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The open-loop Threshold Model, proposed by Tong [30], is a
piecewise-linear stochastic regression model useful for modeling con-
ditionally normal response time-series data. However, in many appli-
cations, the response variable is conditionally non-normal, e.g. Pois-
son or binomially distributed. We generalize the open-loop Thresh-
old Model by introducing the Generalized Threshold Model (GTM).
Specifically, it is assumed that the conditional probability distribution
of the response variable belongs to the exponential family, and the
conditional mean response is linked to some piecewise-linear stochas-
tic regression function. We introduce a likelihood-based estimation
scheme for the GTM, and the consistency and limiting distribution
of the maximum likelihood estimator are derived. A simulation study
is conducted to illustrate the asymptotic results.

1. Introduction. The threshold autoregressive (TAR) model by Tong
[29, 30] is perhaps the most popular nonlinear time-series models. Its exten-
sion that incorporates covariates is known as the open-loop threshold model
(Tong [29]) which is a piecewise-linear stochastic regression model. While
the model formulation of the threshold models does not impose the inno-
vations to be normal, normality is generally the implicit assumption given
that the threshold models specify a piecewise conditional mean structure.

However, in many applications including time-series response consisting
of counts, the response variable is conditionally non-normal, e.g. Poisson or
binomially distributed. Motivated by our recent works on modeling plague
in Samia, Chan and Stenseth [24] and Samia et al. [26], we generalize the
open-loop threshold model by introducing the Generalized Threshold Model
(GTM). Specifically, it is assumed that the conditional probability distribu-
tion of the response variable belongs to the exponential family, and the
conditional mean response is linked to some piecewise-linear stochastic re-
gression function through a known and invertible link function. The GTM is
an extension of the generalized linear model (Nelder and Wedderburn [21],
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McCullagh and Nelder [20]), in which both non-normal response distribu-
tions and piecewise linearity are accommodated. Hence, the link function
is a natural device to remove any inherent constraints on the conditional
mean function of a response variable, so that on the scale of the link func-
tion, the mean response is a piecewise-linear stochastic regression function.
Note that if the link function is not the identity function, the conditional
mean function of a GTM is generally piecewise nonlinear.

Threshold models may be estimated by various methods including con-
ditional least squares and conditional maximum likelihood estimation. The
conditional mean function of a threshold model is generally discontinuous,
resulting in non-standard asymptotics for the estimators. Chan [5], Chan and
Tsay [8], and Qian [23] established the asymptotic behavior of the thresh-
old estimator in the threshold autoregressive models. Hansen [13] and Koul,
Qian and Surgailis [15] studied the limiting behavior of the threshold esti-
mator in the context of threshold regression models. We extend the previous
asymptotic work to the GTM, where the vector of covariates may also con-
tain lags of the response variable. However, because the conditional mean
function of a GTM is generally piecewise nonlinear on the original scale, the
ensuing complexity requires very different sets of regularity conditions and
proof techniques than previous work for the threshold models.

The organization of the paper is as follows. Section 2 describes and for-
mulates the model, namely the GTM. Section 3 presents the large-sample
properties (i.e. consistency and limiting distribution) of the maximum like-
lihood estimator for the GTM. Section 4 conducts a simulation study that
demonstrates the asymptotic theory for the GTM. We conclude in Section 5.
The proofs of the results stated in Section 3 are deferred to Appendix A.

2. Model Formulation. Let {at, t = 1, · · · , T} be a positive process,
and let yt be a random variable whose conditional probability density func-
tion given at, belongs to the (one-parameter canonical) exponential family,
and takes the form

(2.1) f(yt; γt, at, φ) = exp

[

1

φat
{ytγt − b(γt)} + c (yt; φat)

]

,

where γt is the natural canonical parameter, at are known weights, φ is a
known dispersion parameter, and c is a normalization constant. In practice,
at model the weight of the data cases so generally equal to 1; it is assumed
that they are uniformly bounded away from 0 and +∞.

Let X = {xt, t = 1, · · · , T} be a p-dimensional vector covariate process
that includes a univariate subprocess Z = {zt, t = 1, · · · , T} . Let x̃t denote
the part of xt without the lags of the response variable yt. Denote by Ft, the
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σ-algebra generated by as, ys−1, x̃s, s ≤ t. The Generalized Threshold Model
(GTM) specifies that, conditional on Ft, yt belongs to the exponential family
with conditional mean µt given by

(2.2) g(µt) =

{

β
′

1xt, if zt−d ≤ r

β
′

2xt, if zt−d > r;

t = 1, · · · , T ; and with conditional variance given by φatv(µt), where v(µt) =

b̈(γt) = ∂2b(γt)
∂γ2

t

is the variance function. The link function g is assumed to

be a known invertible smooth function whose inverse is denoted by g−1. On
the scale of the link function g, the conditional mean of yt is piecewise linear
and the model is assumed to be discontinuous; i.e. the regression parameters
are such that β1 6= β2, β1 and β2 being p×1 vectors. (For some special cases
(Chan and Tsay [8]), the regression function may be continuous despite its
having distinct regression parameters in the two regimes, hence a further
technical condition stated in (C1) below is needed to ensure discontinuity in
the regression function.) The parameter d is a non-negative integer referred
to as the delay or threshold lag, and r is the threshold. For simplicity, we
consider a two-regime model, but it can be easily extended to a multiple-
regime model. The analysis of the above GTM is conditional on the observed
a’s, x̃’s, and F1. (We assume the initial values of y defining F1 are known.)

Let θ = (β′
1, β

′
2, r, d)′ denote the parameters of the GTM. The parameter

space for θ is Ω = ℜ2p × ℜ × {0, 1, · · · , D} , where D is a known upper
bound of d, the delay parameter. Let θ0 = (β′

1,0, β
′
2,0, r0, d0)

′ denote the true
parameters. Conditional on the a’s, the x̃’s and F1, the log likelihood, in
canonical form, is given by

(2.3) l(θ) =
T

∑

t=1

1

φat
{ytγt − b(γt)} + c (yt; φat) ,

where ḃ(γt) = ∂b(γt)
∂γt

= µt; see McCullagh and Nelder [20] and Firth [12].
Henceforth, b(γt) is assumed to be a twice-differentiable function with posi-
tive second-order derivative, i.e. b(γt) is strictly convex and ḃ(γt) is a strictly
monotone increasing function. In particular, since µt is a one-to-one function
of γt, we can use µt as the parameter such that the log likelihood defined
by (2.3) can be shown to equal

(2.4) l(θ) =
T

∑

t=1

− 1

2φ
dt(yt; µt) + ℓt(yt),
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where dt(y; µ) = −2
∫ µ
y

y−u
atv(u)du is the deviance measure of fit, and ℓt(µt)

is the log likelihood for a single observation yt given Ft; see Breslow and
Clayton [3].

Each distribution belonging to the exponential family has a unique canon-
ical link function η = ḃ−1 for which η(µt) = γt = β

′

1xtI(zt−d ≤ r) +
β

′

2xtI(zt−d > r), where I(.) is the indicator function. Recall that as a result
of the monotonicity of ḃ, the canonical parameter γt is a monotone function
of µt. The canonical parameter space is generally either the real line, or a
one-sided infinite interval, or an interval, depending on the distribution of
the exponential family under consideration. In the case that the canonical
parameter space is a proper subset of the real line, using the canonical link
in the model is not attractive, in part because it puts restrictions on the
parameter βi, i = 1, 2. To avoid this issue, we shall assume that the link
function (canonical or not) is such that the parameters βi, i = 1, 2, are un-
constrained and that γt = w{β′

1xtI(zt−d ≤ r) + β
′

2xtI(zt−d > r)}, where w
is an increasing function. It is easy to check that w = η ◦ g−1, where η is the
canonical link function and g is the link function considered in the model.
Therefore, the log likelihood can be written as the sum of the log likelihoods
of the two generalized linear submodels (in the lower and upper regimes) up
to an additive constant, i.e.

l(θ) =
T

∑

t=1

Mβ1
(yt; at, xt)I(zt−d ≤ r) + Mβ2

(yt; at, xt)I(zt−d > r)

+ c(yt; φat),(2.5)

=
T

∑

t=1

lt(θ),(2.6)

where Mβi
(yt; at, xt) = 1

φat
{w(β

′

ixt)yt − b ◦ w(β
′

ixt)}, i = 1, 2, and lt(θ) is
defined as the t-th summand of (2.5). The functions ℓt in (2.4) differ from lt
in that the latter are functions of θ whereas the former are functions of the
mean parameter. Note that

(2.7) l(θ) ≤
T

∑

t=1

ℓt(yt).

Samia, Chan and Stenseth [24] studied the specific case where the non-
negative discrete response variable equals zero in the lower regime; mean-
ing that if the threshold is not met, the response is zero, which restriction
greatly simplifies the theoretical study of the model. While the latter model
is of general applicability for analyzing epidemiological time series and other



CONSISTENCY AND LIMITING DISTRIBUTION 5

time-series data (Samia, Chan and Stenseth [24] and Stenseth et al. [27]), the
proposed GTM relaxes the restriction of zero response in the lower regime,
and provides full generality of piecewise linear stochastic regression on the
link scale for continuous or discrete valued time series. Before we end this
section, we give two examples illustrating the GTM.

Example 1. Let {yt} be positive-valued time series with conditional margi-
nal exponential distribution with mean µt and the log-link function:

(2.8) log(µt) =

{

β10 + β11 log(yt−1), if log(yt−1) ≤ r

β20 + β21 log(yt−1), if log(yt−1) > r,

hence zt = log(yt−1) and xt = (1, zt) with the true delay parameter d =
0. Also, assume φ ≡ 1 and at ≡ 1. This is an observation driven model;
see Cox [9]. The model can be readily generalized to include higher lags
of the response variable, as well as exogeneous covariates. Lawrance and
Lewis [19] proposed the NEAR model for analyzing non-negative time series
with stationary exponential distribution. One of their motivation for the
use of the exponential marginal distribution is to handle data with high
number of zeroes, e.g. in wind speed data. For data with zeroes, the above
GTM can be modified by replacing log(yt−1) by log(yt−1 + 1). Note that
the canonical parameter space consists of the set of non-positive numbers,
and hence we use the non-canonical log-link function that ensures that the
regression coefficients are non-constrained.

It follows from the conditional exponential distribution that yt = µtet

where et is independent of the past y’s and distributed as an exponential
distribution of unit mean. Consequently,

(2.9) log(yt) =

{

β10 + β11 log(yt−1) + log(et), if log(yt−1) ≤ r

β20 + β21 log(yt−1) + log(et), if log(yt−1) > r,

showing that zt = log(yt−1) is a two-regime first-order threshold autore-
gressive (TAR) process. It can be readily checked that − log(et) is Gum-
bel distributed with location parameter equal to 0 and scale parameter
equal to 1. The probability density function (pdf) of log(et) equals h(x) =
exp(x − exp(x)), x ∈ ℜ, and hence all its moments are finite. Chan et al.
[6] obtained the necessary and sufficient conditions for the stationarity and
ergodicity for the first-order TAR models. In particular, the above GTM is
geometrically ergodic if β11 < 1, β21 < 1, β11β21 < 1. These conditions will
be assumed throughout this example. Indeed, geometric ergodicity of {zt}
entails that it admits a unique stationary pdf, denoted by π, such that the
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L1-norm of pk(z, ·), the conditional probability density of zt+k given zt = z,
from the stationary density π be bounded by H(z)ρk for some 0 < ρ < 1
and a π-integrable function H, i.e.

∫

|pk(z, z̃) − π(z̃)|dz̃ ≤ H(z)ρk.(2.10)

Furthermore, Chan et al. [6] showed that, for this example, there exists
some constant K > 0 such that H(z) ≤ K + K|z|. Moreover, the stationary
density, π, of zt = log(yt−1) satisfies the invariant equation:

(2.11) π(z) =

∫

h(z−{β10 +β11y}I(y ≤ r)−{β20 +β21y}I(y > r))π(y)dy

from which it can be checked that π is positive everywhere, bounded and
infinitely differentiable. The 1-step ahead conditional probability density
function of zt+1 = z̃ given zt = z equals p(z, z̃) = h(z̃ − {β10 + β11z}I(z ≤
r) − {β20 + β21z}I(z > r)) so that the joint stationary density of (zt, zt+1)
at (z, z̃) equals π(z)p(z, z̃), is bounded and positive everywhere. It can be
similarly checked that the joint density of (zi, zj) are everywhere positive
and uniformly bounded in i and j.

For the purpose of verifying some regularity conditions stated in the next
section, we claim that under the stationary distribution exp(M |zt|) is an
integrable function for any positive constant M . (Hence, H in (2.10) is π-
square integrable.) This claim can be verified by routine analysis showing
that the function exp(M |z|) satisfies the drift condition stated for the func-
tion g in Theorem 1 of Chan [4]. Hence, {yt = exp(zt+1)} is stationary, and
has finite moments of all orders.

To compute the log likelihood, note that the pdf of yt can be written
as exp(γtyt + log(−γt)) where γt = −1/µt and b(γt) = − log(−γt). It can
be checked that the log-link function implies that w(x) = − exp(−x) and
hence b ◦ w equals the identity function; these results will be instrumental
in studying the consistency of the maximum likelihood estimator.

Example 2. Consider time series of counts {yt} where the covariate process
{xt} is exogeneous, i.e. it does not involve the y’s. Furthermore, assume that
given the covariate process, the conditional distribution of the response is
Poisson and we use the log canonical link. Also, assume φ ≡ 1 and at ≡ 1.
It is then clear that {log(µt)} is a stationary ergodic process and so is {yt}
whenever {xt} is stationary ergodic. For this example, b(γt) = exp(γt), w is
the identity function and b ◦ w = b.
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3. Large-Sample Properties of the Estimator. The following as-
sumptions will be used to establish the asymptotic properties of the max-
imum likelihood estimator. All expectations in the sequel are taken under
the true model, unless stated otherwise.

(C1) The regression parameters are such that β1,0 6= β2,0 and that P{(β1,0−
β2,0)

′

xt 6= 0|zt−d0
= r0} > 0. The cumulant function b(γt) is strictly

convex.

(C2) The process {(at, x
′

t, yt)
′} is stationary ergodic, having finite second

moments.

(C3) The process Z = {zt} admits a marginal probability density function
π(.) that is continuous at the true threshold r0 which is an interior
point of the range of z, and π(r0) > 0. The joint marginal probability
density functions πij(., .) of (zi, zj)

′

, for all i 6= j, with 0 ≤ |i− j| ≤ D,
are assumed to be positive everywhere and uniformly bounded. Also,
there exists ǫ > 0 such that for all 0 ≤ j ≤ D and β with |β| = 1,

P (|β′

xt| > ǫ, zt−d0
∈ A, zt−j ∈ B) > 0,(3.1)

for any A of the form (−∞, r0] or its complement, and B of the form
(−∞, r] or its complement, for any real constant r.

Some explanations on these assumptions follow. Even though the regres-
sion parameters in the two regimes are distinct, the regression function may
still be a continuous function. For example, this is the case with real-valued
xt and mean specification: µt = β1xtI(xt ≤ 0) + β2xtI(xt > 0), which is
a continuous function for any β1 and β2. Hence, (C1) imposes the further
restriction that the two associated linear submodels are conditional distinct
given the threshold variable at the threshold, with which we exclude the
special case of a ‘continuous’ threshold model; see Chan and Tsay [8]. Dis-
continuity is an essential condition for showing that the maximum likelihood
estimator of the threshold parameter r is T -consistent. Strict convexity of
the cumulant function guarantees the strict concavity of the log likelihood
function in (2.3) and, hence for known threshold and delay and with suffi-
ciently large sample size, at most one global maximum likelihood estimator
of the regression parameters βi, i = 1, 2, exists.

Without the assumption (C2) of
{

(at, x
′

t, yt)
′

}

being stationary ergodic,

the consistency of the estimators may not be true as shown in Example 1
of Chan [5] which is a special case of a GTM with identity link and normal
conditional distributions. Therefore, in the case of a threshold autoregressive
(TAR) model (which is a special case of the GTM), Chan and Tong [7] have
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shown that under some conditions on the model parameters, the TAR model
is stationary and geometric ergodic. In particular, under the condition that
the sum of the magnitude of the autoregressive coefficients in each regime
is less than 1 and under mild moment and density conditions of the error
process, a TAR model is stationary and geometric ergodic; see Tong [29, p.
464, Example A1.2].

Assumption (C3) also requires the threshold variable to have a contin-
uous marginal distribution satisfying some mild regularity conditions. The
condition on xt rules out redundancy in xt, e.g. xt cannot be linearly depen-
dent. Note that (3.1) required by (C3) holds under very general conditions,
e.g. it holds if P (|β′

xt| > ǫ|zt−i, zt−j) > 0 a.s. w.r.t. the joint distribution of
(zt−i, zt−j) for 0 ≤ i, j ≤ D. Conditions (C1–C3) ensure model identifiability
of the GTM. We now state additional assumptions.

(C4) The parameter vector θ = (β
′

1, β
′

2, r, d)
′

lies in a compact space Ω1 ⊆ Ω,
and Ω1 contains the true parameter θ0, an interior point of Ω1 in the
relative topology of the Euclidean space.

While the assumption of a compact parameter space, stated in Assump-
tion (C4), may appear restrictive, it can be removed or considerably weak-
ened in several cases of the GTM, as demonstrated in the following two
lemmas. Indeed, Lemma 3.1 shows that the maximum likelihood estimator
of a GTM with canonical link function is stochastically bounded under some
mild regularity conditions. We now state Lemma 3.1. (Proofs of all results
in this section are deferred to the Appendix.)

Lemma 3.1. Suppose that (C1)–(C3) hold. Assume, furthermore, that
(i) the link function considered in the model is the canonical link with the
canonical parameter space equals ℜ1, and (ii) E(|lt(θ0)|) < ∞ and E(ℓ+

t (yt))
< ∞ where ℓ+

t (yt) = max(ℓt(yt), 0). Then, there exists τ > 0 such that, for
T sufficiently large, the maximum likelihood estimator θ̂T of the parameter
vector θ lies in the compact set Ω1 = {θ ∈ Ω : |θ − θ0| ≤ τ} almost surely.

The condition on the canonical link function stated in Lemma 3.1 holds
for many distributions including binomial, Poisson and normal (with known
variance), and it ensures that the piecewise linear stochastic regression func-
tion is unconstrained on the link scale. The condition E(|lt(θ0)|) < ∞ holds
under (C2) and if the b function is Lipschitz continuous in the sense as
stated in (C5) below. (Using the canonical link is equivalent to requiring
the function w to be the identity function.) Recall the notation ℓt(yt) is the
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maximum log likelihood for the t-th data case with the mean µt = yt. For
discrete response variables, the probability mass function is bounded above
by 1, so ℓ+

t (yt) ≤ 0, hence the condition E(ℓ+
t (yt)) < ∞ clearly holds for

such cases. It also holds for normal distributions with known positive vari-
ance. For responses that are conditionally Gamma with k being the shape
parameter, it can be checked that

ℓt(yt) = − log(yt) − k + k log(k).

Consequently, ℓ+
t (yt) ≤ 0 holds if E{− log(yt)I(yt ≤ 1)} < ∞. As remarked

earlier, for some distributions including the Gamma distribution, the canon-
ical parameter space is a proper subset of ℜ1, thereby necessitating the use
of a non-canonical link function to ensure that the regression function is
unconstrained. However, the preceding lemma can be extended to the case
that the link function is such that b ◦ w is the identity function and w is a
strictly concave function, which is valid for some distributions, e.g. Gamma
distributions. Specifically, we have the following result.

Lemma 3.2. Suppose that (C1)–(C3) hold. Assume, furthermore, that
(i) the link function considered in the model is such that b◦w equals the iden-
tity function and w is strictly concave, (ii) E(|lt(θ0)|) < ∞, (iii) E(ℓ+

t (yt)) <
∞ and (iv) yt/µt(θ0) has finite variance, where µt(θ0) is the true conditional
mean of yt. Then, there exists τ > 0 such that, for T sufficiently large, the
maximum likelihood estimator θ̂T lies in the compact set Ω1 = {θ ∈ Ω :
|θ − θ0| ≤ τ} almost surely.

Let | · | denote the absolute norm of the enclosed expression. Let

(3.2) Mβ(at, xt, yt) =
1

φat
{γtyt − b(γt)}

be the log likelihood for a single observation, namely yt, where γt = w(β
′

xt)
= η ◦ g−1(β

′

xt), η being the canonical link function and g the link func-
tion considered in the model. The following Assumption (C5) requires the
functions w and b to be Lipschitz continuous.

(C5) There exist a square-integrable function w̃ and an integrable function
m̃ such that |w(β

′

x) − w(β∗′x)| ≤ w̃(x)|β − β∗| and |b ◦ w(β
′

x) − b ◦
w(β∗′x)| ≤ m̃(x)|β − β∗|, for every β, β∗ in a compact set, and for all
x (in the support of xt).

It follows from (C2) and (C5) that there exists an integrable function
Λ(at, xt, yt) such that |Mβ(at, xt, yt)−Mβ∗(at, xt, yt)| ≤ Λ(at, xt, yt)|β−β∗|,
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for all β, β∗, in a compact set, and all at, xt, and yt. The following two
Assumptions (C6) and (C7) are imposed on the function Λ(at, xt, yt).

(C6) There exist τ > 0 and M > 0 such that, for all zt−d0
∈ [r0 − τ, r0 +

τ ], E{Λ(at, xt, yt)
2|zt−d0

} ≤ M.
(C7) There exists a ∆ > 0 such that the process [{Λ(at, xt, yt)I(−∆ ≤

zt−d0
− r0 ≤ ∆), zt−d0

I(−∆ ≤ zt−d0
− r0 ≤ ∆)}′

] is ρ-mixing with
summable mixing coefficients.

Assumption (C6) is a conditional second-moment bound on the function
Λ(at, xt, yt). We now briefly summarize the ρ-mixing property of a stationary
process, say, {Wt}. Let A be the σ-algebra generated by {Wt, t ≤ j} and let
B be the σ-algebra generated by {Wt, t ≥ j + k}. The process {Wt} is said
to be ρ-mixing if there exists a sequence of numbers {ρ(k)} with ρ(k) → 0
as k → ∞, and such that for any square-integrable random variables f and
g such that f is A-measurable and g is B-measurable,

|corr(f, g)| ≤ ρ(k).(3.3)

See Billingsley [2, §19] and Doukhan [10, p. 3 and §1.3] for further discussion
of ρ-mixing. The ρ-mixing assumption stated in Assumption (C7) “controls
the degree of time series dependence”, as noted by Hansen [13]. For ge-
ometrically ergodic Markov processes, the ρ-mixing condition required in
(C7) often holds in view of (2.10) and the fact that the process defined in
(C7) confines zt−d0

to lie in a compact set; this approach is taken when we
demonstrate the validity of (C7) for Example 1 at the end of this section.

The following Assumption (C8) is a mild regularity condition; see Feller
[11] for a discussion of weak continuity.

(C8) The conditional distribution of (at, x
′

t)
′

given zt−d0
= z is weakly con-

tinuous at z = r0, i.e. the conditional distribution as a function of z is
continuous at r0 in the topology of weak convergence.

The following Theorem 3.1 states the consistency of the maximum likeli-
hood estimator θ̂T = (β̂

′

1, β̂
′

2, r̂, d̂)
′

.

Theorem 3.1. Assume that (C1)–(C5) hold. Then, the maximum like-
lihood estimator θ̂T = (β̂

′

1, β̂
′

2, r̂, d̂)
′

is strongly consistent; that is, θ̂T → θ0

almost surely.

Because of Theorem 3.1, it follows from the discreteness of the delay
parameter that, for all sufficiently large T, d̂ = d0 with probability 1. Thus,
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without loss of generality, we may and shall assume henceforth that the delay
parameter is known. Also, we write d for d0. The parameter d is, furthermore,
deleted from θ. We next show in Theorem 3.2 that the maximum likelihood
estimator of the threshold is T -consistent. The Op(1/T ) fast convergence
rate is due to the discontinuity of the conditional mean function; see Chan
[5], Chan and Tsay [8], and Hansen [13].

Theorem 3.2. Suppose that θ̂T is consistent and assume that (C5)–
(C8) hold. Then the maximum likelihood estimator of the threshold is T -
consistent, i.e., r̂ = r0 + Op(1/T ), where T is the sample size.

Define δ = (β
′

1, β
′

2)
′, θ = (r, δ

′

)′. Let l(θ) be the log likelihood defined
by (2.3), and let δ̂r = arg maxδ l(θ), for a fixed r. The log likelihood function
of the GTM defined by (2.2), is given by

l(θ) =
T

∑

t=1

1

φat
{w(β

′

1xt)yt − b ◦ w(β
′

1xt)}I(zt−d ≤ r)

+
1

φat
{w(β

′

2xt)yt − b ◦ w(β
′

2xt)}I(zt−d > r) + c(yt; φat)

=
T

∑

i=1

Mβ1
(yt; at, xt)I(zt−d ≤ r) + Mβ2

(yt; at, xt)I(zt−d > r)

+c(yt; φat),

where Mβi
(yt; at, xt) = 1

φat
{w(β

′

ixt)yt − b ◦ w(β
′

ixt)}, i = 1, 2.

Let ψδ(yt; at, xt) = {Ṁ ′

β1
(yt; at, xt)I(zt−d ≤ r0), Ṁ

′

β2
(yt; at, xt)I(zt−d >

r0)}
′

,
where Ṁβi

(yt; at, xt) = ∂
∂βi

Mβi
(yt; at, xt), i = 1, 2. Define

(3.4)

ΨT (δ) =
1

T

T
∑

i=1

{Ṁ ′

β1
(yt; at, xt)I(zt−d ≤ r̂), Ṁ

′

β2
(yt; at, xt)I(zt−d > r̂)}′

.

The maximum likelihood estimator δ̂ = δ̂r̂ is a root of the estimating
equation ΨT (δ) = 0. On the other hand, for the GTM defined by (2.2) with
known true threshold and delay, the maximum likelihood estimator equals
δ̂r0

which is a root of the following estimating equation

(3.5)
1

T

T
∑

i=1

{Ṁ ′

β1
(yt; at, xt)I(zt−d ≤ r0), Ṁ

′

β2
(yt; at, xt)I(zt−d > r0)}

′

= 0.
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The following classical conditions will be used to study the limiting dis-
tribution of the maximum likelihood estimator. Assumptions (D1)–(D3) re-
quire the existence of third derivatives of Mβ(y; a, x) with some (conditional
or unconditional) moment bounds. Assumption (D4) essentially determines
the curvature of the log likelihood function.

(D1) Let Ṁβ(y; a, x) = ∂
∂β Mβ(y; a, x). The domain of δ is an open subset of

the Euclidean space, in which βi 7→ Ṁβ(y; a, x) is twice continuously
differentiable for every (y; a, x).

(D2) Let M̈β(y; a, x) = ∂2

∂β2 Mβ(y; a, x). For some neighborhood of βi,0, say

Vi, i = 1, 2, there exists function m(y; a, x) such that |Ṁβ(y; a, x)| ≤
m(y; a, x) for all y, a, x, and β ∈ V1∪V2. There exists M > 0 and ∆ > 0
such that E{m(yt; at, xt)|zt−d} ≤ M for all zt−d ∈ [r0 − ∆, r0 + ∆].

(D3) For some neighborhood of βi,0, say Vi, i = 1, 2, the third-order partial
derivatives of Mβ(y; a, x) with respect to β are dominated by a fixed
integrable function m3(y; a, x) for every β ∈ V1 ∪ V2.

(D4) E{M̈β1,0
(yt; at, xt)I(zt−d ≤ r0)} and E{M̈β2,0

(yt; at, xt)I(zt−d > r0)}
exist and are nonsingular, where
M̈βi,0

(yt; at, xt) = ∂2

∂β2
i

Mβi
(yt; at, xt)|βi=βi,0

, i = 1, 2, and the expecta-

tion is taken under the true model.

Let l(θ) be the log likelihood of θ and let l(., r) be globally maximized at
δ̂r = (β̂

′

1,r, β̂
′

2,r)
′

. The estimate of the threshold parameter r can be obtained

by maximizing the profile log likelihood function l(δ̂r, r) of r. The optimiza-
tion is conducted over the finite set of observed values of the threshold
variable zt−d. This is because, for a fixed delay d, the profile log likeli-
hood function is constant between two consecutive sample percentiles of the
threshold variable zt−d. As a result of the strict convexity of b(γt), the global
maximum likelihood estimators β̂1,r and β̂2,r for a fixed threshold r (and a
fixed delay d) can be attained by an exhaustive search with respect to the
threshold variable zt−d, subject to adequate number of data points in both
regimes, e.g. number of data points in each regime is greater than p + 1,
where p is the length of each of the regression coefficients β1 and β2.

We first state the following two lemmas which are instrumental in the
proof of the limiting distribution of the threshold estimator.

Lemma 3.3. Assume that (C1)–(C8) and (D1)–(D4) hold. Then, for all
K > 0,

sup
|r−r0|≤

K
T

|β̂i,r − β̂i,r0
| = op(1/

√
T ), i = 1, 2.
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We now consider the limiting behavior of the normalized profile log like-
lihood. Define for κ ∈ ℜ,

(3.6) l̃(κ) = l(δ̂r0+
κ
T
, r0 + κ/T ) − l(δ̂r0

, r0).

Lemma 3.4. Assume that (C1)–(C8) and (D1)–(D4) hold. Then, for all
K > 0,

sup
|κ|≤K

|l̃(κ) − {l(δ0, r0 + κ/T ) − l(δ0, r0)}| = op(1).

Next, we shall describe the limiting distribution of the threshold estima-
tor r̂. Consider two independent compound Poisson processes {l̃1(κ), κ ≥
0} and {l̃2(κ), κ ≥ 0}, both with rate π(r0), l̃1(0) = l̃2(0) = 0 a.s. and
the distributions of jump being given by the conditional distribution of
ξ1=̇Mβ2,0

(yt; at, xt) − Mβ1,0
(yt; at, xt) given zt−d = r−0 and the conditional

distribution of ξ2=̇Mβ1,0
(yt; at, xt) − Mβ2,0

(yt; at, xt) given zt−d = r+
0 , re-

spectively. [We work with the left continuous version for l̃1(.) and the right
continuous version for l̃2(.).] The former conditional distribution is the lim-
iting conditional distribution of ξ1 given r0 − δ < zt−d ≤ r0 as δ ↓ 0 and the
latter that of ξ2 given r0 < zt−d ≤ r0 + δ as δ ↓ 0. The following theorem
states that T (r̂ − r0) converges in distribution to some functional of the
compound Poisson processes.

Theorem 3.3. Assume that (C1)–(C8) and (D1)–(D4) hold. Moreover,
assume that in (C3), the condition imposed on the marginal density of
(zi, zj)

′ holds for all i, j. Then, ({l̃(−κ), κ ≥ 0}, {l̃(+κ), κ ≥ 0}) converges
weakly to ({l̃1(κ), κ ≥ 0}, {l̃2(κ), κ ≥ 0}) in D[0,∞) × D[0,∞), the product
space being equipped with the product Skorohod metric. Assume, furthermore,
that ξ1 and ξ2 are continuous random variables. Then, the two random walks
associated with the compound Poisson processes tend to −∞ a.s. and hence,
T (r̂−r0) converges weakly to M− where [M−, M+) is the a.s. unique random
interval of all κ at which l̃1(−κ)I(κ < 0) + l̃2(κ)I(κ ≥ 0) attains its global
maximum.

Remark 1. We assume that ξ1 and ξ2 are continuous random variables
to ensure that l̃1(−κ)I(κ < 0)+ l̃2(κ)I(κ ≥ 0) attains its global maximum at
the a.s. unique random interval [M−, M+). In fact, this continuity assump-
tion is generally true in many cases (e.g. the Poisson distribution.)

The super-consistency of the threshold parameter estimator, i.e. the Op(1/
T ) convergence rate, implies that under some regularity conditions, the
threshold estimator is asymptotically independent of β̂i, i = 1, 2, which
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is the content of Theorem 3.4 below. Moreover, we show that β̂1 and β̂2

are
√

T -consistent and whose asymptotic joint distribution is identical to
that for the case of known true delay and threshold, i.e. obtained from fit-
ting the associated generalized linear model (GLM) defined by the equation
g(µt) = β

′

1xtI(zt−d ≤ r0) + β
′

2xtI(zt−d > r0).

Theorem 3.4. Assume that (C1)–(C8) and (D1)–(D4) hold. Then,

δ̂r̂ − δ0 = Op(1/
√

T ),

and the sequence
√

T (δ̂r̂ − δ0) is asymptotically normal with mean zero and
covariance matrix Σ = E(ψ̇δ0)

−1E(ψδ0ψ
′

δ0
)E(ψ̇δ0)

−1.

Remark 2. As a result of Σ being a block diagonal matrix, the regres-
sion parameter estimators β̂1 and β̂2 are asymptotically independent of each
other.

We now revisit the two examples at the end of Section 2, and discuss
when conditions (C1–C8) and (D1–D4) hold for these examples.

Example 1 Revisited. The reader may want to re-read Example 1 as
we shall make heavy use of the notations and results introduced there. The
cumulant b(γt) = − log(−γt) is strictly convex as its second derivative equals
γ−2

t > 0. Condition (C1) holds if β10 + β11r 6= β20 + β21r. Note that at ≡ 1
and xt = (1, zt)

′

with zt = log(yt−1) so the process {(at, x
′

t, yt)
′} is stationary

ergodic under the condition β11 < 1, β21 < 1, β11β21 < 1. So, condition (C2)
holds. The validity of (C3) follows from the positivity of the joint density
derived in Example 1.

To verify (C5), consider the following expression where β, β∗ lie in a com-
pact set:

|w(β
′

x) − w(β∗′x)| = | exp(−β
′

x) − exp(−β∗′x)|
= exp(−β̃

′

x)|(β − β∗)
′

x|
≤ M |x| exp(M |x|)

for some constant M > 0, where β̃ is some vector in the line segment between
β and β∗, and the last inequality follows from the Cauchy-Schwartz inequal-
ity. Since b ◦ w is the identity function, (C5) holds because exp(K|xt|) =
exp(K + K|zt|) has finite expectation under the stationary distribution, for
all K > 0, implying that |x| exp(M |x|) is π−integrable. To verify (C6), we
take Λ = (yt+1)|xt| exp(M |xt|). Now, E(Λ2|zt) = {exp(2{β10+β11zt}I(zt ≤
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r) + 2{β20 + β21zt}I(zt > r)) + 1}|zt|2 exp(2M |xt|), so (C6) follows. To ver-
ify (C7), notice that Λ = (µtet + 1)|xt| exp(M |xt|), where et is independent
of zt−j , j ≥ 0 and has an exponential distribution with unit mean, and
µt = exp(2{β10 + β11zt}I(zt ≤ r) + 2{β20 + β21zt}I(zt > r)). The ρ-mixing
condition in (C7) then follows from the additional fact that {zt} is a ge-
ometrically ergodic Markov chain and in view of (2.10); see the Appendix
for the proof. (C8) holds trivially because at ≡ 1 and xt = (1, zt) so that
given zt = z, the conditional distribution of (at, x

′

t)
′

is the probability mea-
sure concentrated on (1, 1, z)

′

which is continuous in terms of the topology
of weak convergence. Note that (C4) holds under the conditions (C1–C3),
owing to Lemma 3.2.

It can be shown that

Mβ(yt; at, xt) = −yt × exp(−β
′

xt) − β
′

xt

so

M̈β(yt; at, xt) = −yt × exp(−β
′

xt)xtx
′

t.

Based on these results and routine analysis, (D1–D4) can be verified. Hence,
the maximum likelihood estimator θ̂T is consistent, and the large-sample
distribution results developed in this section hold for this example.

Example 2 Revisited. We shall assume that the joint pdf of (zt, zt−1, ..,
zt−D) and the components in xt other than the preceding z’s is continu-
ous and positive everywhere, which implies (C3) and (C8). Condition (C1)
holds if β1,0 6= β2,0. Assume that {xt} is stationary and ρ-mixing with
summable mixing coefficients. Note that E(y2

t ) = E{exp(2β
′

1xtI(zt−d ≤
r) + 2β

′

2xtI(zt−d > r))}, which is finite if E{exp(K|xt|)} is finite for all
K > 0, which shall be assumed; hence (C2) holds. Recall b(γt) = exp(γt), w
is the identity function and b ◦ w = b. Thus, (C5) holds because exp(K|xt|)
has finite moment for any K > 0. The conditions of Lemma 3.1 are then
valid, so (C4) holds. We can take Λ(at, xt, yt) = |yt||xt| + exp(K|xt|)|xt|,
for some K > 0. After some algebra, it can be shown that condition (C6)
holds if, for all zt−d ∈ [r0 − τ, r0 + τ ], E{exp(K|xt|)|zt−d} is finite for any
K > 0. Condition (C7) clearly holds if {xt} is ρ-mixing with summable
mixing coefficients.

It can be shown that

Mβ(yt; at, xt) = ytβ
′

xt − exp(β
′

xt)

so

M̈β(yt; at, xt) = − exp(β
′

xt)xtx
′

t.
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Consequently, (D1–D4) can be verified by routine analysis. Therefore, the
maximum likelihood estimator θ̂T is consistent, and the large-sample asymp-
totics developed in this section hold for this example.

4. Simulation Study. We conduct a simulation study to illustrate the
asymptotic results of the GTM defined by (2.2). Conditionally independent
observations of yt are generated from Poisson distributions with mean µt

given by

(4.1) log(µt) =

{

β10 + β11xt, if zt−d ≤ r

β20 + β21zt−1, if zt−d > r;

t = 1, · · · , T. The parameters d and r are taken to be 0 and 0.38, respectively.
The regression coefficients are fixed at β10 = 0.4, β11 = 1, β20 = 1.5, and
β21 = 0.5. The threshold variable zt is generated as a series that follows an
AR(2) process given by zt = wt+0.907

2.37 , where wt = 0.9255wt−1−0.2736wt−2+√
0.02125 ηt, and ηt denotes a series of uncorrelated normal random variables

with zero mean and variance 1, truncated between −3 and 3. (This particular
AR(2) generating mechanism follows an example used in Samia, Chan and
Stenseth [24].) Note that zt is bounded between 0 and 1. The covariate xt

is generated as a series of independent Uniform(0, 1) random variables. The
sample sizes used are 50, 100, and 200, and for each sample size, the results
are based on 1000 replications.

The estimators of the threshold parameter r and the delay parameter d
are obtained by maximizing the log likelihood of the estimated GTM, with
the delay being an integer between 0 and 2, and the search of the threshold
done based on an exhaustive search with respect to zt−d, where each regime
has at least 4 data points. For given estimates of the threshold and the
delay, the associated generalized linear submodels are estimated using the
glm function in R; see Venables and Ripley [32].

Table 1 gives the percentage of times the threshold delay was estimated to
be equal to the true value 0 and the percentage of times optimization failed.
We also report in Table 1 the sample means, bias, and standard deviations
of the estimates, and the empirical coverage probabilities of the regression
parameters. All of the latter estimates and probabilities reported in Table 1
are based on fitting the GTM with the delay fixed at its true value 0. The
empirical coverage probabilities are based on the 95% confidence intervals
of the corresponding regression parameters.

In general, the percentage of times the threshold delay was estimated
to be equal to 0, increases with larger sample size. The percentage of times
optimization failed decreases with larger sample size. The standard deviation
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and the bias of the estimators generally become smaller with larger sample
size, confirming the consistency results discussed previously. Moreover, the
empirical coverage probabilities get generally closer to the nominal coverage
probabilities with increasing sample sizes.

The Q-Q plots of the β̂’s for sample sizes 100 and 200 confirm the asymp-
totic normality of the regression estimators in the associated generalized
linear submodels, see Figure 1 where we show the results for T = 100, as
the Q-Q plots for T = 200 are similar. For T = 50, the Q-Q plots show
some departure from normality, which can be circumvented by restricting
the search of the threshold to be between two predetermined percentiles of
the threshold variable; say, between the 20th and 80th percentiles.
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Fig 1. Q-Q Plots for the Case when Sample Size = 100.

5. Conclusion. The GTM is useful in modeling many epidemiological
time series; e.g. the dynamics of bubonic plague in humans in Kazakhstan
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Sample % of % of Parameter Estimates Coverage Probability of

Size d̂ = 0 (in %) Failures (in %) r̂ β̂10 β̂11 β̂20 β̂21 β10 β11 β20 β21

50 77.5 1.1 0.376 0.350 1.04 1.54 0.422 0.929 0.926 0.942 0.945
sd 0.0200 0.522 0.752 0.572 1.31

bias -0.00371 -0.0504 0.0386 0.0413 -0.0780

100 97.7 0.8 0.379 0.376 1.0086 1.52 0.469 0.956 0.958 0.960 0.962
sd 0.00830 0.209 0.327 0.411 0.906

bias -0.00115 -0.0241 0.00862 0.0164 -0.0312

200 99.9 0.5 0.379 0.392 1.003 1.51 0.484 0.948 0.949 0.948 0.952
sd 0.00389 0.153 0.234 0.317 0.698

bias -0.000678 -0.00830 0.00259 0.00824 -0.0164

True 0.38 0.40 1.0 1.5 0.50

Table 1. Results of the Simulation Study.
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[26]. Using data obtained from systematic sampling of fleas and rodents dur-
ing the study period, Samia et al. [26] used the GTM to explain the sporadic
occurrences of bubonic plague in humans. In particular, they showed that
a sufficient number of viable fleas has to be achieved in order for the major
human outbreaks to occur. Otherwise, if the critical threshold is not met,
sporadic minor cases of human plague may occur.

In addition, the GTM is useful in modeling many other biological systems
that undergo different dynamics; e.g. climate changes, Chitty hypothesis
(Krebs [16]). The usefulness of the GTM can be widely adapted for use
in diverse fields including natural sciences, marketing, economics, political
science, and business.

An interesting future research problem is to allow the dispersion param-
eter φ to be regime-dependent, which introduces conditional heteroscedas-
ticity in the GTM.

APPENDIX A: PROOFS

A.1. Proof of Lemma 3.1.

Proof. Without loss of generality, the true delay parameter d is assumed
to equal 0, with the integer delay parameter searched over the range 0 ≤
d ≤ D, D being a known upper bound of the delay parameter. We have

(A.1)
l(θ) − l(θ0)

T
= R1,t + R2,t + R3,t + R4,t,

where

R1,t =
1

T

T
∑

t=1

1

φat

{

(β1 − β1,0)
′

xtyt − b(β
′

1xt) + b(β
′

1,0xt)
}

× I(zt ≤ r0, zt−d ≤ r)),(A.2)

R2,t =
1

T

T
∑

t=1

1

φat

{

(β1 − β2,0)
′

xtyt − b(β
′

1xt) + b(β
′

2,0xt)
}

× I(r0 < zt, zt−d ≤ r),(A.3)

R3,t =
1

T

T
∑

t=1

1

φat

{

(β2 − β2,0)
′

xtyt − b(β
′

2xt) + b(β
′

2,0xt)
}

× I(r0 < zt, zt−d > r),(A.4)

R4,t =
1

T

T
∑

t=1

1

φat

{

(β2 − β1,0)
′

xtyt − b(β
′

2xt) + b(β
′

1,0xt)
}

× I(zt ≤ r0, zt−d > r).(A.5)
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Our proof relies on verifying the following two claims.
Claim 1: There exists ∆ > 0 such that, for T sufficiently large, θ̂T lies in

(A.6) C1 = {θ ∈ Ω : |r − r0| ≤ ∆} a.s.

Claim 2: There exists M > 0 such that, for T sufficiently large, θ̂T lies in

(A.7) C2 = {θ ∈ C1 |β1 − β1,0| ≤ M, |β2 − β2,0| ≤ M} a.s.

Throughout the proof, the uniform law of large numbers will be applied
a number of times, the validity of which can be routinely checked using
Theorem 2 of Pollard [22, p. 8]. Although Pollard [22] assumes that the
data are independent and identically distributed, this assumption can be
relaxed to assuming a stationary ergodic process; see Pollard [22, p. 9]. A
prototype of such checking is given in Samia and Chan [25].

Verification of Claim 1: It suffices to show that for T sufficiently large and

uniformly for θ /∈ C1, we have l(θ)−l(θ0)
T < 0 almost surely. First, consider the

case that r ≥ r0 +∆. We shall determine ∆ > ∆0 below, where (C3) implies
the existence of ∆0 > 0 such that P (|zt−d − r0| > ∆0|zt = z) > 0 for all z in
some neighborhood of r0, for all 0 ≤ d ≤ D. Here, we make use of the result
that the strict convexity of b implies that for all positive ǫ, there exists a
positive, bounded measurable function η(x) such that for all real numbers
x, y,

b(y) − b(x) − ḃ(x)(y − x) ≥ η(x)|y − x|I(|y − x| > ǫ).(A.8)

A proof of this result will be deferred after verifying both claims. For any
non-zero β, we define its direction by the unit vector ν(β) = β/|β|. For zero
β, we adopt the convention that its direction ν(β) = 0.

Let ǫ > 0 be as in condition (C1). We shall bound Ri,t, 1 ≤ i ≤ 4 as
follows. First,

R1,t =
1

T

T
∑

t=1

1

φat
[{(β1 − β1,0)

′

xtyt − ḃ(β
′

1,0xt)(β1 − β1,0)
′

xt}

− {b(β′

1xt) − b(β
′

1,0xt) − ḃ(β
′

1,0xt)(β1 − β1,0)
′

xt}]I(zt ≤ r0, zt−d ≤ r)

≤ 1

T

T
∑

t=1

1

φat
{(β1 − β1,0)

′

xtyt − ḃ(β
′

1,0xt)(β1 − β1,0)
′

xt}

× I(zt ≤ r0, zt−d ≤ r)

− 1

T

T
∑

t=1

1

φat
η(β

′

1,0xt)|(β1 − β1,0)
′

xt|

× I(|(β1 − β1,0)
′

xt| > ǫ, zt ≤ r0, zt−d ≤ r),
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R1,t ≤ |β1 − β1,0|
[

1

T

T
∑

t=1

1

φat
ν(β1 − β1,0)

′

xt{yt − ḃ(β
′

1,0xt)}

× I(zt ≤ r0, zt−d ≤ r)

− 1

T

T
∑

t=1

1

φat
η(β

′

1,0xt)|ν(β1 − β1,0)
′

xt|

×I(|ν(β1 − β1,0)
′

xt| > ǫ/|β1 − β1,0|, zt ≤ r0, zt−d ≤ r)
]

,

where the ratio ǫ/|β1 − β1,0| is set to be +∞ if β1 = β1,0. Note that it can
be checked that (C2) implies that, for any β with unit norm, 1

φat
β

′

xt{yt −
ḃ(β

′

1,0xt)}I(zt ≤ r0, zt−d ≤ r) has zero mean and finite absolute first mo-
ment.

Similarly, R2,t admits the following bound:

R2,t ≤
1

T

T
∑

t=1

1

φat
{(β1 − β2,0)

′

xtyt − ḃ(β
′

2,0xt)(β1 − β2,0)
′

xt}

× I(zt > r0, zt−d ≤ r)

− 1

T

T
∑

t=1

1

φat
η(β

′

2,0xt)|(β1 − β2,0)
′

xt|

× I(|(β1 − β2,0)
′

xt| > ǫ, zt > r0, zt−d ≤ r),

≤ |β1 − β2,0|
[

1

T

T
∑

t=1

1

φat
ν(β1 − β2,0)

′

xt{yt − ḃ(β
′

2,0xt)}

× I(zt > r0, zt−d ≤ r)

− 1

T

T
∑

t=1

1

φat
η(β

′

2,0xt)|ν(β1 − β2,0)
′

xt|

× I(|ν(β1 − β2,0)
′

xt| > ǫ/|β1 − β2,0|, zt > r0, zt−d ≤ r)
]

.

R3,t and R4,t admit similar inequalities, but for verifying Claim 1, a differ-
ent approach for bounding them is needed. Indeed, the assumptions that
E(ℓ+

t (yt)) < ∞ and E|lt(θ0)| < ∞ imply that for all positive H > 0, there
exists ∆ > 0 such that for all θ ∈ B = {θ ∈ Ω : r > r0 + ∆, 0 ≤ d ≤ D},
Ri,t ≤ 1

T

∑T
t=1{ℓ+

t (yt)+ |lt(θ0)|}I(zt−d > r0 +∆), i = 3, 4, with the mean of
the latter bound being less than H. Therefore, uniformly for all such θ,

R3,t + R4,t ≤ H + op(1),(A.9)

where op(1) holds uniformly for θ ∈ B.
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Since β1,0 6= β2,0, by re-scaling the covariate if necessary, we may and
shall assume that |β1,0 − β2,0| ≥ 2, resulting in three cases: (I) |β1 − β1,0| <
1, |β1 − β2,0| ≥ 1; (II) |β1 − β1,0| ≥ 1, |β1 − β2,0| < 1; (III) |β1 − β1,0| ≥
1, |β1 − β2,0| ≥ 1. For case (I),

R1,t + R2,t

≤ |β1 − β1,0|
T

T
∑

t=1

1

φat
ν(β1 − β1,0)

′

xt{yt − ḃ(β
′

1,0xt)}I(zt ≤ r0, zt−d ≤ r)

+
|β1 − β2,0|

T

T
∑

t=1

1

φat
ν(β1 − β2,0)

′

xt{yt − ḃ(β
′

1,0xt)}I(zt > r0, zt−d ≤ r)

− |β1 − β2,0|
T

T
∑

t=1

1

φat
η(β

′

2,0xt)|ν(β1 − β2,0)
′

xt|

× I(|ν(β1 − β2,0)
′

xt| > ǫ, zt > r0, zt−d ≤ r0 + ∆).

Applying the uniform law of large numbers to the three sample means on
the right side of the preceding inequality, we get

R1,t + R2,t ≤ op(1) + |β1 − β2,0|{op(1) − τ},

where τ = inf |β|=1 E{ 1
φat

η(β
′

2,0xt)|β
′

xt|I(|β′

xt| > ǫ, zt > r0, zt−d ≤ r0+∆0)}
which is positive by condition (C3); op(1) denotes a term that converges to
0, uniformly for θ ∈ B and such that |β1 − β1,0| < 1 and |β1 − β2,0| ≥ 1. In
view of (A.9), we have

l(θ) − l(θ0)

T
≤ op(1) + |β1 − β2,0|{op(1) − τ} + H,

which is negative with probability approaching 1 as T → ∞ if H is chosen
to be less than τ . The proof for cases (II) and (III) are similar and hence
omitted, which completes the proof of Claim 1.

Verification of Claim 2: We shall show that, for M > 1 sufficiently large,

θ̂T 6∈ C2 for T sufficiently large a.s. The complement of C2 consists of two
cases: (I) |β1 − β1,0| > M, |β1 − β1,0| ≥ |β2 − β2,0|, and (II) |β2 − β2,0| >
M, |β2−β2,0| ≥ |β1−β1,0|. Consider case (I). Recall that R3,t and R4,t admit
similar inequality as for R1,t and R2,t, in which case we have, uniformly for
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θ ∈ C1,

l(θ) − l(θ0)

T
= R1,t + R2,t + R3,t + R4,t

≤ (|β1 − β1,0| + |β1 − β2,0| + |β2 − β2,0| + |β2 − β1,0|) × op(1)

− |β1 − β1,0|
T

T
∑

t=1

1

φat
η(β

′

1,0xt)|ν(β1 − β1,0)
′

xt|

× I(|ν(β1 − β1,0)
′

xt| > ǫ/|β1 − β1,0|, zt ≤ r0, zt−d ≤ r)

− 2(|β1 − β1,0| + |β1,0 − β2,0|) × op(1) − |β1 − β1,0| × (γ + op(1)),

where γ equals inf |β|=1 E{ 1
φat

η(β
′

1,0xt)|β
′

xt|I(|β′

xt| > ǫ, zt ≤ r0, zt−d ≤
r0 − ∆)}, which is positive by condition (C3) and the fact that an exam-
ination of the proof of Claim 1 shows that ∆ can be chosen so that the
events {zt ≤ r0, zt−d ≤ r0 − ∆} and {zt > r0, zt−d > r0 + ∆} have positive
probability for each 0 ≤ d ≤ D. A similar inequality holds for case II, hence
for M sufficiently large and uniformly for θ 6∈ C2,

l(θ)−l(θ0)
T is negative with

probability approaching 1 with increasing sample size. This completes the
proof of Claim 2.

It remains to demonstrate (A.8). Define

g(y, x) =
b(y) − b(x) − ḃ(x)(y − x)

y − x
.

For fixed x,

∂g

∂y
=

−{b(y) − b(x) − ḃ(y)(y − x)}
(y − x)2

,

which is negative for y < x and positive for y > x. Thus, for a fixed positive
ǫ > 0, there exists 1 ≥ η = η(x) > 0 such g(y, x) > η for y > x + ǫ and
g(y, x) < −η for y < x − ǫ, hence (A.8), after some algebra.

A.2. Proof of Lemma 3.1.

Proof. Let ǫ > 0 be as in condition (C3). Observe that the strict con-
cavity of w, (A.8) and the condition that b◦w is the identity function imply
the existence of a positive, bounded function η such that R1,t admits the
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following bound:

R1,t =
1

T

T
∑

t=1

1

φat
[{w(β

′

1xt) − w(β
′

1,0xt)}yt − (β1 − β1,0)
′

xt]

× I(zt ≤ r0, zt−d ≤ r)

=
1

T

T
∑

t=1

1

φat
{w(β

′

1xt) − w(β
′

1,0xt) − ẇ(β
′

1,0xt)(β1 − β1,0)
′

xt}yt

× I(zt ≤ r0, zt−d ≤ r)

+
1

T

T
∑

t=1

1

φat
(β1 − β1,0)

′

xt{ẇ(β
′

1,0xt)yt − 1}I(zt ≤ r0, zt−d ≤ r)

≤ − 1

T

T
∑

t=1

1

φat
η(β

′

1,0xt)|(β1 − β1,0)
′

xt|

× I(|(β1 − β1,0)
′

xt| > ǫ, zt ≤ r0, zt−d ≤ r)

+
1

T

T
∑

t=1

1

φat
(β1 − β1,0)

′

xt{ẇ(β
′

1,0xt)yt − 1}I(zt ≤ r0, zt−d ≤ r).

Because b ◦ w is the identity function, ẇ(β
′

1,0xt) = 1/ẇ(β
′

1,0xt), hence given

zt ≤ r0, ẇ(β
′

1,0xt)yt−1 = yt/µt(θ0)−1. Other Ri,t’s admit similar inequalities
so that we can proceed as in the proof of Lemma 3.1.

A.3. Proof of Theorem 3.1.

Proof. Let l(θ) be the log likelihood of θ = (β
′

1, β
′

2, r, d)
′

. The true pa-
rameter is denoted as θ0 = (β

′

1,0, β
′

2,0, r0, d0)
′

. We first need to show that, as
T → ∞,

sup
θ∈Ω1

∣

∣

∣

∣

l(θ)

T
− E

(

l(θ)

T

)∣

∣

∣

∣

→ 0, almost surely.

The latter result holds if the approximating conditions of the uniform law of
large numbers in Theorem 2 of Pollard [22, p. 8] are verified; see also Pollard
[22, p. 9].
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We have

l(θ)

T
=

1

T

T
∑

t=1

1

φat
{ytγt − b(γt)} + c (yt, φat)

=
1

T

T
∑

t=1

[

1

φat

{

w(β
′

1xt)yt − b ◦ w(β
′

1xt)
}

]

I(zt−d ≤ r)

+

[

1

φat

{

w(β
′

2xt)yt − b ◦ w(β
′

2xt)
}

]

I(zt−d > r) + c (yt, φat) .

Let G be the collection of functions of the form gβ1
(at, xt, yt) = 1

φat

{

w(β
′

1xt)

yt − b ◦ w(β
′

1xt)
}

, where β1 lies in a compact space. Because of the Lipschitz

property of w and b◦w stated in (C5), it is easy to check that G has an inte-
grable envelope function G given by 1

φat
[{|w(0)| + w̃(xt)M} |yt| + |b {w(0)}|

+m̃(xt)M ] , for |β1| ≤ M, M > 0, and for w̃ and m̃ defined in (C5). Using
a similar argument as in Samia and Chan [25] where we check the valid-
ity of the uniform law of large numbers, we conclude that as T → ∞,

supθ∈Ω1

∣

∣

∣

l(θ)
T − E

(

l(θ)
T

)∣

∣

∣ → 0 almost surely.

Lemma 5.35 of van der Vaart [31], and because E
(

l(θ)
T

)

is continuous for

every θ ∈ Ω1, a compact subset, then for all ǫ > 0, there exists δ > 0 such
that

(A.10) max
θ∈Ω1:|θ−θ0|≥ǫ

E

(

l(θ)

T

)

+ δ < E

(

l(θ0)

T

)

− δ.

Applying the uniform law of large numbers and by making use of (A.10),
we conclude that, for all ǫ > 0, there exists δ > 0 such that, for T sufficiently

large, and uniformly for |θ − θ0| ≥ ǫ, l(θ)
T ≤ E

(

l(θ)
T

)

+ δ ≤ maxθ∈Ω1:|θ−θ0|≥ǫ

E
(

l(θ)
T

)

+ δ < E
(

l(θ0)
T

)

− δ < l(θ0)
T almost surely. Hence, for T sufficiently

large,
∣

∣

∣θ̂T − θ0

∣

∣

∣ ≤ ǫ almost surely. As ǫ > 0 is arbitrary, θ̂T → θ0 almost

surely. This completes the proof.

A.4. Proof of Theorem 3.2.

Proof. Without loss of generality, the delay parameter d is assumed
to be known, and d = 0. Therefore, the parameter vector becomes θ =
(β

′

1, β
′

2, r)
′

and the parameter space Ω is modified accordingly. Since the
maximum likelihood estimator θ̂T is strongly consistent, without loss of
generality, the parameter space can be restricted to a neighborhood of
θ0, namely, Ω1 = {θ ∈ Ω : |βi − βi,0| < ∆, i = 1, 2; |r − r0| < ∆} , for some
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0 < ∆ < 1 to be determined later. To simplify the notation, we assume that
r0 = 0. Then, it suffices to show that for all ǫ > 0, there exists K > 0 such
that, with probability greater than 1 − ǫ, θ ∈ Ω1 and |r| > K

T implies that
l(β1, β2, r) − l(β1, β2, 0) < 0.

We first consider the case that r > 0. Then, we have

l(β1, β2, r) − l(β1, β2, 0)

T

=
1

T

T
∑

t=1

[

1

φat

{

w(β
′

1xt)yt − b ◦ w(β
′

1xt)
}

+ c (yt, φat)

]

I(zt ≤ r)

+

[

1

φat

{

w(β
′

2xt)yt − b ◦ w(β
′

2xt)
}

+ c (yt, φat)

]

I(zt > r)

−
[

1

φat

{

w(β
′

1xt)yt − b ◦ w(β
′

1xt)
}

+ c (yt, φat)

]

I(zt ≤ 0)

−
[

1

φat

{

w(β
′

2xt)yt − b ◦ w(β
′

2xt)
}

+ c (yt, φat)

]

I(zt > 0)

=
1

T

T
∑

t=1

1

φat

[{

w(β
′

1xt) − w(β
′

2xt)
}

yt − b ◦ w(β
′

1xt) + b ◦ w(β
′

2xt)
]

× I(0 < zt ≤ r).

And hence,

l(β1, β2, r) − l(β1, β2, 0)

T

=
1

T

T
∑

t=1

1

φat

[{

w(β
′

1xt) − w(β
′

1,0xt)
}

yt − b ◦ w(β
′

1xt) + b ◦ w(β
′

1,0xt)
]

× I(0 < zt ≤ r)

+
1

T

T
∑

t=1

1

φat

[{

w(β
′

2,0xt) − w(β
′

2xt)
}

yt − b ◦ w(β
′

2,0xt) + b ◦ w(β
′

2xt)
]

× I(0 < zt ≤ r)

+
1

T

T
∑

t=1

1

φat

[{

w(β
′

1,0xt) − w(β
′

2,0xt)
}

yt − b ◦ w(β
′

1,0xt) + b ◦ w(β
′

2,0xt)
]

× I(0 < zt ≤ r).

Define Q(r) = E {I(0 < zt ≤ r)} , for 0 < r ≤ ∆. Let Mβ(at, xt, yt) =
1

φat
{γtyt −b(γt)} , where γt = w(β

′

xt). Recall that, by Assumption (C5),
there exists an integrable function Λ(at, xt, yt) such that |Mβ(at, xt, yt) −
Mβ∗(at, xt, yt)| ≤ Λ(at, xt, yt) |β −β∗| , for every β, β∗, at, xt, and yt.
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Thus, for ∆ > 0, we have

l(β1, β2, r) − l(β1, β2, 0)

TQ(r)

=
1

TQ(r)

T
∑

t=1

{

Mβ1
(at, xt, yt) − Mβ1,0

(at, xt, yt)
}

I(0 < zt ≤ r)

+
{

Mβ2,0
(at, xt, yt) − Mβ2

(at, xt, yt)
}

I(0 < zt ≤ r)

+
{

Mβ1,0
(at, xt, yt) − Mβ2,0

(at, xt, yt)
}

I(0 < zt ≤ r)

≤ (|β1 − β1,0| + |β2 − β2,0|)
1

TQ(r)

T
∑

t=1

Λ(at, xt, yt)I(0 < zt ≤ r)

+
1

TQ(r)

T
∑

t=1

{

Mβ1,0
(at, xt, yt) − Mβ2,0

(at, xt, yt)
}

I(0 < zt ≤ r).

Suppose that the following claim is valid; the verification of which is
deferred to the end of this proof.

Claim I. Let Mt be a measurable function of (at, x
′

t, yt)
′

. Assume that
there exist M > 0 and ∆ > 0, such that E

(

M2
t |zt = z

)

≤ M, for all z ∈
[−∆, ∆]. Assume that the process W = [{MtI (−∆ ≤ zt ≤ ∆) , ztI (−∆ ≤
zt ≤ ∆)}′

]

is ρ-mixing with summable ρ-mixing coefficients. Then, for all

ǫ > 0, for all ζ > 0, there exists K > 0 such that, for all T,

(A.11) P



 sup
K
T

<r≤∆

∣

∣

∣

∣

∑ I(0 < zt ≤ r)

TQ(r)
− 1

∣

∣

∣

∣

< ζ



 > 1 − ǫ,

and
(A.12)

P



 sup
K
T

<r≤∆

∣

∣

∣

∣

∑ MtI(0 < zt ≤ r) − E {MtI(0 < zt ≤ r)}
TQ(r)

∣

∣

∣

∣

< ζ



 > 1 − ǫ.

It follows from Claim I that for all ǫ > 0, ζ > 0, there exist K(ǫ, ζ) > 0,
such that with probability greater than 1 − ǫ, K

T < r ≤ ∆ implies that

(A.13)
l(β1, β2, r) − l(β1, β2, 0)

TQ(r)
< (|β1 − β1,0| + |β2 − β2,0|) (ζ+M)+ζ+κ,

where

κ =
1

TQ(r)

T
∑

t=1

E
{

Mβ1,0
(at, xt, yt) − Mβ2,0

(at, xt, yt)|zt

}

I(0 < zt ≤ r).

(A.14)
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Because of Assumptions (C1) and (C8), and Lemma 5.35 of van der Vaart
[31], we have that for each zt ∈ (0, ∆], E{Mβ1,0

(at, xt, yt) − Mβ2,0
(at, xt, yt)

|zt} is a continuous function and is negative; and hence, its maximum is
≤ −χ, for some χ > 0. Hence, κ ≤ −χ

TQ(r)

∑T
t=1 I(0 < zt ≤ r) ≤ −χ(1−ζ), for

some χ > 0. Consequently, for all ǫ > 0, ζ > 0, there exist K(ǫ, ζ) > 0, χ > 0,
such that with probability greater than 1 − ǫ, K

T < r ≤ ∆ implies that
l(β1,β2,r)−l(β1,β2,0)

TQ(r) < 2∆(ζ + M) + ζ − χ(1 − ζ). Now, choose ∆ > 0 and

ζ > 0 such that 2∆(ζ + M) + ζ − χ(1 − ζ) < 0; and hence the validity of
Theorem 3.2 under the further condition that r > 0. Similar argument can
be used to prove Theorem 3.2 for the case of r < 0.

We now verify Claim I. Define

QT (r) =
∑ I(0 < zt ≤ r)

T
,(A.15)

RT (r) =
∑ MtI(0 < zt ≤ r)

T
,(A.16)

R̃T (r1, r2) =
∑ MtI(r1 < zt ≤ r2)

T
.(A.17)

By choosing ∆ sufficiently small, it follows from Assumption (C3) that
there exist 0 < m < M < ∞, independent of T, such that for all r in (0, ∆),

(A.18) mr ≤ Q(r) ≤ Mr.

Since E {I(0 < zt ≤ r)} = E
{

I(0 < zt ≤ r)2
}

= Q(r), then we have, for
all r in (0, ∆), var {I(0 < zt ≤ r)} = Q(r) − Q(r)2 = Q(r) {1 − Q(r)} ≤
Q(r)(1 − mr). And hence, for sufficiently small ∆ > 0, there exists H > 0,
independent of T, such that for all r in (0, ∆),

(A.19) var {I(0 < zt ≤ r)} ≤ HQ(r).

Because E
(

M2
t |zt

)

is assumed to be bounded above for all zt ∈ [−∆, ∆], it
is readily checked that there exists H > 0, independent of T, such that for
all r1, r2 in (0, ∆),

(A.20) E {MtI(r1 < zt ≤ r2)} ≤ H {Q(r2) − Q(r1)} .

Similarly, var {MtI(r1 < zt ≤ r2)} ≤ E
{

M2
t I(r1 < zt ≤ r2)

}

≤ E
{

E
(

M2
t |

zt) I(r1 < zt ≤ r2)} ; and hence,

(A.21) var {MtI(r1 < zt ≤ r2)} ≤ H {Q(r2) − Q(r1)} .

Let Rt = MtI(r1 < zt ≤ r2). Because the process W = [{MtI (−∆ ≤ zt

≤ ∆) , ztI (−∆ ≤ zt ≤ ∆)}′
]

is ρ-mixing, then |Cov(Rt, Rs)| ≤ ρ(|t − s|) ×
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{

E(R2
t )

}
1

2
{

E(R2
s)

}
1

2 ; see Doukhan [10, p. 9]. Because the ρ-mixing coef-
ficient is assumed to be summable, and by making use of the stationarity
assumption, we have |Cov(Rt, Rs)| ≤ ρ(|t− s|)E(R2

t ) ≤ ρ(|t− s|)H{Q(r2)−
Q(r1)}, for some H > 0. Hence, we make use of the latter inequality for the
covariance of ρ-mixing random variables to verify that for all b > 0, there
exists H > 0 such that for all r, r1, r2 ∈ [−b, b], for all T, we have

var {TQT (r)} ≤ THQ(r),(A.22)

var
{

TR̃T (r1, r2)
}

≤ TH {Q(r2) − Q(r1)} ,(A.23)

var {TRT (r)} ≤ THQ(r).(A.24)

Therefore, Claim I can be verified by making use of the inequalities
(A.18)–(A.24), and by employing arguments as in Chan [5, p. 529].

A.5. Proof of Lemma 3.3.

Proof. Let l(θ) be the log likelihood of θ = (δ
′

, r)
′

, where δ = (β
′

1, β
′

2)
′

.
Let l(., r) be globally maximized at δ̂r = (β̂

′

1,r, β̂
′

2,r)
′

. Since the maximum

likelihood estimator θ̂T is strongly consistent, without loss of generality,
the parameter space can be restricted to some neighborhood of θ0, say,
Ω1 = {θ ∈ Ω : |βi − βi,0| < 1, i = 1, 2; |r − r0| < 1} .

Let l̇(δ̂r0
, r) = ∂

∂δ l(δ, r)|δ=δ̂r0

and l̈(δ̂r0
, r) = ∂2

∂δ2 l(δ, r)|δ=δ̂r0

. Using a Tay-

lor’s expansion about δ̂r0
carried out to the third-order terms, there exists

δ̃ between δ and δ̂r0
such that

l(δ, r) − l(δ̂r0
, r)

= (δ − δ̂r0
)
′

l̇(δ̂r0
, r) +

1

2
(δ − δ̂r0

)
′

l̈(δ̂r0
, r)(δ − δ̂r0

) + RT (δ̃, δ, δ̂r0
),(A.25)

where the remainder term RT = RT (δ̃, δ, δ̂r0
) satisfies

(A.26) lim
T→∞

sup
|δ−δ̂r0

|→0

|RT |
T |δ − δ̂r0

|2
= 0.

For simplicity, we shall prove this lemma for the case that r ≥ r0 and omit
the case that r < r0 as the proof is similar.

Since the score l̇(δ, r0) equals zero at δ = δ̂r0
, we have

l̇(δ̂r0
, r) = l̇(δ̂r0

, r) − l̇(δ̂r0
, r0)

=





∑T
t=1 Ṁβ̂1,r0

I(r0 < zt−d ≤ r)
∑T

t=1 −Ṁβ̂2,r0

I(r0 < zt−d ≤ r)
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where Ṁβ̂i,r0

= ∂
∂βi

Mβi
|βi=β̂i,r0

and Mβi
= Mβi

(yt; at, xt) = 1
φat

{w(β
′

ixt)yt −
b ◦ w(β

′

ixt)}, i = 1, 2. Let l̇j(δ, r) denote the jth component of l̇(δ, r). Let k
be the dimension of δ. Denote the absolute norm of l̇(δ̂r0

, r) by |l̇(δ̂r0
, r)| =

∑k
j=1 |l̇j(δ̂r0

, r)|. Using (C3) and (D2), there exists a scalar M1 > 0 such that

for T sufficiently large, for all K > 0 and |r−r0| ≤ K
T , we have E(|l̇(δ̂r0

, r)|) =
∑2

i=1

∑T
t=1 E{|Ṁβ̂i,r0

|I(r0 < zt−d ≤ r)} ≤ 2TM1P (r0 < zt−d ≤ r) = O(1).

It follows readily from Markov’s inequality that for T sufficiently large, for
all K > 0 and |r − r0| ≤ K

T , we have

(A.27) |l̇(δ̂r0
, r)| = Op(1).

On the other hand, the Hessian matrix l̈(δ̂r0
, r) can be written as

l̈(δ̂r0
, r) =

{

l̈(δ̂r0
, r) − l̈(δ̂r0

, r0)
}

+ l̈(δ̂r0
, r0)

=

[

η1 + ξ1 0
0 −η2 + ξ2

]

,(A.28)

where ηi =
∑T

t=1 M̈β̂i,r0

I(r0 < zt−d ≤ r), i = 1, 2, ξ1 =
∑T

t=1 M̈β̂1,r0

I(zt−d ≤

r0), ξ2 =
∑T

t=1 M̈β̂2,r0

I(zt−d > r0), and M̈β̂i,r0

= ∂2

∂β2
i

Mβi

∣

∣

∣

∣

βi=β̂i,r0

, i = 1, 2.

By employing a similar argument as above, it can be shown that for T
sufficiently large, for all K > 0 and |r − r0| ≤ K

T , we have

(A.29) |ηi| = Op(1), i = 1, 2.

In reference to Example 19.8 of van der Vaart [31], it can be easily shown
that the collection of functions {M̈β, β in a fixed compact set} is Glivenko-
Cantelli. Hence, using the argument of van der Vaart [31, p. 279], we have
for T sufficiently large,

1

T
ξ1 = E{M̈β1,0

I(zt−d ≤ r0)} + op(1),(A.30)

1

T
ξ2 = E{M̈β2,0

I(zt−d > r0)} + op(1);(A.31)

where E{M̈β1,0
I(zt−d ≤ r0)} and E{M̈β2,0

I(zt−d > r0)} are negative-definite
by (D4), and they essentially determine the curvature of the log likelihood.

Combining the results in (A.29)–(A.31) with the result in (A.28), and
making use of the property that a negative-definite matrix has a maximum
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eigenvalue that is less than −λ, for some λ > 0, it follows that for T suffi-
ciently large, for all K > 0 and |r − r0| ≤ K

T , we have

1

2
(δ − δ̂r0

)
′

l̈(δ̂r0
, r)(δ − δ̂r0

)

≤ 1

2

2
∑

i=1

{|βi − β̂i,r0
|2|ηi| + (βi − β̂i,r0

)
′

ξi(βi − β̂i,r0
)}

≤ 1

2

2
∑

i=1

|βi − β̂i,r0
|2[Op(1) − T{2λ − op(1)}],(A.32)

for some scalar λ > 0.
Finally, we combine the results in (A.26), (A.27), and (A.32) with the

result in (A.25). Then, for all ǫ > 0, aT = op(T
γ) > 0, where −1 < γ < −1

2 ,

|δ − δ̂r0
| < aT , ∀K > 0, and uniformly for |r − r0| ≤ K

T , there exists T0 such
that with probability greater than 1 − ǫ, for any T > T0, and for δ on the
boundary of the open sphere NaT

of radius aT centered at δ̂r0
, we have

l(δ, r) − l(δ̂r0
, r) ≤ aT Op(1) +

1

2
a2

T [Op(1) − T{2λ − op(1)}] + Ta2
T op(1)

≤ Ta2
T {−2λ + op(1)},(A.33)

where −2λ + op(1) < 0. Thus, l(δ, r) must attain a maximum at some point
belonging to NaT

. Because l(δ, r) is continuous for every θ ∈ Ω1, a compact
subset, then there exists a global maximum δ̂r = (β̂

′

1,r, β̂
′

2,r)
′

such that for
all K > 0,

sup
|r−r0|≤

K
T

|β̂i,r − β̂i,r0
| = op(1/

√
T ), i = 1, 2.

This completes the proof.

A.6. Proof of Lemma 3.4.

Proof. We use the same notations as in the proof of Lemma 3.3. For
simplicity, we shall prove this lemma for the case that κ ≥ 0 and omit the
case that κ < 0 as the proof is similar. We have

l̃(κ) = {l(δ̂r0+ κ
T
, r0 + κ/T ) − l(δ̂r0+

κ
T
, r0)} + {l(δ̂r0+

κ
T
, r0) − l(δ̂r0

, r0)}

=
T

∑

t=1

(Mβ̂1,r0+ κ
T

− Mβ̂2,r0+ κ
T

)I(r0 < zt−d ≤ r0 + κ/T )(A.34)

+ (Mβ̂1,r0+ κ
T

− Mβ̂1,r0

)I(zt−d ≤ r0)(A.35)

+ (Mβ̂2,r0+ κ
T

− Mβ̂2,r0

)I(zt−d > r0).(A.36)
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We first consider equation (A.34); we have

T
∑

t=1

(Mβ̂1,r0+ κ
T

− Mβ̂2,r0+ κ
T

)I(r0 < zt−d ≤ r0 + κ/T )

=
T

∑

t=1

(Mβ1,0
− Mβ2,0

)I(r0 < zt−d ≤ r0 + κ/T )

+ {(Mβ̂1,r0+ κ
T

− Mβ1,0
) + (Mβ2,0

− Mβ̂2,r0+ κ
T

)}I(r0 < zt−d ≤ r0 + κ/T ),

where
∑T

t=1(Mβ1,0
− Mβ2,0

)I(r0 < zt−d ≤ r0 + κ/T ) = l(δ0, r0 + κ/T ) −
l(δ0, r0). Hence,

∣

∣

∣

∣

∣

T
∑

t=1

(Mβ̂1,r0+ κ
T

− Mβ̂2,r0+ κ
T

)I(r0 < zt−d ≤ r0 + κ/T )

−{l(δ0, r0 + κ/T ) − l(δ0, r0)}
∣

∣

∣

∣

≤ (|β̂1,r0+ κ
T
− β1,0| + |β̂2,r0+ κ

T
− β2,0|)

×
T

∑

t=1

Λ(at, xt, yt)I(r0 < zt−d ≤ r0 + κ/T );(A.37)

the latter inequality holds because of (C5). Because E{Λ(at, xt, yt)I(r0 <
zt−d ≤ r0 + κ/T )} = O(1/T ), it follows that for T sufficiently large,

∑T
t=1 Λ

(at, xt, yt)I(r0 < zt−d ≤ r0 + κ/T ) = Op(1). On the other hand, for T
sufficiently large, for all K > 0 and uniformly for all |κ| ≤ K, it holds that
|β̂i,r0+

κ
T
−βi,0|, i = 1, 2, is less than or equal to |β̂i,r0+ κ

T
−β̂i,r0

|+|β̂i,r0
−βi,0| =

op(1/
√

T )+Op(1/
√

T ), using Lemma 3.3 and the property of the maximum
likelihood estimator of the GTM with known true delay and threshold. Thus,
for T sufficiently large, for all K > 0 and uniformly for all |κ| ≤ K, the
inequality in (A.37) entails that

∣

∣

∣

∣

∣

T
∑

t=1

(Mβ̂1,r0+ κ
T

− Mβ̂2,r0+ κ
T

)I(r0 < zt−d ≤ r0 + κ/T )

−{l(δ0, r0 + κ/T ) − l(δ0, r0)}
∣

∣

∣

∣

= op(1).(A.38)

Next, we consider equation (A.35). Expand Mβ̂1,r0+ κ
T

and Mβ̂1,r0

in a
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Taylor series around β1,0. We have

T
∑

t=1

(Mβ̂1,r0+ κ
T

− Mβ̂1,r0

)I(zt−d ≤ r0)

≤ (β̂1,r0+ κ
T
− β̂1,r0

)
′

T
∑

t=1

Ṁβ1,0
I(zt−d ≤ r0)

+
1

2
(β̂1,r0+ κ

T
− β̂1,r0

)
′

T
∑

t=1

M̈β1,0
I(zt−d ≤ r0)

× (β̂1,r0+ κ
T

+ β̂1,r0
− 2β1,0) + rT ,(A.39)

where the remainder term rT is such that for T sufficiently large, rT = op(1).

The central limit theorem is applied to the martingale
∑T

t=1

∑p
j=1 cjṀ

(j)
β1,0

×
I(zt−d ≤ r0), for all nonzero vectors of constants c = (c1, · · · , cp). Using
Cramer-Wold device, it follows that for all T sufficiently large, |∑T

t=1 Ṁβ1,0
×

I(zt−d ≤ r0)| = Op(
√

T ). The latter indeed holds because {Ṁβ1,0
(yt; at, xt)}

is a martingale-difference sequence with respect to the σ-algebra Ft =
σ(at, xt, yt−k, at−k, xt−k, k ≥ 1) and because E{Ṁβ1,0

Ṁ
′

β1,0
I(zt−d ≤ r0)} =

−E{M̈β1,0
I(zt−d ≤ r0)} is finite; see Billingsley [1]. On the other hand, by

the law of large numbers, for all T sufficiently large, 1
T

∑T
t=1 M̈β1,0

I(zt−d ≤
r0) converges to E{M̈β1,0

I(zt−d ≤ r0)} in probability. Thus, for all T suf-
ficiently large, for all K > 0 and uniformly for all |κ| ≤ K, the inequality
in (A.39) yields

∣

∣

∣

∣

∣

T
∑

t=1

(Mβ̂1,r0+ κ
T

− Mβ̂1,r0

)I(zt−d ≤ r0)

∣

∣

∣

∣

∣

≤ op(1/
√

T )Op(
√

T ) + op(1/
√

T )Op(T )Op(1/
√

T ) + op(1) = op(1),(A.40)

using Lemma 3.3. Similarly, it can be shown that for all T sufficiently large,
for all K > 0 and uniformly for all |κ| ≤ K, we have

∣

∣

∣

∣

∣

T
∑

t=1

(Mβ̂2,r0+ κ
T

− Mβ̂2,r0

)I(zt−d > r0)

∣

∣

∣

∣

∣

= op(1).(A.41)

Combine the results in (A.38), (A.40), and (A.41) with the results in
(A.34)–(A.36) to complete the proof.
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A.7. Proof of Theorem 3.3.

Proof. Owing to Lemma 3.4, we shall proceed as if l̃(κ) = l(δ0, r0 +
κ/T ) − l(δ0, r0). Without loss of generality, assume that d = 0 and κ > 0.
Then,

l̃(κ) =
T

∑

t=1

{Mβ1,0
(yt; at, xt) − Mβ2,0

(yt; at, xt)}I(r0 < zt ≤ r0 + κ/T ).

Let Ai be the event that the sample path of l̃(κ) possesses at least i
discontinuities on the interval (u, u + h], u ≥ 0, h ≥ 0, 0 ≤ i ≤ T. Hence,
by making use of (C3), it is easy to check that there exists M > 0 such
that P (A2) ≤

∑T
t1=1

∑T
t2=1, t2 6=t1 P (r0 + u

T < zt1 ≤ r0 + u+h
T , r0 + u

T < zt2 ≤
r0 + u+h

T ) ≤ Mh2. Employing a similar argument as in the proof of Lemma
3.2 in Ibragimov and Has’minskii [14, p. 261], it can be readily checked that
({l̃(−κ), κ ≥ 0}, {l̃(+κ), κ ≥ 0}) is tight.

Let ǫ = 1
T > 0 and ξt = (at, x

′

t, yt)
′

. Define a piecewise-constant interpo-
lation process, xǫ(.), indexed by ǫ with paths in D[0, 1], as follows

xǫ(v) = Xǫ
[Tv], 0 ≤ v ≤ 1,

Xǫ
0 = 0, Xǫ

t+1 = Xǫ
t + J ǫ

t+1, t = 0, 1, 2, · · ·
J ǫ

t = {Mβ1,0
(yt; at, xt) − Mβ2,0

(yt; at, xt)}I(r0 < zt ≤ r0 + κǫ).(A.42)

Here, we denote by [·] the integer part of the expression inside the square
bracket. Note that xǫ(1) = l̃(κ) and {xǫ(v), 0 ≤ v ≤ 1} is tight in D[0, 1].
Furthermore, xǫ(v) = Xǫ

t , for v ∈ [tǫ, tǫ + ǫ), t = 0, 1, · · · , T.
We now show that {xǫ(v), 0 ≤ v ≤ 1} converges weakly in D[0, 1] to {C(v),

0 ≤ v ≤ 1}, a compound Poisson process with rate π(r0)κ and the distri-
bution of jump same as the conditional distribution of Mβ1,0

(yt; at, xt) −
Mβ2,0

(yt; at, xt) given zt = r+
0 . We do this by making use of Theorem 1 of

Kushner [18] via operator convergence. By employing truncation arguments
as in Kushner [18], we can and will assume that xǫ are uniformly bounded.
(We omit the technical details showing that the limiting result obtained be-
low preserves for the original, non-truncated data by passing to the limit
with increasingly negligible truncation; see Kushner [18].) First, we define
some notations and the operators. Let Fv denote an increasing sequence of
σ-algebras to which {xǫ(u), u ≤ v} are adapted, for all ǫ > 0. Let L denote
the progressively measurable functions with respect to Fv. Define L to be
the subset of L for which supv E|f(v)| < ∞. Let Eǫ

v denote the conditional
expectation given F ǫ

v, which is the σ-algebra generated by {xǫ(u), u ≤ v}.
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Note F ǫ
v is a subset of Fv. For f and f δ ∈ L , define p-limδ→0 f δ = f if

and only if supv,δ E|f δ(v)| < ∞ and limδ→0 E|f δ(v)− f(v)| = 0 for every v.

Define the p-infinitesimal operator Âǫ by Âǫ : D(Âǫ) ⊆ L → L such that
f ∈ D(Âǫ) and Âǫf = g if and only if for f, g ∈ L and adapted to {F ǫ

v} and g
being p-right continuous, we have p-limδ→0[

1
δ{Eǫ

vf(v+δ)−f(v)}−g(v)] = 0.

Let Ĉ denote the space of continuous bounded real-valued functions which
are zero at infinity and Ĉ 2

0 be the subset of Ĉ with compact support and
continuous second derivative. Define the operator A on Ĉ 2

0 by Af(w) =
π(r0)κ

∫

{f(w + y)− f(w)}q(dy), where q(dy) is the probability measure in-
duced by the conditional distribution of Mβ1,0

(yt; at, xt) − Mβ2,0
(yt; at, xt)

given zt = r+
0 .

Let f(.) ∈ Ĉ 2
0 . For every τǫ > 0, define f ǫ(v) = 1

τǫ

∫ τǫ

0 Eǫ
v{f(xǫ(v + s))}ds.

Then, f ǫ is in D(Âǫ) with Âǫf ǫ(v) = 1
τǫ

[Eǫ
v{f(xǫ(v + τǫ))} − f(xǫ(v))]; see

Kurtz [17, p. 625]. We next study the limiting behavior of Âǫf ǫ. We have

Âǫf ǫ(v) =
1

τǫ
[Eǫ

v{f(xǫ(v + τǫ))} − f(xǫ(v))]

=
1

τǫ

[T (v+τǫ)]−1
∑

k=[Tv]

Eǫ
v{f(Xǫ

k+1) − f(Xǫ
k)}

=
1

τǫ

[T (v+τǫ)]−[Tv]−1
∑

k=0

Eǫ
v{f(Xǫ

k+[Tv] + J ǫ
k+[Tv]+1) − f(Xǫ

k+[Tv])}.(A.43)

Because {xǫ(v), 0 ≤ v ≤ 1} is tight, any of its subsequence has a conver-
gent subsequence. With no loss of generality, assume that {xǫ(v), 0 ≤ v ≤ 1}
converges weakly to {x(v), 0 ≤ v ≤ 1} and, indeed, by enlarging the prob-
ability space, the convergence may and will be assumed to be almost sure
convergence. By making use of Theorem 15.3 in Billingsley [1, Equation
(15.8)], we claim that

Âǫf ǫ(v) =
1

τǫ

[T (v+τǫ)]−[Tv]−1
∑

k=0

Eǫ
v{f(xǫ(v) + J ǫ

k+[Tv]+1) − f(xǫ(v))}

+ op(1),(A.44)

the verification of (A.44) is deferred to the end of the proof.
Let mǫ = [T (v + τǫ)] − [Tv]. Using the ρ-mixing assumption in (C7) and
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the result of Billingsley [2, p. 261, Equation (48)], we have, for any fixed X,

1

τǫ

mǫ−1
∑

k=0

E|Eǫ
v{f(X + J ǫ

k+[Tv]+1) − f(X)}

− E{f(X + J ǫ
k+[Tv]+1) − f(X)}|

≤ 1

τǫ

mǫ−1
∑

k=0

ρ(k + 1)
√

E[{f(X + J ǫ
k+[Tv]+1) − f(X)}2]

≤ 1

τǫ
K1

√

P (zt ∈ (r0, r0 + κǫ])
mǫ−1
∑

k=0

ρ(k + 1),(A.45)

for some K1 > 0; the last inequality is obtained by expanding f in a Taylor
series about X and by making use of the compact support of f and (C6).

Choose a sequence {τǫ} such that limǫ→0 τǫ = 0, limǫ→0 mǫ = ∞, and
limǫ→0

√
Tτǫ = ∞, which holds if, for example, τǫ = T−1/3. Then, (A.44) and

(A.45) imply that Âǫf ǫ(v) = Af(xǫ(v))+op(1). Therefore, {xǫ(v), 0 ≤ v ≤ 1}
converges weakly to the compound Poisson process {C(v), 0 ≤ v ≤ 1} which
is the unique solution to the martingale problem

f(x(t)) −
∫ t

0
Af(x(s))ds is a martingale,(A.46)

for any function f with compact support and continuous second derivative,
see Strook and Varadhan [28]. Consequently, l̃(κ) converges weakly to l̃2(κ).
Employing the Cramer-Wold device, similar arguments yield the convergence
of finite-dimensional distributions of ({l̃(−κ), κ ≥ 0}, {l̃(+κ), κ ≥ 0}) to
those of ({l̃1(κ), κ ≥ 0}, {l̃2(κ), κ ≥ 0}).

We complete the proof by verifying the claim in (A.44). By expanding
f in Taylor series and by letting ḟ(s) (f̈(s)) be the first (second) partial
derivative of f with respect to s, we have, by repeated use of the mean value
theorem,

Âǫf ǫ(v) − Af(xǫ(v))

=
1

τǫ

mǫ−1
∑

k=0

Eǫ
v{f(xǫ(v + kǫ) + J ǫ

k+[Tv]+1) − f(xǫ(v) + J ǫ
k+[Tv]+1)}

− 1

τǫ

mǫ−1
∑

k=0

Eǫ
v{f(xǫ(v + kǫ)) − f(xǫ(v))}

=
1

τǫ

mǫ−1
∑

k=0

Eǫ
v[{ḟ(xǫ(v + kǫ) + χ1J

ǫ
k+[Tv]+1)

− ḟ(xǫ(v) + χ1J
ǫ
k+[Tv]+1)}J ǫ

k+[Tv]+1],(A.47)
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for some χ1 between 0 and 1. Therefore,

Âǫf ǫ(v) − Af(xǫ(v))

=
1

τǫ

mǫ−1
∑

k=0

Eǫ
v[f̈(xǫ(v) + χ2(x

ǫ(v + kǫ) − xǫ(v)) + χ1J
ǫ
k+[Tv]+1)

× J ǫ
k+[Tv]+1 × {xǫ(v + kǫ) − xǫ(v)}],(A.48)

for some χ1 and χ2 between 0 and 1.
Denote 1

τǫ
[f̈(xǫ(v) + χ2(x

ǫ(v + kǫ) − xǫ(v)) + χ1J
ǫ
k+[Tv]+1) × J ǫ

k+[Tv]+1 ×
{xǫ(v+kǫ)−xǫ(v)}] by Bv,k. Let Hδ,η = {x : wx[v, v+δ) ≤ η}, for all η > 0,
for 0 < δ < 1, and where wx is the modulus of continuity of x defined by
wx[v, v + δ) = sup0≤v≤1−δ |x(v + δ)− x(v)|. The tightness of xǫ implies that
(c.f. Billingsley [1, Theorem 15.3]) for all positive η and τ , there exists a δ
such that for all ǫ sufficiently small, P (xǫ 6∈ Hδ,η) ≤ τ. Let I1 = I(xǫ ∈ Hδ,η)
and I2 = 1−I1 where I(·) is the indicator function. Hence, the last equation
in (A.48) can be decomposed as

mǫ−1
∑

k=0

Eǫ
v(Bv,kI1) +

mǫ−1
∑

k=0

Eǫ
v(Bv,kI2).(A.49)

Note that the first sum is bounded by ηK1
1
τǫ

∑mǫ−1
k=0 Eǫ

v(J
ǫ
k+[Tv]+1) for some

finite K1 > 0. Using similar arguments as above, it can be checked that
1
τǫ

∑mǫ−1
k=0 Eǫ

v(J
ǫ
k+[Tv]+1) is Op(1) for all sufficiently small ǫ. The fact that xǫ

is uniformly bounded by truncation argument and using Cauchy-Schwartz
inequality entail that, for some finite K2 > 0, the square of the second
sum in (A.49) is bounded by K2E

ǫ
v(I2)× 1

τǫ

∑mǫ−1
k=0 Eǫ

v{(J ǫ
k+[Tv]+1)

2}. Again

the second term in the preceding product can be shown to be Op(1) for all
sufficiently small ǫ. Because E{Eǫ

v(I2)} = E(I2) which is smaller than τ for
ǫ sufficiently small, Eǫ

v(I2) = τOp(1). As η and τ can be chosen arbitrarily
small, the claim follows. This completes the proof.

A.8. Proof of Theorem 3.4.

Proof. Because r̂ is T -consistent and by Lemma 3.3, it follows that r̂
and

√
T{(β̂1 − β1,0)

′

, (β̂2 − β2,0)
′}′

are asymptotically independent. More-

over, β̂i = β̂i,r̂ = β̂i,r0
+ op(1/

√
T ), i = 1, 2; hence, β̂i and β̂i,r0

enjoy the

same asymptotic distribution. But β̂i,r0
is the maximum likelihood esti-

mator of βi,0 when the threshold parameter is known, for i = 1, 2. Us-

ing Theorem 5.41 of van der Vaart [31], the sequence
√

T (δ̂r0
− δ0) =
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√
T{(β̂1,r0

− β1,0)
′

, (β̂2,r0
− β2,0)

′}′

is asymptotically normal with mean zero
and covariance matrix E(ψ̇δ0)

−1E(ψδ0ψ
′

δ0
)E(ψ̇δ0)

−1. From this follows the
result in Theorem 3.4.

A.9. Proof of (7) for Example 1.

Proof. Let wt = [{Λ(at, xt, yt)I(−∆ ≤ zt− r0 ≤ ∆), ztI(−∆ ≤ zt− r0 ≤
∆)}′

] and U be the interval [r0 − ∆, r0 + ∆]. Let k be a positive integer
greater than 1. Consider two random variables f(wt+k) and g(wt) that are
of zero mean and finite variance. Clearly, E(f(wt+k)|Ft+k) can be written as
f̃(zt+kI(zt+k ∈ U)), for some function f̃ . Also g(wt) = g̃(zt, zt+1) for some
function g̃. Now,

E{f(wt+k)g(wt)}
= E{f̃(zt+kI(zt+k ∈ U))g̃(zt, zt+1)}

=

∫ ∫ ∫

f̃(zt+kI(zt+k ∈ U)){pk−1(zt+1, zt+k) − π(zt+k)}πt,t+1(zt, zt+1)

× g̃(zt, zt+1)dztdzt+1dzt+k

=

∫

U

∫ ∫

f̃(zt+kI(zt+k ∈ U))

π(zt+k)
π(zt+k){pk−1(zt+1, zt+k) − π(zt+k)}

× πt,t+1(zt, zt+1)g̃(zt, zt+1)dztdzt+1dzt+k

+ f̃(0)

∫

Uc

∫ ∫

{pk−1(zt+1, zt+k) − π(zt+k)}πt,t+1(zt, zt+1)

× g̃(zt, zt+1)dztdzt+1dzt+k.

Because the stationary density π is a positive and continuous function, there
exists K > 1 such that 1/π(z) ≤ K over U . Consequently, in view of (2.10)
and by increasing K if necessary,

|E{(f(wt+k)g(wt)}| ≤ Kρk−1E{|f̃(zt+kI(zt+k ∈ U))|}E{|H(zt+1)g̃(zt, zt+1|}

≤ ρk−1KE1/2{H2(zt+1)}
√

var(f(wt+k)var(g(wt)).

Recall H(zt) has finite second moment. Hence, the correlation between
f(wt+k) and g(wt) decays to 0 geometrically as k → ∞. Thanks to the
Markov property of {zt}, the geometric decay rate holds for general f and
g measurable w.r.t. the σ-algebra generated by {wt+j , j ≥ k} and that by
{wt+j , j ≤ 0}, respectively, so that the required ρ-mixing condition holds as
the mixing coefficients decay to 0 geometrically.
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