)1+c0 ≈ 0. We also consider the following
constraints

λ0 = inf{λ : M1q + 1 ≤ q∗}, inf ∅ = ∞, (2.12)

λ ≥ max{λ0, λn,p}. (2.13)

For large p, the lower bound here is allowed to be λn,p = 2σ[8(1 + c0)dad
2q∗c̄nc∗ log(Nd)]1/2

with an = 0; for fixed p, an →∞ is required.
We assume the following basic condition.

(C1) The errors ε1, · · · , εn are independent and identically distributed as N(0, σ2).
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Theorem 2.1 Suppose that q ≥ 1 and that (C1), the GSC (2.2) and SRC (2.4) are satisfied.
Let q̂, ω̃ and ζ2 be defined as in (2.5), (2.6) and (2.7), respectively, for the model Â selected
by the group Lasso from (2.1). Let M1,M2 and M3 be defined as in (2.9), (2.10) and (2.11),
respectively. Then, if the constraints (2.12), (2.13) are satisfied, the following assertions hold
with probability converging to 1,

q̂ ≤ #{k : ‖β̂k‖2 > 0 or k /∈ A0} ≤ M1(λ)q,

ω̃2 = ‖(I − P̂ )Xβ‖2
2 ≤ M2(λ)B2

1(λ),

ζ2
2 =

∑

k/∈A0

‖βk‖2
2I{‖β̂k‖2 = 0} ≤ M3(λ)B2

1(λ)
c∗n

,

where B1(λ) = ((λ2d2
bq)/(nc∗))1/2.

Remark 2.1 The condition q ≥ 1 is not necessary, since it is only used to express quantities
in terms of ratios in (2.8) and Theorem 2.1. If q = 0, we use

r2
1q =

nc∗
√

daη1

λdb
, r2

2q =
nc∗η2

2

λ2db
,

to recover M1, M2 and M2 in (2.9), (2.10), (2.11), respectively, resulting

q̂ ≤ 4nc∗
√

daη1

λdb
, ω̃2 ≤ 8

3
λ
√

dadbη1, ζ2
2 = 0.

Remark 2.2 If η1 = 0 in (2.2), then r1 = r2 = 0 and

M1 = 2 + 4dc̄,

M2 =
2
3

(
1 + 2dc̄ +

16
3

dc̄2
)
,

M3 =
2
3

(
1 +

2
3
dc̄(7 + 4c̄)

)
,

all only depend on d and c̄. This suggests that the relative sizes of the groups affect the
selection results. Since d ≥ 1, the most favorable case is d = 1, that is, when the groups have
equal sizes.

Remark 2.3 If d1 = · · · = dp = 1, the group Lasso simplifies to the Lasso, and Theorem 2.1
is a direct generalization of Theorem 1 on the selection properties of the Lasso obtained by
Zhang and Huang (2008). In particular, when d1 = · · · = dp = 1,

r1 =
(

nc∗η1

λq

)1/2

, r2 =
(

nc∗η2
2

λ2q

)1/2

,

M1 = 2 + 4r2
1 + 4

√
c̄ r2 + 4c̄,

M2 =
2
3

(
1 + 4r2

1 + 2c̄ + 4
√

2(1 +
√

c̄)
√

c̄ r2 +
16
3

c̄2
)
,

M3 =
2
3

(
1 + 4r2

1 + 4
√

c̄(1 + 2
√

1 + c̄ )r2 + 3r2
2 +

2
3
c̄(7 + 4c̄)

)
,

which are the same as the constants in Theorem 1 of Zhang and Huang (2008).
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Remark 2.4 A more general definition of the group Lasso is

β̂∗ = arg min
β

1
2
(Y −Xβ)T (Y −Xβ) + λ

p∑

k=1

(β′kRkβk)1/2, (2.14)

where Rk is a dk×dk positive definite matrix. This is useful when certain relationships among
the coefficients need be specified. By the Cholesky decomposition, there exists a matrix Qk

such that Rk = dkQ
T
k Qk. Let β∗ = Qkβ, and X∗

k = XkQ
−1
k . Then (2.14) becomes

β̂∗ = arg min
β∗

(Y −X∗β∗)T (Y −X∗β∗) + λ

p∑

k=1

√
dk‖β∗k‖2.

The generalized sparsity condition for (2.14) is

p∑

k=q+1

(β′kQ
′
kQkβk)1/2 ≤ η1.

The SRC can be assumed for X ·Q−1, where X ·Q−1 = (X1Q
−1
1 , · · · , XpQ

−1
p ).

Immediately from Theorem 2.1, we have the following corollary.

Corollary 2.1 Suppose that the conditions of Theorem 2.1 hold and λ satisfies the constraint
(2.13). Then, with probability converging to one, all groups with ‖βk‖2

2 > M3(λ)qλ2/(c∗c∗n2)
are selected.

From Theorem 2.1 and Corollary 2.1, the group Lasso possesses similar properties to the
Lasso in terms of sparsity and bias (Zhang and Huang 2008). In particular, the group Lasso
selects a model whose dimension has the same order as the underlying model. Furthermore,
all the groups with coefficients whose `2 norm are greater than the threshold given in Corollary
2.1 are selected with high probability.

Theorem 2.2 Let {c̄, σ, r1, r2, c0, d} be fixed and 1 ≤ q ≤ n ≤ p → ∞. Suppose that the
conditions in Theorem 2.1 hold. Then the following assertions hold with probability converging
to 1,

‖β̂ − β‖2 ≤ 1√
nc∗

(
2σ

√
M1 log(Nd)q + (r2 +

√
dM1c̄)B1

)
+

√
c∗r2

1 + r2
2

c∗c∗

√
qλ

n
,

and
‖Xβ̂ −Xβ‖2 ≤ 2σ

√
M1 log(Nd)q + (2r2 +

√
dM1c̄)B1.

Theorem 2.2 is stated for a general λ that satisfies (2.12) and (2.13). The following
result is an immediate corollary of Theorem 2.2 .

Corollary 2.2 Let λ = 2σ
√

8(1 + c
′
0)dad2q∗c̄c∗n log(Nd) with a fixed c

′
0 ≥ c0. Suppose all

the conditions in Theorem 2.2 hold. Then

‖β̂ − β‖2 = Op

(√
q log(Nd)/n

)
and ‖Xβ̂ −Xβ‖2 = Op

(√
q log(Nd)

)
.

This corollary follows by substituting the given λ value into the expressions in the results of
Theorem 2.2.
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3 Selection consistency of the adaptive group Lasso

As shown in the previous section, the group Lasso has excellent selection and estimation
properties. However, there is room to improve, in particular, with regard to selection.
Although the group Lasso selects a model whose dimension is comparable to the underlying
model, the simulation results reported in Yuan and Lin (2005) and those given below suggest
that it tends to select more groups than there are in the underlying model. To correct the
tendency of over selection by the group Lasso, we generalize the idea of the adaptive Lasso
(Zou 2006) for individual variable selection to the present problem of group selection.

Consider a general group Lasso criterion with a weighted penalty term,

1
2
(Y −Xβ)′(Y −Xβ) + λ̃

p∑

k=1

wk

√
dk‖βk‖2, (3.1)

where wk is the weight associated with the kth group. The λk ≡ λ̃wk can be regarded as
the penalty level corresponding to the kth group. For different groups, the penalty level λk

can be different. If we can have lower penalty for groups with large coefficients and higher
penalty for the groups with small coefficients (in the `2 sense), we expect to be able to improve
variable selection accuracy and reduce estimation bias. One way to obtain the information
about whether a group has large or small coefficients is by using a consistent initial estimator.

Suppose that an initial estimate β̃ is available. A simple approach to determining the
weight is to use the initial estimator. Consider

wk =
1

‖β̃k‖2

, k = 1, . . . , p. (3.2)

Thus for each group, its penalty is proportional to the inverse of the norm of β̃k. This choice
of the penalty levels for each group is a natural generalization of the adaptive Lasso (Zou
2006). In particular, when each group only contains a single variable, (3.2) simplifies to the
adaptive Lasso penalty. Below, we first give a general result concerning the selection and
estimation properties of the adaptive group Lasso.

Let θa = maxk∈Ac
0
‖βk‖2, θb = mink∈Ac

0
‖βk‖2. We say that an initial estimator β̃ is

consistent at zero with rate rn if rn maxk∈A0 ‖β̃k‖2 = Op(1) where rn → ∞ as n → ∞ and,
there exists a constant ξb > 0 such that, for any ε > 0, P (mink∈Ac

0
‖β̃k‖2 > ξbθb) > 1− ε for

n sufficiently large.
In addition to (C1), we assume the following conditions.

(C2) The initial estimator β̃ is consistent at zero with rate rn →∞.

(C3)
√

da(log q)√
nθb

+
λ̃d

3/2
a q

nθ2
b

→ 0,

√
nd log(p− q)

λ̃rn

+
d

5/2
a q2

rnθb

√
db
→ 0.

(C4) All the eigenvalues of ΣAc
0Ac

0
are bounded away from zero and infinity.

Define

β̂∗ = arg min
1
2
(Y −Xβ)′(Y −Xβ) + λ̃

p∑

k=1

‖β̃k‖−1
2

√
dk‖βk‖2. (3.3)
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Theorem 3.1 Suppose that (C1)-(C4) and the narrow-sense sparsity condition (2.3) are
satisfied. Then

P
(‖β̂∗k‖2 6= 0, k 6∈ A0, ‖β̂∗k‖2 = 0, k ∈ A0

) → 1.

Therefore, the adaptive group Lasso is selection consistent if an initial estimation con-
sistent estimator is available and the conditions stated in Theorem 3.1 hold. For fixed p and
dk, the ordinary least squares estimator can be used as the initial estimator. However, when
p > n, the least squares estimator is no longer feasible. By Theorems 2.1 and 2.2, the group
Lasso estimator β̂ is consistent at zero with rate

√
n/(q log(Nd)). If we use β̂ as the initial

estimator, (C3) can be changed to

(C3)∗

√
da(log q)√

nθb
+

λ̃d
3/2
a q

nθ2
b

→ 0,

√
dq log(p− q) log(Nd)

λ̃
+

(daq)5/2
√

log(Nd)
θb

√
ndb

→ 0.

Corollary 3.1 Let the initial estimator β̃ = β̂, where β̂ is the group Lasso estimator.
Supposed that the NSC (2.3) holds and that (C1), (C2), (C3)∗ and (C4) are satisfied. Then

P
(‖β̂∗k‖2 6= 0, k 6∈ A0, ‖β̂∗k‖2 = 0, k ∈ A0

) → 1.

This corollary follows directly from Theorem 3.1. It shows that the iterated group Lasso
procedure that uses a combination of the group Lasso and adaptive group Lasso is selection
consistent.

Theorem 3.2 Suppose that the conditions in Theorem 2 hold and θb > tb for some constant
tb > 0. If λ̃ ∼ O(nα) for some 0 < α < 1/2, then

‖β̂∗ − β‖2 = Op(

√
q

n
+

λ̃2

n2
) = Op(

√
q

n
),

‖Xβ̂∗ −Xβ‖2 ∼ O(

√
q +

λ̃2

n
) = Op(

√
q).

Theorem 3.2 implies that for the adaptive group Lasso, given a zero-consistent initial
estimator, we can reduce a high-dimensional problem to a lower-dimensional one. The
convergence rate is improved compared with that of the group Lasso by choosing appropriate
penalty parameter λ̃.

4 Simulation Studies

In this section, we use simulation to evaluate the finite sample performance of the group
Lasso and the adaptive group Lasso. Consider

λk =

{
λ̃

‖β̂k‖2
, if ‖β̂k‖2 > 0,

∞, if ‖β̂k‖2 = 0.

8



If λk = ∞, then β̂∗k = 0. Thus we can drop the corresponding covariates Xk from the
model and only consider the groups with ‖β̂∗k‖2 > 0. After a scale transformation, we can
directly apply the group least angle regression algorithm (Yuan and Lin 2006) to compute
the adaptive group Lasso estimator β̂∗. The penalty parameters for the group Lasso and the
adaptive group Lasso are selected using the BIC criterion (Schwarz 1978).

We consider two scenarios of simulation models. In the first scenario, the group sizes are
equal. In the second, the group sizes vary. For every scenario, we consider the cases p < n
and p > n. In all the examples, the sample size n = 200.

Example 1. In this example, there are 10 groups and each group consists of 5 covariates. The
covariate vector is X = (X1, · · · , X10) where Xj = (X5(j−1)+1, · · · , X5(j−1)+5), 1 ≤ j ≤ 10.
To generate X, we first simulate 50 random variables R1, · · · , R50 independently from N(0, 1).
Then Zj , j = 1, · · · , 10 are simulated from a multivariate normal distribution with with mean
zero and Cov(Zj1 , Zj2) = 0.6|j1−j2|. The covarites X1, · · · , X50 are generated as

X5(j−1)+k =
Zj + R5(j−1)+k√

2
, 1 ≤ j ≤ 10, 1 ≤ k ≤ 5,

The random error ε ∼ N(0, 32). The response variable Y is generated from Y =
∑10

k=1 X ′
kβk+

ε, where

β1 = (0.5, 1, 1.5, 2, 2.5), β2 = (2, 2, 2, 2, 2),
β3 = · · · = β10 = (0, 0, 0, 0, 0).

Example 2. In this example, the number of groups is p = 10. Each group consists of 5
covariates. The covaraites are generated the same way as in Example 1. However, the
regression coefficients

β1 = (0.5, 1, 1.5, 1, 0.5), β2 = (1, 1, 1, 1, 1),
β3 = (−1, 0, 1, 2, 1.5), β4 = (−1.5, 1, 0.5, 0.5, 0.5),
β5 = · · · = β10 = (0, 0, 0, 0, 0).

Example 3. In this example, the number of groups p = 210 is bigger than the sample size
n. Each group consists of 5 covariates. The covaraites are generated the same way as in
Example 1. However, the regression coefficients

β1 = (0.5, 1, 1.5, 1, 0.5), β2 = (1, 1, 1, 1, 1),
β3 = (−1, 0, 1, 2, 1.5), β4 = (−1.5, 1, 0.5, 0.5, 0.5),
β5 = · · · = β210 = (0, 0, 0, 0, 0).

Example 4. In this example, the group sizes differ across groups. There are 5 groups with
size 5 and 5 groups with size 3. The covariate vector is X = (X1, · · · , X10) where Xj =
(X5(j−1)+1, · · · , X5(j−1)+5), 1 ≤ j ≤ 5; and Xj = (X3(j−6)+26, · · · , X3(j−6)+28), 6 ≤ j ≤ 10. In
order to generate X, we first simulate 40 random variables R1, · · · , R40 independently from
N(0, 1). Then Zj , j = 1, · · · , 10 are simulated with a normal distribution with mean zero and
Cov(Zj1 , Zj2) = 0.6|j1−j2|. The covarites X1, · · · , X40 are generated as

X5(j−1)+k =
Zj + R5(j−1)+k√

2
, 1 ≤ j ≤ 5, 1 ≤ k ≤ 5,
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X3(j−6)+25+k =
Zj + R3(j−6)+25+k√

2
, 6 ≤ j ≤ 10, 1 ≤ k ≤ 3,

The random error ε ∼ N(0, 32). The response variable Y is generated from Y =
∑10

k=1 Xkβk+
ε, where

β1 = (0.5, 1, 1.5, 2, 2.5), β2 = (2, 0, 0, 2, 2),
β3 = · · · = β5 = (0, 0, 0, 0, 0),
β6 = (−1,−2,−3),
β7 = · · · = β10 = (0, 0, 0).

Example 5. In this example, the number of groups is p = 10 and the group sizes differ across
groups. The data are generated the same way as in Example 4. However, the regression
coefficients

β1 = (0.5, 1, 1.5, 2, 2.5), β2 = (2, 2, 2, 2, 2),
β3 = (−1, 0, 1, 2, 3), β4 = (−1.5, 2, 0, 0, 0),
β5 = (0, 0, 0, 0, 0),
β6 = (2,−2, 1), β7 = (0,−3, 1.5),
β8 = (−1.5, 1.5, 2), β9 = (−2,−2,−2),

β10 = (0, 0, 0).

Example 6. In this example, the number of groups p = 210 and the group sizes differ across
groups. The data are generated the same way as in Example 4. However, the regression
coefficients

β1 = (0.5, 1, 1.5, 2, 2.5), β2 = (2, 2, 2, 2, 2),
β3 = (−1, 0, 1, 2, 3), β4 = (−1.5, 2, 0, 0, 0),
β5 = · · · = β100 = (0, 0, 0, 0, 0),

β101 = (2,−2, 1), β102 = (0,−3, 1.5),
β103 = (−1.5, 1.5, 2), β104 = (−2,−2,−2),
β105 = · · · = β210 = (0, 0, 0).

The results are given in Table 1 based on 400 replications. The columns in the table
include the average number of groups selected with standard error in parentheses, the median
number of groups selected with the 25% and 75% quantiles of the number of selected groups
in parentheses, model error, percentage of occasion on which correct groups are included
in the selected model and percentage of occasions on which the exactly correct groups are
selected with standard error in parentheses.

Several observations can be made from Table 1. First, in all six examples, the adaptive
group Lasso performs better than the group Lasso in terms of model error and the percentage
of correctly selected models. The group Lasso which gives the initial estimator for the adaptive
group Lasso includes the correct groups with high probability. And the improvement is
considerable for models with different group sizes. Second, the results from models with
equal group sizes (Examples 1 ,2 and 3) are better than those from models with different
group ones (Examples 4, 5 and 6). Finally, when the dimension of the model increases, the
performance of both methods becomes worse. This is to be expected since selection in models
with a larger number of groups is more difficult.
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Table 1: Simulation study. Mean number of groups selected, median number of variables
selected (med), model error (ME), percentage of occasions on which correct groups are
included in the selected model (% incl) and percentage of occasions on which exactly correct
groups are selected (% sel), averaged over 400 replications with estimated standard errors
in parentheses, by the group Lasso and adaptive group Lasso, for Examples 1-6. The true
numbers of groups are included in [ ] in the first column.

group Lasso adaptive group Lasso
σ = 3 mean med ME % incl % sel mean med ME % incl % sel

Ex 1, [2] 2.04 2 8.79 100% 96.5% 2.01 2 8.54 100% 99.5%
(0.18) (2,2) (0.94) (0) (0.18) (0.07) (2,2) (0.90) (0) (0.07)

Ex 2, [4] 4.11 4 8.52 99.5% 88.5% 4.00 4 8.10 99.5% 98%
(0.34) (4,4) (0.94) (0.07) (0.32) (0.14) (4,4) (0.87) (0.07) (0.14)

Ex 3, [4] 4.00 4 9.48 93% 86.5% 3.94 4 8.19 93% 92.5%
(0.38) (4,4) (1.19) (0.26) (0.34) (0.27) (4,4) (0.96) (0.26) (0.26)

Ex 4, [3] 3.17 3 8.78 100% 85.3% 3 3 8.36 100% 100%
(0.45) (3,3) (1.00) (0) (0.35) (0) (3,3) (0.90) (0) (0)

Ex 5, [8] 8.88 9 7.68 100% 40% 8.03 8 7.58 100% 97.5%
(0.81) (8,10) (0.94) (0) (0.49) (0.16) (8,8) (0.86) (0) (0.16)

Ex 6, [8] 12.90 9 14.61 66.5% 7% 11.49 8 9.28 66.5% 47%
(12.42) (8,11) (7.21) (0.47) (0.26) (12.68) (7,8) (5.79) (0.47) (0.50)

5 Concluding remarks

We have studied the asymptotic selection and estimation properties of the group Lasso
and adaptive group Lasso in “large p, small n” linear regression models. For the adaptive
group Lasso to be selection consistent, the initial estimator should possess two properties: (a)
it does not miss important groups and variables; and (b) it is estimation consistent, although
it may not be group-selection or variable-selection consistent. Under the conditions stated
in Theorem 2.1, the group Lasso is shown to satisfies these two requirements. Thus the
iterated group Lasso procedure, which uses the group Lasso to achieve dimension reduction
and generate the initial estimates and then uses the adaptive group Lasso to achieve selection
consistency, is an appealing approach to group selection in high-dimensional settings.

Acknowledgements. The authors are grateful to Professor Cun-Hui Zhang for sharing his
insights into the problem and related topics. Huang is also a member of the Department of
Biostatistics of the University of Iowa. The work of Huang is supported in part by the NIH
grant R01CA120988 and NSF grants DMS 0706108 and 0805670.

6 Proofs

We first define some notations which will be used in proofs. Let

{k : ‖β̂k‖2 > 0, k ≤ p} ⊆ A1 ⊆ {k : XT
k (Y −Xβ̂) =

λ
√

dkβ̂k

‖β̂k‖2

} ∪ {1, · · · , q}.

Set A2 = {1, · · · , p} \ A1, A3 = A1 \ A0, A4 = A1 ∩ A0, A5 = A2 \ A0, A6 = A2 ∩ A0. Thus
we have A1 = A3 ∪A4, A3 ∩A4 = ∅, A2 = A5 ∪A6, A5 ∩A6 = ∅. Let |Ai| =

∑
k∈Ai

dk which
means the number of columns in the sub-matrix XAi of covariate matrix X and N(Ai) be
the cardinality of set Ai, i = 1, · · · , 6. Assume q1 = N(A1).
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Lemma 1 Let Ak ⊂ {1, · · · , p}, XAk
= (Xk, k ∈ Ak) and Σ1k = XT

A1
XAk

/n. Then

‖ν‖2
2

c∗(|A1|) ≤ ‖Σ−1/2
11 ν‖2

2 ≤
‖ν‖2

2

c∗(|A1|) , ‖βAk
‖2
1 ≤

‖XAk
βAk

‖2
2N(Ak)

nc∗(|Ak|)

for all ν of proper dimension. Further more, if Ak ∩A1 = ∅, then

‖βAk
‖2
2 + ‖Σ−1

11 Σ1kβAk
‖2
2 ≤

‖(I − P1)XAk
βAk

‖2
2

nc∗(|A1 ∪Ak|) ,

where P1 is the projection to the span of {xkl, l = 1, · · · , dk, k ∈ A1}.

Lemma 1 is Lemma 1 in Zhang and Huang (2008).

Proof of Theorem 2.1. The basic idea used in the proof of Theorem 2.1 follows that
in the proof of the rate consistency of the Lasso in Zhang and Huang (2008). However, there
are many difference in technical details, e.g., in the characterization of the solution via the
KKT conditions, in the constraint needed for the penalty level and in the use of maximal
inequalities. Thus we write out the details of the proof.

The proof consists of three steps. Step 1 proves some inequalities related to q1, ω̃ and ζ2.
Step 2 translates the results of Step 1 into upper bounds for q̂, ω̃ and ζ2. Step 3 completes
the proof by showing the probability of the event in Step 2 converging to one.

Since β̂ is a solution of (2.1), by the KKT condition,




X
′
k(Y −Xβ̂) = λ

√
dkβ̂k

‖β̂k‖2
, ∀‖β̂k‖2 > 0,

−λ
√

dk ≤ X
′
k(Y −Xβ̂) ≤ λ

√
dk, ∀‖β̂k‖2 = 0,

(6.1)

where the second inequality is componentwise.
Define

sk =
X
′
k(Y −Xβ̂)

λ
√

Lk
.

From (6.1), we have

‖sk‖2

{
= 1, if ‖β̂k‖2 > 0,

≤ 1, if ‖β̂k‖2 = 0,

and

X
′
A1

(Y −XA1 β̂A1) = SA1 , (6.2)

− CA2 ≤ X
′
A2

(Y −XA1 β̂A1) ≤ CA2 , (6.3)

where SAi = (S
′
k1

, · · · , S
′
kqi

)
′
is an |Ai| × 1 vector, Ski = λ

√
dkiski ; CAi = (C

′
k1

, · · · , C
′
kqi

)
′
is

an |Ai| × 1 vector, Cki = λ
√

dkiI(‖β̂ki‖2 = 0)edki
×1, where all the elements of matrix edki

×1

is 1 and ki ∈ Ai. From (6.2) and (6.3),

X
′
A1

(XA1βA1 + XA2βA2 + ε−XA1 β̂A1) = SA1 ,

namely
nΣ11βA1 + nΣ12βA2 + X

′
A1

ε− nΣ11β̂A1 = SA1 ,

12



and
−CA2 ≤ nΣ21(βA1 − β̂A1) + nΣ22βA2 + X

′
A2

ε ≤ CA2 .

Since all the eigenvalues of Σ11 are bounded below by c∗(|A1|), we assume without loss of
generality that Σ11 is of full rank. By the definition of Σ,

Σ−1
11

n
SA1 = (βA1 − β̂A1) + Σ−1

11 Σ12βA2 +
Σ−1

11

n
X
′
A1

ε, (6.4)

and
nΣ22βA2 − nΣ21Σ−1

11 Σ12βA2 ≤ CA2 −X
′
A2

ε− Σ21Σ−1
11 SA1 + Σ21Σ−1

11 X
′
A1

ε. (6.5)

where Σij = X
′
Ai

XAj/n.

Step 1. Define

V1j =
1√
n

Σ−1/2
11 Q

′
Aj1SAj , j = 1, 3, 4, (6.6)

and
ωk = (I − P1)XAk

βAk
, k = 2, · · · , 6.

where QAkj is the matrix representing the selection of variables in Ak from Aj .
Consider j = 4. For any k ∈ A4, by the definition of A4, we have ‖β̂k‖2 > 0, then

‖sk‖2
2 = 1, so ‖sA4‖2

2 =
∑

k∈A4
‖sk‖2

2 = N(A4). Since q1 = N(A3) + N(A4) ≤ q + N(A4),
then ‖sA4‖2

2 ≥ q1 − q.
By the definition of V1j in (6.6) and Lemma 1,

‖V14‖2
2 =

1
n
‖Σ−1/2

11 Q
′
A41SA4‖2

2 ≥
‖Q′

A41SA4‖2
2

nc∗(|A1|) =

∑
k∈A4

‖λ√dksk‖2
2

nc∗(|A1|) ≥ λ2db(q1 − q)
nc∗(|A1|) .

That is,

‖V14‖2
2 ≥

λ2db(q1 − q)
nc∗(|A1|) . (6.7)

By (6.4),

V
′
14(V13 + V14) = S

′
A4

QA41
Σ−1

11

n
SA1

= S
′
A4

QA41

[
(βA1 − β̂A1) + Σ−1

11 Σ12βA2 +
Σ−1

11

n
XT

A1
ε

]

= S
′
A4

QA41Σ−1
11 Σ12βA2 +

S
′
A4

QA41Σ−1
11 XT

A1
ε

n
+ S

′
A4

(βA4 − β̂A4).

For any k ∈ A4, A4 = A1 ∩A0, sk = β̂k/‖β̂k‖2, we have

S
′
A4

βA4 =
∑

k∈A4

λ
√

dk

‖β̂k‖2

β̂
′
kβk =

∑

k∈A4

λ
√

dk‖βk‖2 ≤ λ
√

da

∑

k∈A4

‖βk‖2.

Thus, since ‖β̂k‖2 > 0 for any k ∈ A4, we have

(λ
√

dk
β̂k

‖β̂k‖2

)T β̂k = λ
√

dk‖β̂k‖2 > 0.
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Thus S
′
A4

β̂A4 > 0. Therefore,

V
′
14(V13 + V14) ≤ S

′
A4

QA41Σ−1
11 Σ12βA2 +

S
′
A4

QA41Σ−1
11 X

′
A1

ε

n
+

√
daλ

∑

k∈A4

‖βk‖2.

By (6.5),

‖ω2‖2
2 = (XA2βA2)

′
(I − P1)XA2βA2 = β

′
A2

(nΣ22βA2 − nΣ21Σ−1
11 Σ12βA2)

≤ β
′
A2

(CA2 −X
′
A2

ε− Σ21Σ−1
11 SA1 + Σ21Σ−1

11 X
′
A1

ε)

= −ω
′
2ε− S

′
A1

Σ−1
11 Σ12βA2 + β

′
A2

CA2 .

It follows that

V
′
14(V13 + V14) + ‖ω2‖2

2

≤ (
S
′
A4

QA41Σ−1
11 X

′
A1

n
− ω

′
2)ε− S

′
A3

QA31Σ−1
11 Σ12βA2

+ β
′
A2

CA2 +
√

daλ
∑

k∈A4

‖βk‖2.

Define

u =
XA1Σ

−1
11 Q

′
A41SA4/n− ω2

‖XA1Σ
−1
11 Q

′
A41SA4/n− ω2‖2

.

Since XA1 and ω2 are orthogonal,

‖XA1Σ
−1
11 Q

′
A41SA4/n− ω2‖2

2 = ‖V14‖2
2 + ‖ω2‖2

2.

Thus

‖V14‖2
2 + ‖ω2‖2

2 + V
′
14V13 ≤ (‖V14‖2

2 + ‖ω2‖2
2)

1/2|u′ε|
+ ‖V13‖2‖Σ−1/2

11 Σ12βA2‖2

√
n + λ

√
da‖βA2‖2 +

√
daλ

∑

k∈A4

‖βk‖2.
(6.8)

By the definition of V1j in (6.6) and Lemma 1,

‖V13‖2
2 =

1
n
‖Σ−1/2

11 Q
′
A31SA3‖2

2 ≤
‖Q′

A31SA3‖2
2

nc∗(|A1|) =

∑
k∈A3

‖λ√dksk‖2
2

nc∗(|A1|) ≤ λ2daN(A3)
nc∗(|A1|) .

That is,

‖V13‖2
2 ≤

λ2daN(A3)
nc∗(|A1|) .

Since A2 = A5 ∪A6, A5 ∩A6 = ∅ under the generalized sparsity condition, we have ‖βA2‖2 ≤
‖βA5‖2 + ‖βA6‖2.

By (6.8), we have

‖V14‖2
2 + ‖ω2‖2

2

≤ (‖V14‖2
2 + ‖ω2‖2

2)
1/2u

′
ε

+ ‖V14‖2‖V13‖2 + ‖V13‖2‖P1XA2βA2‖2 +
√

daλ
∑

k∈A4∪A6

‖βk‖2 + λ
√

da‖βA5‖2

≤ (‖V14‖2
2 + ‖ω2‖2

2)
1/2u

′
ε +

λ
√

daN(A3)√
nc∗(|A1|)

‖V14‖2

+ ‖P1XA2βA2‖2

(
λ2daN(A3)
nc∗(|A1|)

)1/2

+
√

daλη1 + λ
√

da‖βA5‖2.

(6.9)
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Step 2. Define

B1 =
(

λ2dbq

nc∗(|A1|)
)1/2

, B2 =
(

λ2dbq

nc∗(|A0| ∨ |A1|)
)1/2

.

In this step, let’s consider the event

|u′ε|2 ≤ (|A1| ∨ db)λ2db

4danc∗(|A1|) = (|A1| ∨ db)
B2

1

4qda
.

we will prove this event has probability going to 1 later in Step 3.
By (6.7),

‖V14‖2
2 ≥

q1B
2
1

q
−B2

1 .

This implies

|u′ε|2 ≤ q1daB
2
1

4qda
≤ 1

4
(‖V14‖2

2 + B2
1),

and

(‖V14‖2
2 + ‖ω2‖2

2)
1/2|u′ε| ≤ 1

4
(‖V14‖2

2 + ‖ω2‖2
2) + |u′ε|2

≤ 1
2
(‖V14‖2

2 +
‖ω2‖2

2 + B2
1

2
).

By (6.9),

‖V14‖2
2 + ‖ω2‖2

2 ≤
1
2
‖V14‖2

2 +
1
4
‖ω2‖2

2 +
1
4
B2

1 +
√

daλη1 +
√

daλ‖βA5‖2

+
λ
√

daq√
nc∗(|A1|)

‖V14‖2 + ‖XA2βA2‖2

(
λ2daq

nc∗(|A1|)
)1/2

.

It follows that

‖V14‖2
2 +

3
2
‖ω2‖2

2 ≤
B2

1

2
+ 2

√
daλη1 + 2

√
daλ‖βA5‖2

+ 2(‖V14‖2 + ‖XA2βA2‖2)
(

λ2daq

nc∗(|A1|)
)1/2

.

(6.10)

Consider the set A1 contains all large βk 6= 0. We have q1 ≥ q and

{k : ‖β̂k‖2 > 0 or k /∈ A0} ⊆ A1 ⊆ {k : X
′
k(Y −Xβ̂) =

λ
√

dkβ̂k

‖β̂k‖2

or k /∈ A0}.

Thus A5 = A2 \ A0 = ∅, ‖βA5‖2 = 0, N(A3) = q ≤ q1 and ‖Σ−1/2
11 Σ12βA2‖2

√
n =

‖P1XA2βA2‖2 = ‖P1XA6βA6‖2 ≤ η2.
By (6.10),

‖V14‖2
2 +

3
2
‖ω2‖2

2 ≤
B2

1

2
+ 2

√
daλη1 + 2

√
dη2B2 + 2

√
dB2‖V14‖2.

If x2 ≤ c + 2bx, then x2 ≤ 2c + 4b2. Therefore,

‖V14‖2
2 ≤ B2

1 + 4
√

daλη1 + 4
√

dη2B2 + 4dB2
2 .
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It follows from (6.7) that

(q1 − q)+ ≤ nc∗(|A1|)‖V14‖2
2

λ2db
=

q‖V14‖2

B2
1

≤ q +
nc∗(|A1|)

λ2db

(
4
√

daλη1 + 4

√
λ2daq

nc∗(|A1|)η2 +
4λ2daq

nc∗(|A1|)

)
.

(6.11)

For general A1, A5 may be no longer empty, N(A3) + N(A5) ≤ q. Then

‖βA5‖2

√
daλ +

(
λ2daq

nc∗(|A1|)
)1/2

‖P1XA2βA2‖2

≤
(

λ2daN(A5)
nc∗(|A5|)

)1/2

‖XA5βA5‖2 +
(

λ2daq

nc∗(|A1|)
)1/2

‖P1XA2βA2‖2

≤
(

2λ2daq

nc∗(|A1| ∨ |A0|)
)1/2

max(‖P1XA2βA2‖2, ‖XA5βA5‖2)

≤
(

2λ2daq

nc∗(|A1| ∨ |A0|)
)1/2 (√

nc∗(|A5|)‖βA5‖2 + ‖XA6βA6‖2

)

≤
(

2λ2daq

nc∗(|A1| ∨ |A0|)
)1/2 (√

C5‖ω2‖2 + (1 +
√

C5)η2

)
,

where C5 = c∗(|A5|)/c∗(|A1| ∪ |A5|).
By (6.10),

‖V14‖2
2 +

3
2
‖ω2‖2

2 ≤
B2

1

2
+ 2‖V14‖2

(
λ2daq

nc∗(|A1|)
)1/2

+ 2
(

2λ2daq

nc∗(|A1| ∨ |A0|)
)1/2 (√

C5‖ω2‖2 + (1 +
√

C5)η2

)
+ 2

√
daλη1

≤ B2
1

2
+ ‖V14‖2

2 + dB2
2 +

√
8d(1 +

√
C5)η2B2 + 2

√
daλη1 +

√
8dC5B2‖ω2‖2.

If x2 ≤ c + bx, then x2 ≤ 2c + b2. Thus

‖ω2‖2
2 ≤

4
3

(
B2

1

2
+ dB2

2 +
√

d(1 +
√

C5)η2B2 + 2
√

daη1

)
+

32
9

dC5B
2
2 . (6.12)

From Zhang and Huang (2008), we have ‖ω2‖2
2 ≥ (‖βA5‖2(nc∗,5)1/2−η2)2, ‖XA2βA2‖2 ≤

η2 + ‖XA5βA5‖2 ≤ η2 + (nc∗(|A5|))1/2‖βA5‖2. It follows that

3
2
(‖βA5‖2

√
nc∗,5 − η2)2 ≤ B2

1

2
+ 2

√
daλη1 + 2

√
daλ‖βA5‖2+

λ2daq

nc∗(|A1|) + 2
(
η2 + ‖βA5‖2

√
nc∗(|A5|)

)(
λ2daq

nc∗(|A1|)
)1/2

.
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Since N(A3) + N(A5) = q, by the Cauchy-Schwarz inequality,

√
daλ‖βA5‖2 +

√
nc∗(|A5|)‖βA5‖2

(
λ2daq

nc∗(|A1|)
)1/2

≤ ‖βA5‖2

(
λ
√

da + λ

√
c∗(|A5|)daq

c∗(|A1|)

)

≤ ‖βA5‖2λ
√

daq

(
1 +

c∗(|A5|)
c∗(|A1|)

)1/2

.

Therefore,

‖βA5‖2
2nc∗,5 ≤ 2

3
[
B2

1

2
+ 2

√
daλη1 + 2η2

(
λ2daq

nc∗(|A1|)
)1/2

+ 2‖βA5‖2λ
√

daq

(
1 +

c∗(|A5|)
c∗(|A1|)

)1/2

+
λ2daq

nc∗(|A1|) ] + 2η2‖βA5‖2
√

nc∗,5 − η2
2

≤ 4
3
[
B2

1

4
+

√
daλη1 + η2

(
λ2daq

nc∗(|A1|)
)1/2

+
λ2daq

2nc∗(|A1|) −
3
4
η2
2]

+ ‖βA5‖2
√

nc∗,5[
4
3
λ

√
daq

nc∗,5

(
1 + +

c∗(|A5|)
c∗(|A1|)

)1/2

+ 2η2],

where c∗,5 = c∗(|A1 ∪A5|).
Since x2 ≤ c + 2bx implies x2 ≤ 4b2 + 2c for b2 + c ≥ 0, we have

‖βA5‖2
2nc∗,5 ≤

[
4
3
λ

√
daq

nc∗,5

(
1 +

c∗(|A5|)
c∗(|A1|)

)1/2

+ 2η2

]2

+
8
3

[
B2

1

4
+

√
daλη1 + η2

(
λ2daq

nc∗(|A1|)
)1/2

+
λ2daq

2nc∗(|A1|) −
3
4
η2
2

]
.

(6.13)

Step 3. Consider c∗(|Am|) = c∗,c∗(|Am|) = c∗, for N(Am) ≤ q∗ and,

q1 ≤ N(A1 ∪A5) ≤ q∗, |u′ε|2 ≤ (|A1| ∨ db)λ2db

4danc∗(|A1|) . (6.14)

Then we have c̄ = C5 = c∗(|A5|)/c∗(|A1| ∨ |A5|) = c∗/c∗, c∗,5 = c∗(|A1∪A5|) = c∗, B2
2 = c̄B2

1 ,
r2
1 =

√
daλη1/B2

1 and r2
2 = η2

2/B2
1 . From (6.11), (6.12) and (6.13), we have:

(q1 − q)+ + q ≤ (2 + 4r2
1 + 4

√
dc̄r2 + 4dc̄)q, (6.15)

‖ω2‖2
2 ≤

1
3

[
2 + 4dc̄ + 4

√
8d(1 +

√
c̄)
√

c̄r2 + 8r2
1 +

32
3

dc̄2

]
B2

1 , (6.16)

and

nc∗‖βA5‖2
2 ≤

1
3

[
2 + 8r2

1 + 8
√

dc̄(1 + 2
√

1 + c̄)r2 + 4dc̄

(
1 +

4
3
(1 + c̄)

)
+ 6r2

2

]
B2

1 . (6.17)
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By the definition of M1, M2,M3, (6.15), (6.16) and (6.17) become

(q1 − q)+ + q ≤ M1q,

‖ω2‖2
2 ≤ M2B

2
1 ,

nc∗‖γ̃A5‖2
2 ≤ M3B

2
1 .

when (2.12) and (2.13) are satisfied.
Define

x∗m ≡ max
|A|=m

max
‖UAk

‖2=1,k=1,··· ,m

∣∣∣∣∣ε
′ XA(X

′
AXA)−1S̄A − (I − PA)Xβ

‖XA(X ′
AXA)−1S̄A − (I − PA)Xβ‖2

∣∣∣∣∣ , (6.18)

for |A| = q1 = m ≥ 0, S̄A = (S̄
′
A1

, · · · , S̄
′
Am

)
′

where S̄Ak
= λ

√
dAk

UAk
, ‖UAk

‖2 = 1. Let
QA = X∗

A(X
′
AXA)−1 where X∗

k = λ
√

dkXk for k ∈ A. By (6.18),

x∗m ≡ max
|A|=m

max
‖UAk

‖2=1,k=1,··· ,m

∣∣∣∣ε
′ QAUA − (I − PA)Xβ

‖QAUA − (I − PA)Xβ‖2

∣∣∣∣ . (6.19)

For a given A, let Vlj = (0, · · · , 0, 1, 0, · · · , 0) be the |A| × 1 vector with the jth element
in the lth group to be 1. Then

UA =
∑

l∈A

dl∑

j=1

αljVlj ,

and
∑dl

j=1 α2
lj = 1. We have

|ε′(QAUA − (I − PA)Xβ)| = |
∑

l∈A

dl∑

j=1

αljε
′
QAVlj − ε

′
(I − PA)Xβ|

≤ max
l,j

|ε′QAVlj |
∑

l∈A

dl∑

j=1

|αlj |+ |ε′(I − PA)Xβ|

≤ max
l,j

|ε′QAVlj |
∑

l∈A

√
dl + |ε′(I − PA)Xβ|.

By the definition of QA,

‖QAUA − (I − PA)Xβ‖2
2 = (‖QAUA‖2

2 + ‖(I − PA)Xβ‖2)1/2,

By the SRC,

‖QAUA‖2
2 = UT

AQT
AQAUA ≥ λ2db

nc∗(|A|)U
T
AUA =

λ2db

nc∗(|A|)m.

Define

V =
maxl,j ‖QAVlj‖2

∑
k∈A

√
dk

‖QAUA‖2
.

By the definition of QA and SRC,

V ≤ (λ
√

da
∑

k∈A

√
dk)/(nc∗(|A|))1/2

(λ
√

dbm)/(nc∗(|A|))1/2
=

da

√
c̄m√
db

≤ da
√

c̄M1q√
db

.
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Thus by (6.19),

x∗m ≤ max
|A|=m

max
l,j

{∣∣∣∣ε
′ QAVlj

‖QAVlj‖2

∣∣∣∣
‖QAVlj‖2

∑
l∈A

√
dl

‖QAUA‖2
+

∣∣∣∣∣
ε
′
(I − PA)Xβ

‖(I − PA)Xβ‖2

∣∣∣∣∣

}

Next, we show that (6.14) holds for the penalty level vector λ satisfying (2.12) and (2.13)
with probability going to 1. Define

Ωm0 = {(U, ε) : x∗m ≤ σ
√

8(1 + c0)V 2((mdb) ∨ db) log(Nd ∨ an), ∀m ≥ m0}.
By the definition of λn,p and x∗m, we have

(X, ε) ∈ Ωm0 ⇒ |u′ε|2 ≤ (x∗m)2 ≤ (|A1| ∨ db)λ2db

4danc∗
, for N(A1) ≥ m0 ≥ 0.

Therefore (6.15) implies that for all λk, k = 1, · · · , p satisfying (2.12) and (2.13),

(X, ε) ∈ Ωq ⇒ q1 ≤ M1q.

Since ε1, · · · , εn are iid normal with Eεi = 0 and V ar(εi) = σ2, by the definition of
x∗m, it is less than the maximum of

(
p
m

) ∑
k∈A dk normal variables with mean 0 and variance

σ2V 2
ε , plus the maximum of

(
p
m

)
normal variables with mean 0 and variance σ2,

P{(X, ε) ∈ Ωm0}

≥ [1−
∞∑

m=0

(
p

m

)
mda exp(−(mdb ∨ db)(1 + c0) log(Nd ∨ an))]·

[1−
∞∑

m=0

(
p

m

)
exp(−(mdb ∨ db)(1 + c0)Vε log(Nd ∨ an))]

≥
(

1−
∞∑

m=0

pmdm
a

m!
1

(Nd ∨ an)(1+c0)(mdb∨db)

)
·
(

1−
∞∑

m=0

pm

m!
1

(Nd ∨ an)(1+c0)(mdb∨db)

)

≥
{

2− (pda)db

(Nd ∨ an)(1+c0)db
− exp(

pda

(Nd ∨ an)(1+c0)
)
}
·

{
2− (p)db

(Nd ∨ an)(1+c0)db
− exp(

p

(Nd ∨ an)(1+c0)
)
}

→ 1,

when (6.14) holds, since pda/(Nd ∨ an)(1+c0) ≈ 0. This complete the proof of Theorem 2.1.
2

Proof of Theorem 2.2. For simplicity, we only consider the case when {c∗, c∗, r1, r2, c0, σ, d}
are fixed and λ/

√
n ≥ 2σ

√
8(1 + c0)dad2q∗c̄c∗ log(Nd) →∞. In this case, M1, M2 and M3 are

fixed constant and the required configurations for GSC, SRC, (2.12) and (2.13) in Theorem
2.1 become

M1q + 1 < q∗, η1 ≤ r2
1

c∗
qλ

n
, η2

2 ≤
r2
2

c∗
qλ2

n
. (6.20)

Consider p À n > q∗ > q → ∞, let A1 = {k : ‖β̂k‖2 > 0 or k /∈ A0}. Define
v1 = XA1(β̂A1 − βA1) and g1 = XT

A1
(Y −Xβ̂). By Lemma 1,

‖v1‖2
2 = ‖XA1(β̂A1 − βA1)‖2

2 = n‖Σ1/2
11 (β̂A1 − βA1)‖2

2 ≥ c∗n‖β̂A1 − βA1‖2
2,
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and

(β̂A1 − βA1)
′
g1 = v

′
1(Y −XA1 β̂A1) = v

′
1(Xβ + ε−XA1 β̂A1 −XA1βA1 + XA1βA1)

= v
′
1(Xβ −XA1βA1 + ε)− ‖v1‖2

2.

By the Karush-Kuhn-Tucker conditions,

‖g1‖∞ ≤ max
k,‖β̂k‖2>0

‖λ
√

dkβ̂k

‖β̂k‖2

‖∞ = λda,

and
‖Xβ −XA1βA1‖2 = ‖XA2βA2‖2 ≤ η2.

Therefore,

‖v1‖2 ≤ ‖Xβ −XA1βA1 + P1ε‖2 + n−1/2‖Σ−1/2
11 g1‖2

≤ η2 + ‖P1ε‖2 +
‖g1‖2√

nc∗
≤ η2 + ‖P1ε‖2 + λ

√
daN(A1)

nc∗
.

(6.21)

Since ‖P1ε‖2 ≤ 2σ
√

N(A1) log(Nd) with probability converging to one under the normality
assumption, we have

‖X(β̂ − β)‖2 ≤ ‖XA1(β̂A1 − βA1)‖2 + ‖XA2βA2‖2

≤ 2η2 + ‖P1ε‖2 + λ

√
daN(A1)

nc∗

≤ 2r2B1 + 2σ
√

N(A1) log(Nd) + λ

√
daq1

nc∗

≤ 2r2B1 + 2σ
√

N(A1) log(Nd) + λ

√
daM1q

nc∗
≤ (2r2 +

√
4M1dc̄)B1 + 2σ

√
N(A1) log(Nd).

It follows that

(
∑

k∈A1

‖β̂k − βk‖2
2)

1/2 ≤ ‖v1‖2√
nc∗

≤ 1√
nc∗

(η2 + 2σ
√

N(A1) log(Nd) +
√

dM1c̄B1). (6.22)

Now since A2 ⊂ A0, by the second inequality in (6.20),

#{k ∈ A0 : ‖βk‖2 > λ/n} ≤ r2
1

c∗
q ∼ O(q).

Thus by the SRC and the third inequality in (6.20),

∑

k∈A0

‖βk‖2
2I{‖βk‖2 > λ/n} ≤ 1

nc∗

∑

k∈A0

‖XkβkI{‖βk‖2 > λ/n}‖2
2 ≤

η2
2

nc∗
≤ r2

2qλ
2

n2c∗c∗
, (6.23)

and ∑

k∈A0

‖βk‖2
2I{‖βk‖2 ≤ λ/n} ≤ r2

1q

c∗
λ2

n2
. (6.24)
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By (6.22),(6.23) and (6.24), we have

‖β̂ − β‖2 ≤ 1√
nc∗

(
2σ

√
M1 log(Nd)q + (r2 +

√
dM1c̄)B1

)
+

√
c∗r2

1 + r2
2

c∗c∗

√
qλ

n
,

and
‖Xβ̂ −Xβ‖2 ≤ 2σ

√
M1 log(Nd)q + (2r2 +

√
dM1c̄)B1.

This complete the proof of Theorem 2.2. 2

Proof of Theorem 3.1. Let û = β̂ − β and W = XT ε/
√

n and let

V (u) =
n∑

i=1

[(εi − xiu)2 − ε2
i )] +

p∑

k=1

λk

√
dk‖uk + βk‖2,

û = min
u

(ε−Xu)
′
(ε−Xu) +

p∑

k=1

λk

√
dk‖uk + βk‖2,

where λk = λ̃/‖β̃k‖2. By the KKT conditions,

X
′
k(Y −Xβ̂) = λk

√
dk

β̂k

‖β̂k‖2

, if ‖β̂k‖2 6= 0,

− λk

√
dkedk×1 ≤ X

′
k(Y −Xβ̂) ≤ λk

√
dkedk×1, if ‖β̂k‖2 = 0.

If there exists û such that

ΣAc
0Ac

0
(
√

nûAc
0
)−WAc

0
= − 1√

n
SAc

0
, (6.25)

‖ûk‖2 ≤ ‖βk‖2, for k ∈ Ac
0,

and
−CA0√

n
≤ ΣA0Ac

0
(
√

nûAc
0
)−WA0 ≤

CA0√
n

, (6.26)

then we have ‖β̂k‖2 6= 0, for k = 1, · · · , q, and ‖β̂k‖2 = 0, for k = q + 1, · · · , p. By (6.25),

(
√

nûAc
0
)− Σ−1

Ac
0Ac

0
WAc

0
= − 1√

n
Σ−1

Ac
0Ac

0
SAc

0
.

By (6.26),

ΣA0Ac
0
(
√

nûAc
0
)−WA0 = ΣA0Ac

0
Σ−1

Ac
0Ac

0
WAc

0
−WA0 −

1√
n

ΣA0Ac
0
Σ−1

Ac
0Ac

0
SAc

0

= −n−1/2X
′
A0

(I − PAc
0
)ε− n−1/2ΣA0Ac

0
Σ−1

Ac
0Ac

0
SAc

0
.

Define the events

E1 = {n−1/2‖(Σ−1
Ac

0Ac
0
X
′
Ac

0
ε)k‖2 <

√
n‖βk‖2 − n−1/2‖(Σ−1

Ac
0Ac

0
SAc

0
)k‖2, k ∈ Ac

0},

and

E2 = {n−/2‖(X ′
A0

(I − PAc
0
)ε)k‖2 < n−1/2‖Ck‖2 − n−1/2‖(ΣA0Ac

0
Σ−1

Ac
0Ac

0
SAc

0
)k‖2, k ∈ A0}.
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where (·)k means the dk dimensional sub-vector of vector (·) corresponding to the kth group
for k ∈ A0 or k ∈ Ac

0. Then we have, P (‖β̂k‖2 6= 0, k ∈ A0, and ‖β̂k‖2 = 0, k 6∈ A0) ≥
P (E1 ∩ E2).

Since P (E1 ∩ E2) = 1 − P (Ec
1 ∪ Ec

2) ≥ 1 − P (Ec
1) − P (Ec

2), to show P (‖β̂k‖2 6= 0, k ∈
A0 and ‖β̂k‖2 = 0, k 6∈ A0) → 1, it suffices to show P (Ec

1) → 0 and P (Ec
2) → 0.

First, we consider P (Ec
1). Define R = {‖β̃k‖−1

2 ≤ c1θ
−1
b , k ∈ Ac

0} where c1 is a constant.
Then

P (Ec
1) = P (Ec

1

⋂
R) + P (Ec

1

⋂
Rc) ≤ P (Ec

1

⋂
R) + P (Rc).

By condition (C2), P (Rc) → 0. So it suffices to show that P (Ec
1

⋂
R) → 0.

Let Nq =
∑q

k=1 dk, let τ1 ≤ · · · ≤ τNq be the eigenvalues of ΣAc
0Ac

0
and let γ1, · · · , γNq

be the associated eigenvectors. We have Σ−1
Ac

0Ac
0

=
∑Nq

l=1 τ−1
l γlγ

T
l . The jth element in the lth

group of vector Σ−1
Ac

0Ac
0
SAc

0
is

ulj =
Nq∑

l
′
=1

τ−1
l′

(γ
′
l′SAc

0
)γlj .

By the Cauchy-Schwartz inequality,

u2
lj ≤ τ−2

1

Nq∑

l=1

‖γl‖2
2‖SAc

0
‖2
2 = τ−2

1 Nq‖SAc
0
‖2
2 ≤ τ−2

1 Nq(
q∑

k=1

λ2
kdk). (6.27)

Therefore,
‖uk‖2

2 ≤ dkτ
−2
1 q2d2

a(λ̃c1θ
−1
b )2.

Define υAc
0

=
√

nθb − n−1/2c1τ
−1
1 qd

3/2
a λ̃θ−1

b , ηAc
0

= n−1/2Σ−1
Ac

0Ac
0
XT

Ac
0
ε, ξA0 = n−1/2XT

A0
(I −

PAc
0
)ε and

CAc
0

= {max
k∈Ac

0

‖ηk‖2 ≥ υAc
0
}.

Then P (Ec
1) ≤ P (CAc

0
). By Lemmas 1 and 2 of Huang, Ma and Zhang (2008), we have,

P (Cc
A0

) ≤ K(da log q)1/2

υAc
0

where K is a constant. Under condition (C3),

k(da log q)1/2

υAc
0

=
K(da log q)1/2

√
n(θb − (λ̃c1d

3/2
a q)/(θbn))

→ 0

Namely, P (Ec
1

⋂
R) → 0. Thus P (Ec

1) → 0.
Next, we consider P (Ec

2). Similarly as above, define D = {‖β̃k‖−1
2 > rn, k ∈ A0}

⋂
R.

Then
P (Ec

2) = P (Ec
2

⋂
D) + P (Ec

2

⋂
Dc) ≤ P (Ec

2

⋂
D) + P (Dc).

By condition (C2), we know P (Dc) → 0. Thus it suffices to show that P (Ec
2

⋂
D) → 0. By

(6.27),

| 1
n

Nq∑

l=1

n∑

i=1

(XA0)ij(XAc
0
)ilul| ≤

Nq∑

l=1

|ul| ≤ τ−1
1 q2d2

aλ̃c1θ
−1
b ,

where ul is the lth element of vector Σ−1
Ac

0Ac
0
SAc

0
.
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Define υA0 = n−1/2λ̃rn

√
db − n−1/2τ−1

1 q2d
5/2
a λ̃c1θ

−1
b ,

CA0 = {max
k∈A0

‖ξk‖2 > υA0}.

Then P (Qc) ≤ P (CA0). By Lemmas 1 and 2 of Huang et al. (2008), we have,

P (CA0) ≤
K(da log(p− q))1/2

υA0

Under (C3),

K(da log(p− q))1/2

υA0

=
K
√

nda(log(p− q))1/2

λ̃rn(
√

db − (d5/2
a q2c1)/(θbrnτ1))

→ 0.

Namely P (Ec
2

⋂
D) → 0. Thus P (Ec

2) → 0. This completes the proof the Theorem 3.1. 2

Proof of Theorem 3.2. Let Â = {k : ‖β̃k‖2 > 0, k = 1, · · · , p}, q̂ = #{k : k ∈ Â}. By the
definition of λk, when ‖β̃k‖2 = 0, we have ‖β̂∗k‖2 = 0. So

∑
k∈Âc ‖β̂∗k‖2 = 0.

Given the initial estimator from the group Lasso, the dimension of our problem 3.1 is
reduced to q̂ and q̂ ≤ M1q ≤ q∗ and Âc ⊂ A0 by Theorem 2.1 with probability converging to
one. By the definition of β̂∗,

1
2
‖Y −XÂβ̂∗

Â
‖2
2 + λ̃

∑

k∈Â

√
dk

‖β̃k‖2

‖β̂∗k‖2 ≤ 1
2
‖Y −XÂβÂ‖2

2 + λ̃
∑

k∈Â

√
dk

‖β̃k‖2

‖βk‖2. (6.28)

η∗ = λ̃
∑

k∈Â

√
dk

‖β̃k‖2

(‖βk‖2 − ‖β̂∗k‖2) ≤ λ̃
∑

k∈Â

√
dk

‖β̃k‖2

‖β̂∗k − βk‖2. (6.29)

Let δÂ = Σ1/2

ÂÂ
(β̂∗

Â
− βÂ), D = Σ−1/2

ÂÂ
X
′
Â
. We have

1
2
‖Y −XÂβ̂∗

Â
‖2
2 −

1
2
‖Y −XÂβÂ‖2

2

=
1
2
‖XÂ(β̂∗

Â
− βÂ)‖2

2 + ε
′
XÂ(βÂ − β̂Â)

=
1
2
δ
′
Â
δÂ − (Dε)

′
δÂ.

By (6.28) and (6.29),
1
2
δ
′
Â
δÂ − (Dε)

′
δÂ − η∗ ≤ 0.

Therefore,
‖δÂ −Dε‖2

2 − ‖Dε‖2
2 − 2η∗ ≤ 0.

It follows that ‖δÂ −Dε‖2 < ‖Dε‖2 + (2η∗)1/2. By the triangle inequality,

‖δÂ‖2 ≤ ‖δÂ −Dε‖2 + ‖Dε‖2 ≤ ‖Dε‖2 + (2η∗)1/2.

Thus
‖δÂ‖2

2 ≤ 6‖Dε‖2
2 + 6η∗.
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Let Di be the ith column of D. Then Dε =
∑n

i=1 Diεi. Since εi, i = 1, · · · , p are iid
N(0, σ2),

E(‖Dε‖2
2) =

n∑

i=1

‖Di‖2
2Eε2

i = σ2tr(D
′
D) = σ2q̂.

Then by the SRC and consistent of the group Lasso estimator, with probability converging
to one,

nc∗‖β̂Â − βÂ‖2
2 ≤ 6σ2M1q + λ̃

√
da

ξbθb
‖β̂Â − βÂ‖2,

namely

‖β̂Â − βÂ‖2
2 ≤

6σ2M1q

nc∗
+

(
λ̃

√
da

ξbθbnc∗

)2

/2 + ‖β̂Â − βÂ‖2
2/2.

Thus for λ̃ = nα for some 0 < α < 1/2, with probability converging to one,

‖β̂Â − βÂ‖2 ≤
√

6σ2M1

c∗
q

n
+

da

(ξbθbc∗)2
(
λ̃

n
)2 ∼ O(

√
q/n),

and ‖XÂβ̂Â−XÂβÂ‖2 ≤
√

nc∗‖β̂Â−βÂ‖2, then ‖XÂβ̂Â−XÂβÂ‖2 ∼ O(
√

q). This completes
the proof of Theorem 3.2. 2
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