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1. Introduction

Haezendonck risk measures is a class of risk measures which was recently introduced in Goovaerts
et al. (2004). It is based on the premium calculation principle induced by an Orlicz norm, as presented in
Haezendonck and Goovaerts (1982) (see also Goovaerts et al. (2003)), in the sense that it is the translation-
equivariant minimal Orlicz risk measure. This class of risk measures was further studied in Bellini and
Gianin (2008a), and they present an alternate formulation of these risk measures which makes them coherent
in the sense of Artzner et al. (1997, 1999). It is worth mention that the Haezendonck risk measures preserve
convex order; see Goovaerts et al. (2004), Bellini and Gianin (2008a), Nam et al. (2011), and Ahn and
Shyamalkumar (2011b) for further properties of these risk measures. The most prominent member of this
class, and in fact its minimal member, is the Tail Value-at-Risk (T-VaR) - T-VaR arguably the most popular
risk measure in global insurance regulation.

In applications often one has to estimate the risk measure given a random sample from an unknown dis-
tribution. The distribution could either be truly unknown or could be the distribution of a complex function
of economic and idiosyncratic variables with the complexity of the function rendering indeterminable its
distribution. Hence statistical procedures for the estimation of Haezendonck risk measures is a key require-
ment for its use in practice. While the above references study properties of the Haezendonck risk measures,
only Bellini and Gianin (2008b) deals with its statistical estimation. Note that the natural nonparametric
estimator for the Haezendonck risk measure is its empirical analog, the Haezendonck risk measure of the
empirical distribution. In Bellini and Gianin (2008b) the authors conduct a simulation study of this estima-
tion procedure, and also use it to estimate the efficient frontier when the risk is measured by a Haezendonck
risk measure. While this study suggests, in some cases, a normal asymptotic limit for this estimator, neither
consistency nor weak convergence of this estimator has been established. This then is the main goal of this
article; we provide a strong consistency and a weak convergence result for this non-parametric estimator
with the latter also covering situations with a non-normal limit. The difficulty in establishing asymptotic
results arises in good part from the lack of a convenient closed form expression for the Haezendonck risk
measure of the empirical distribution function. After some definitions and establishing the notation we pro-
vide an example which demonstrates this inherent nature of our problem, and another that demonstrates that
non-normal asymptotic weak limits occur even in non-pathological situations.

A non-negative, strictly increasing, convex function Ψ(·) on R+ with Ψ(0) = 0 and Ψ(1) = 1 is called
a normalized Young function (see Rao and Ren (1991) for details). In the following we will work with the
extensions of such functions to the whole of R satisfying Ψ(x) = 0 for x < 0. For convenience we will
refer to such extensions simply as Young function. The class of Haezendonck risk measures is indexed by
the class of Young function, and for each Haezendonck risk measure there exits a class of random variables
for which it is well defined. A subset of this class of random variables is denoted by XΨ, and is defined by

XΨ :=
{
X

∣∣∣∣Pr (X ≤ 0) = 1 or ∃s∞ ≥ 0 such that E
(

Ψ
(
X

s

))
<∞⇔ s > s∞

}
. (1)

In Bellini and Gianin (2008a), for convenience, the random variables were restricted to L∞, the space of
essentially bounded random variables, a subset of XΨ; we allow s∞ to be greater than 0 in (1), unlike in
Goovaerts et al. (2004), to accommodate situations like those in Example 5 where Ψ(·) is exponential and
X is an exponential random variable.

The Orlicz premium principle corresponding to Ψ(·), and at level α ∈ [0, 1), is denoted by Hα
Ψ(·), and
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for X ∈ XΨ, Hα
Ψ(X) is defined as the unique solution of the equation

E
(

Ψ
(

X

Hα
Ψ(X)

))
= 1− α,

with Hα
Ψ(0) := 0 (see Haezendonck and Goovaerts (1982), Goovaerts et al. (2004), and Bellini and Gianin

(2008a)). For X ∈ XΨ, following Bellini and Gianin (2008a) and Goovaerts et al. (2004), we define the
Haezendonck risk measure at level α ∈ [0, 1), denoted by παΨ(X), as

παΨ(X) := inf
x∈R

(Hα
Ψ(X − x) + x) . (2)

For X ∈ L∞, Proposition 16 of Bellini and Gianin (2008a) shows that the above infimum is attained for
α ∈ (0, 1); their argument is easily extended to XΨ. Moreover, examples exists where this infimum is not
attained when α = 0. Along the lines of Example 15 of Bellini and Gianin (2008a), one such example is
when Ψ(·) and F (·) are defined as

Ψ(x) =

{
0, x < 0;
x2k, otherwise;

, where k ≥ 1, and F (x) =


0, x < −1;
1
2 , −1 ≤ x < 1;
1, otherwise;

For this reason, and also since for risk management purposes it is only the high values of α that are of
interest, in the following we will restrict our attention to α ∈ (0, 1) when working with Haezendonck risk
measures .

For convenience we define παΨ(X; ·) as

παΨ(X;x) := (Hα
Ψ(X − x) + x) , x ∈ R. (3)

and denote by IαΨ(F ) the set of minimizers of παΨ(F, ·). In Bellini and Gianin (2008a) it is shown that
παΨ(X; ·) is convex function forX ∈ L∞, and we note that this result too can be easily extended toX ∈ XΨ.
This extension in particular implies that IαΨ(F ) is a closed interval.

From now on X,X1, X2, . . . will denote a sequence of identically distributed random variables on our
underlying probability space (Ω,F , P ) with X ∈ XΨ. Also, F (·) we will denote their common distribution
function. Note that by the definition of the Haezendonck risk measure, we could define Hα

Ψ(F ), παΨ(F )
and παΨ(F ; ·) to equal Hα

Ψ(X), παΨ(X) and παΨ(X; ·), respectively. By Fn(·) we will denote the empirical
distribution function of the random sample of size n consisting of X1, . . . , Xn, i.e.

Fn(x) :=
1
n

n∑
i=1

I(−∞,x] (Xi) , x ∈ R.

We denote by En (g(Y )) the expectation of g(Y ) with Y ∼ Fn. As for such Y we have Y ∈ L∞ (⊆ XΨ),
Hα

Ψ(Fn) and παΨ(Fn) are both well defined, and moreover are easily seen to be a random variable defined on
(Ω,F , P ). Note that Hα

Ψ(Fn) and παΨ(Fn) are natural (plug-in type) non-parametric estimators for Hα
Ψ(F )

and παΨ(F ), respectively; we refer to them as the empirical Orlicz premium and the empirical Haezendonck

risk measure, respectively. Also, for a sequence of random variables {Zi}i≥1, by Zn
d−→ Z we denote the

convergence in distribution or weak convergence of {Zi}i≥1 to Z, as n tends to infinity. For x ∈ R, (x)+
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equals x for non-negative x, and equals zero for negative x.
Illustrative Example 1. An example of an Young function for which the Haezendonck risk measure of

the empirical distribution function is only implicitly defined is given by

Ψ(x) =

{
0, x < 0;
exp{βx}−1
exp{β}−1 , otherwise;

, for β > 0. (4)

This Young function was considered in Bellini and Gianin (2008a), and from definition it is easy to see that

Hα
Ψ(Y − y) =

β

M−1
y (1 + (1− α)(exp{β} − 1))

where My(·) is the moment generating function of (Y − y)+ for Y ∼ Fn. Hence, παΨ(Fn) equals

inf
y∈R

y +
β

M−1
y (1 + (1− α)(exp{β} − 1))

,

an optimal value that clearly lacks a closed form expression. In Example 5 below we derive the asymptotic
normal distribution for παΨ(Fn) when F is an exponential distribution.

Illustrative Example 2. Now we present a rather simple example to demonstrate that non-normal limits
for the empirical Haezendonck risk measure arise quite naturally. Let F be a Bernoulli distribution, Ψ(·) be
defined by

Ψ(x) =


0, x < 0;
x, 0 ≤ x ≤ 1;
2x− 1, otherwise;

, (5)

and α = 50%. This piecewise linear Young function, non-differentiable at 1, was mentioned in Bellini and
Gianin (2008b) as an example of a non-differentiable Young function which fails to satisfy the conditions of
their weak convergence result for the Orlicz premium. For Y ∼ Fn, some straightforward calculations lead
to the following form for Hα

Ψ(Y − x) + x: For Fn(0) ≥ 1/2 we have

x+Hα
Ψ(Y − x) =


2(1− Fn(0))− x, x < (1− 2Fn(0));
4(1−Fn(0))
3−2Fn(0) −

(
1

3−2Fn(0)

)
x, (1− 2Fn(0)) ≤ x < 0;

4(1−Fn(0))
3−2Fn(0) +

(
2Fn(0)−1
3−2Fn(0)

)
x, 0 ≤ x ≤ 1;

x, x > 1;

, (6)

and for Fn(0) < 1/2 we have

x+Hα
Ψ(Y − x) =


2(1− Fn(0))− x, x < 0;
2(1− Fn(0)) + (2Fn(0)− 1)x, 0 ≤ x ≤ 1;
x, x > 1;

. (7)
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From (6) and (7) it follows that

παΨ(Fn) =

{
1, Fn(0) ≤ 1/2;

1−
(

2Fn(0)−1
3−2Fn(0)

)
, Fn(0) > 1/2;

. (8)

From (8), and observing that both Fn(·) and F (·) are Bernoulli distributions, we have using the strong law
of large numbers that with probability one, for large n

√
n (παΨ(Fn)− παΨ(F )) =


0, F (0) < 1/2;

−
√
n
(
Fn(0)−1/2
3/2−Fn(0)

)
+
, F (0) = 1/2;

√
n(F (0)−Fn(0))

(3/2−F (0))(3/2−Fn(0)) , F (0) > 1/2;

.

This with Slutsky’s lemma, and the ordinary central limit theorem implies that

√
n (παΨ(Fn)− παΨ(F )) d−→


0, F (0) < 1/2;
−
[

1
2

]
(Z)+ , F (0) = 1/2;[√

F (0)(1−F (0))

(3/2−F (0))2

]
Z, F (0) > 1/2;

, (9)

where Z is a standard normal random variable. Hence a non-normal limit results in this simple Bernoulli
example with a piecewise linear Young function whenever F (0) ≤ 1/2. In fact, in Example 3 below
we show that the above result follows as an application of our weak convergence result for the empirical
Haezendonck risk measure.

In the next section we establish the strong consistency of the empirical Haezendonck risk measure. In
the following section we prove a weak convergence result for this estimator, and provide some examples
to illustrate the asymptotic behavior of this estimator both under and without our assumptions. Also, in
a parametric example we compare the performance of this non-parametric estimator with the parametric
Maximum Likelihood Estimator (MLE). In section 4 we report the results from a simulation study to lend
insight into the sample sizes required for the asymptotic limits to take hold. Section 5 provides a brief
discussion of our results.

2. Strong Consistency

The main goal of this section is to establish the consistency of the empirical Haezendonck risk measure
as an estimator for the Haezendonck risk measure. To motivate the formulation of our result we consider
the case of the T-VaR which is the Haezendonck risk measure with the identity as the Young function. To
do this we define the α-level VaR of F (·), denoted by qα(F ), by

qα(F ) := inf {x ∈ R : F (x) ≥ α}. (10)

Also, following Rockafellar and Uryasev (2002) we define the α-level upper VaR of of F (·), denoted by
q+
α (F ), by

q+
α (F ) := inf {x ∈ R : F (x) > α}. (11)

Observe that qα(F ) ≤ q+
α (F ) with equality if and only if F (·) is strictly increasing at qα(F ). We note that

in the case of the α-level T-VaR IαΨ(F ) equals [qα(F ), q+
α (F )], the set of α-level quantiles; and in the case
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that qα(F ) is a point of strict increase of F (·), IαΨ(F ) = {qα(F )}. Partly motivated by this example, of
recent, IαΨ(F ) is gaining in interest. Hence the consistency, with respect to a suitable distance, of IαΨ(Fn) is
also of interest. A natural candidate is the asymmetric distance d(·, ·) defined by

d (A,B) := sup
a∈A

inf
b∈B
|a− b|, (12)

for any two subsets A and B of R. A symmetrized version of this distance yields the Hausdorff metric given
by

dH (A,B) := max
(

sup
a∈A

inf
b∈B
|a− b|, sup

b∈B
inf
a∈A
|a− b|

)
(13)

The following example shows the convergence of IαΨ(Fn) to IαΨ(F ) may hold only in the asymmetric
distance d(·, ·) and not in the Hausdorff metric.

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: Distribution for which dH (IαΨ(Fn), IαΨ(F )) 9 0

Example 1
In this example F (·) is taken to be the equal mixture of U(0, 1) and U(2, 3); Figure 1 contains a graph of
this distribution. For α = 50% it is easily checked that qα(F ) = 1 and q+

α (F ) = 2. Hence for the case
of the T-VaR risk measure at the 50%-level, i.e. with Ψ(x) = x for x ≥ 0, IαΨ(F ) = [1, 2]. For a random
sample from F with sample size n it is easily checked that

IαΨ(Fn) =

{
{X(n+1)/2:n}, n odd;
[Xn/2:n, X(n/2+1):n], otherwise;

.

Hence it is clear that for this F

lim sup
n→∞

dH (IαΨ(Fn), IαΨ(F )) = 1, a.s. P.

Nevertheless, it is also easy to show that

lim
n→∞

d (IαΨ(Fn), IαΨ(F )) = 0, a.s. P.
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The above example demonstrates that while expecting convergence of IαΨ(Fn) to IαΨ(F ) in the Hausdorff
metric is unrealistic, the asymmetric distance d(·, ·) between IαΨ(Fn) and IαΨ(F ) may converge to zero.
The following theorem establishes this latter statement, and using it proves the consistency the empirical
Haezendonck risk measure.

Theorem 1. For F ∈ XΨ, and α ∈ (0, 1) we have with probability one,

lim
n→∞

d (IαΨ(Fn), IαΨ(F )) = 0, and lim
n→∞

παΨ(Fn) = παΨ(F ).

Proof. We start by observing that from the consistency of the Orlicz norm (see Bellini and Gianin (2008b))
we have the almost sure pointwise convergence of παΨ(Fn, ·) to παΨ(F, ·). Moreover, since παΨ(Fn, ·) is
convex, Theorem 10.8 of Rockafellar (1997) implies that παΨ(Fn, ·) converges to παΨ(F, ·) uniformly on
compacts with probability one.

As observed earlier, IαΨ(F ) is a closed interval. Moreover, using the fact that X ∈ XΨ and an argument
similar to that of Proposition 16 of Bellini and Gianin (2008a) it is easily shown that IαΨ(F ) is compact as
well. Hence we denote IαΨ(F ) by [x∗l , x

∗
u], −∞ < x∗l ≤ x∗u <∞.

It suffices for the first assertion to show that with probability one,

x∗l ≤ lim inf
n→∞

(inf IαΨ(Fn)) ≤ lim sup
n→∞

(sup IαΨ(Fn)) ≤ x∗u. (14)

This follows from almost sure pointwise convergence of παΨ(Fn, ·) and the fact that for any ε > 0 we have

παΨ(F, x∗l ) = παΨ(F, x∗u) < min (παΨ(F, x∗u + ε), παΨ(F, x∗l − ε)) .

The second assertion now follows from the first assertion and almost sure convergence on compacts of
παΨ(Fn, ·).

We note that in the case that IαΨ(F ) is a single point, from Theorem 1 we have that with probability one,

lim
n→∞

dH (IαΨ(Fn), IαΨ(F )) = 0.

3. Weak Convergence Results

Our approach towards deriving the weak convergence limits of the empirical Haezendonck risk measure
involves viewing Haezendonck risk measures as the optimal value of certain convex programming problems,
and then applying the functional delta method. For details of such an approach we refer to Shapiro (1991),
and Chapter 6 of Rubinstein and Shapiro (1993). Now we present an outline of this section. First, we discuss
the assumptions that we need for our weak convergence result for the empirical Haezendonck risk measure.
Second, we present the details of our approach before stating and proving this weak limit result. Third, we
present some examples to demonstrate the generality of our result, and present an example in which F (·) is
embedded in a parametric family of distributions which allows for comparison of the empirical Haezendonck
risk measure with the efficient parametric MLE. We end this section with a weak convergence result for the
Orlicz premium using the approach mentioned above; we present this result as it is a more general version
of the one stated in Bellini and Gianin (2008b).

For the weak convergence theorem for παΨ(Fn), apart from requiring that F (·) belongs to XΨ, we further
require that F (·) satisfies the following conditions that will be referred to as Assumption C:
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Assumption C

C1. παΨ(F ) is strictly less than ess sup(F )

C2. F ∈ XΨ and furthermore satisfies

E

([
Ψ
(
X

δl

)]2
)
<∞ (15)

where δl > 0 is such that

δl < inf {παΨ(F, x)− x|παΨ(F, x) = παΨ(F )} .

When ess sup(F ) = ∞, which is usually the case in risk management applications, Assumption C1
essentially requires a finite παΨ(F ). Hence, in this case Assumption C1 is not restrictive. Later in this section
we discuss Assumption C1 in the case when παΨ(F ) = ess sup(F ) < ∞. Assumption C2 is analogous to
the requirement of finite second moment for the ordinary central limit theorem, and in this sense it is an
appropriate requirement for the

√
n rate of convergence. Moreover, in the case of T-VaR it is easily seen- to

be a necessary requirement as well. It is worth mention that while our weak convergence result addresses
situations where we have weak convergence at the

√
n rate, there exist examples of F (·) with sufficiently

fat tails such that παΨ(Fn) converges to παΨ(F ) at much slower rates. The following example is one such.

Example 2
Let α = 0.5, and Ψ(·) be given by

Ψ(x) =

{
0, x < 0;
x, otherwise;

.

Recall that this definition corresponds to the T-VaR risk measure at the 50% level. Let F be the symmetric
(about zero) distribution such that

Pr (|X| > x) =

{
1− x

2 , 0 ≤ x < 1;
1

2xβ
, otherwise;

,

where 1 < β < 2. It is easy to check that for these specifications

Mα
Ψ(F ) =

{(
0,

3β − 1
4(β − 1)

)}
, and παΨ(F ) =

3β − 1
4(β − 1)

.

For the sake of expositional ease let the sample size be 2n+ 1, for some n ≥ 1. Then the empirical T-VaR
at the 50% level is given by(

1
2n+ 1

)[
X(n+1):(2n+1) + 2

2n+1∑
i=n+2

Xi:(2n+1)

]
=
(

1
2n+ 1

)[
X(n+1):(2n+1) −

(
1
n

) 2n+1∑
i=n+2

Xi:(2n+1)

]

+
1
n

2n+1∑
i=n+2

Xi:(2n+1)

= O

(
1
n

)
+

1
n

2n+1∑
i=n+2

Xi:(2n+1),
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where the last step follows from the ordinary strong law of large numbers. LetN denote the random variable
defined by

N :=
2n+1∑
i=1

IXi≥0,

which is clearly distributed as Bin(2n+ 1, 1/2). We note that

∣∣∣∣∣
2n+1∑
i=n+2

Xi:(2n+1) −
2n+1∑
i=1

XiIXi≥0

∣∣∣∣∣ ≤

∑2n+1−N

i=n+2 Xi:(2n+1), N < n;
0, N = n;∑n+1

i=2n+2−N Xi:(2n+1), otherwise;

.

Using this bound, the fact that N − n = O(
√
n), and that limn→∞ Pr

(
|X(n+1):(2n+1)| > 1

)
= 0, we have∣∣∣∣∣

2n+1∑
i=n+2

Xi:(2n+1) −
2n+1∑
i=1

XiIXi≥0

∣∣∣∣∣ = O(
√
n) (16)

It is easy to show (for example using Theorem 7.7 of Durrett (2005)) that

n
1− 1

β

(
1
n

2n+1∑
i=1

XiIXi≥0 −
3β − 1

4(β − 1)

)
d−→ Z, (17)

for some non-degenerate random variable Z. Combining (16) with (17) and using the fact that 1 < β < 2
we have

n
1− 1

β (παΨ(Fn)− παΨ(F )) = n
1− 1

β

(
1
n

2n+1∑
i=n+2

Xi:(2n+1) −
3β − 1

4(β − 1)

)
d−→ Z.

In the rest of this section we will suppose that F (·) and Ψ(·) satisfy Assumption C, unless mentioned
otherwise. The key idea behind our approach to establishing the weak convergence of παΨ(Fn) is to formulate
παΨ(F ) as the optimal value of a convex programming problem. To this end note that Hα

Ψ(X) is easily seen
to satisfy

Hα
Ψ(X) = inf

{
s

∣∣∣∣E(Ψ
(
X

s

))
≤ 1− α

}
.

Using this observation we note that παΨ(F ) is the optimal value of the mathematical programming problem
given by

minimize θ1 + θ2, (θ1, θ2) ∈ R× (0,∞)

subject to E
(

Ψ
(
X − θ1

θ2

))
− (1− α) ≤ 0.

For convenience we denote the coordinates of a vector θ̃ in R2 by θ1 and θ2, i.e. θ̃ = (θ1, θ2). Now we note
that the function χ(·) from R× (0,∞) to R+ defined by

χ(θ̃) := E
(

Ψ
(
X − θ1

θ2

))
− (1− α),

9



is easily seen to satisfy

χ(pθ̃ + (1− p)θ̃′) ≤ max{χ(θ̃), χ(θ̃′)}, θ̃, θ̃′ ∈ R× (0,∞), p ∈ [0, 1].

This implies that χ(·) is a quasi-convex function; we refer to section 3.4 of Boyd and Vandenberghe (2004)
for a discussion of quasi-convexity. We note that examples exist where χ(·) is not convex. Nevertheless,
quasi-convexity preserves convexity of sub-level sets, and hence{

θ̃
∣∣χ(θ̃) ≤ 0

}
is a convex set. This implies, trivially, the existence of a convex function η(·) with a sub-level set coinciding
with that of χ(·) given above. But we seek a nice such function, and one such candidate is defined by

η(θ̃) := θ2

[
E
(

Ψ
(
X − θ1

θ2

))
− (1− α)

]
, θ̃ ∈ R× (0,∞).

This candidate is motivated by the fact that the perspective function of a convex function is convex (see for
example section 3.2.6 of Boyd and Vandenberghe (2004)). Hence, παΨ(F ) is the optimal value of the convex
programming problem (P∞) given by

minimize θ1 + θ2, (θ1, θ2) ∈ R× (0,∞)

subject to θ2

[
E
(

Ψ
(
X − θ1

θ2

))
− (1− α)

]
≤ 0.

(P∞)

LetMα
Ψ(F ) denote the set of minimizers of the programming problem (P∞). Recall that Hα

Ψ(X − z) as
a function in z is convex; this is easily checked to imply that Mα

Ψ(F ) is a line segment in R × (0,∞).
We note that Assumption C further implies that Mα

Ψ(F ) is a closed set contained in an open rectangle
(xl, xu) × (δl, δu), for some −∞ < xl < xu < ∞, and 0 < δl < δu < ∞. In the case παΨ(F ) is finite
and equals ess sup(F ), (ess sup(F ), 0) is clearly an optimal solution, and in some cases (as in Example
3 below) it can moreover be the unique optimal solution. This in general clearly creates problems for
the above representation for παΨ(F ). Nevertheless, in specific cases (such as piecewise linear Ψ(·)) this
does not cause any issues; Example 3 below is one such example. But for expositional ease, we state our
weak convergence result by excluding this case, which as mentioned before is unlikely to occur in risk
management applications.

The above representation for παΨ(F ) implies that παΨ(Fn) is the optimal value of the convex program-
ming problem (P̂n) given by

minimize θ1 + θ2, (θ1, θ2) ∈ R× (0,∞)

subject to En
(
ψ
(
θ̃, Y

))
≤ 0.

(P̂n)

where

ψ(θ̃, x) := θ2

(
Ψ
(
x− θ1

θ2

)
− (1− α)

)
, θ̃ ∈ R× (0,∞).

The above representations for παΨ(F ) (and παΨ(Fn)) in turn allow us to use the functional delta method
as explained briefly below. Note that the convex programming problem (P∞) is fully specified by the
constraint function η(·), which is replaced in (P̂n) by its sample analog. Hence if the optimal value is

10



an appropriately differentiable functional of the constraint function, and the constraint function in (P̂n),
En (ψ (·, Y )), converges at the

√
n rate to η(·), then παΨ(Fn) converges to παΨ(F ) at the

√
n rate as well.

Moreover, the weak limit of En (ψ (·, Y )) and the differential then determine the weak limit of παΨ(Fn).
This is the approach that is used to prove the following theorem, our weak convergence result for παΨ(Fn).

Theorem 2. For α ∈ (0, 1), and Ψ(·) and F (·) satisfying Assumption C we have

√
n (παΨ(Fn)− παΨ(F )) d−→ min

θ̃∈Mα
Ψ(F )

max
λ∈Λ

λZ
(
θ̃
)
, (18)

where Λ is the set of Lagrange multipliers for the convex programming problem (P∞), and Z(·) is a mean
zero Gaussian process on S(F ) with covariance given by

Cov
(
Z
(
θ̃
)
, Z
(
θ̃′
))

= Cov
(
ψ
(
θ̃, X

)
, ψ
(
θ̃′, X

))
, θ̃ ∈ S(F ), (19)

where S(F ) := [xl, xu]× [δl, δu].

Proof. Consistency of Mα
Ψ(Fn) as stated in Theorem 1 implies that with probability one, for large n,

Mα
Ψ(Fn) ⊆ (xl, xu)×(δl, δu). This implies that with probability one, for large n, the programming problem

(P̂n) will yield the same optimal value as the convex programming problem (P̂∗n) given by

minimize θ1 + θ2, (θ1, θ2) ∈ S(F )

subject to θ2

[
En
(
ψ
(
θ̃, Y

))
− (1− α)

]
≤ 0.

(P̂∗n)

This implies that the weak convergence result for the optimal value of (P̂∗n) coincides with that of (P̂n).
Henceforth, for simplicity, we will denote the optimal value of (P̂∗n) also by παΨ(Fn).

We note that the objective function in
(
P̂∗n
)

is deterministic and, in particular, coincides with that of
(P∞). Also note that (15), Lemma 1, and Theorem A.3 of King and Rockafellar (1990) together imply that

√
n

(
1
n

n∑
i=1

ψ (·, Xi)− E (ψ (·, X))

)
d−→ Z(·) (20)

on the space C(S(F )) of bounded continuous real valued functions on S(F ), where Z(·) is a mean zero
Gaussian process on S(F ) with covariance as given in (19).

The rest of the argument rests on the above discussed formulation of παΨ(Fn) and παΨ(F ) as optimal

values of convex programming problems
(
P̂∗n
)

and (P∞), respectively, and the delta-method for convex
programming problems as stated in Theorem 3.5 of Shapiro (1991). All that remains to be checked then
is that the Slater condition is satisfied for (P∞), but that follows from (15) as a simple application of the
dominated convergence theorem.

We now provide examples to demonstrate the generality of Theorem 2. The following example is a
continuation of Illustrative Example 2 of the introduction that involves a Young function which is not differ-
entiable at a point in (0,∞), and an F (·) such that neitherMα

Ψ(F ) nor Λ are singletons; in particular this
results in the limiting distribution being non-normal. For this example we will find it convenient to define
A ⊆ R2 as

A := {(u, t)|∃ θ̃ ∈ R× (0,∞), η(θ̃) ≤ u, θ1 + θ2 ≤ t}.

11



We note that A is a variation of the epigraph (see Boyd and Vandenberghe (2004)) for the convex program-
ming problem P∞ with the property that

παΨ(F ) = inf{t|(0, t) ∈ A}.

x = η(θ~)

y
=

θ 1
+

θ 2

−2 −1 − ε 0 1 − 2ε 2

0  
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y+2x=1 − 2ε
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(a) F (0) = 1/2 + ε, 0 ≤ ε ≤ 1/2
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θ 1
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θ 2

−2 −1 0 1 1 + 2ε 2

0
1

2
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4
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 =1
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x

2
 = 

1

2
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(b) F (0) = 1/2− ε, 0 ≤ ε ≤ 1/2

Figure 2: Epigraph of the Convex Programming Problem associated with the Computation of παΨ(F )

Example 3
We continue here with Illustrative Example 2 of the introduction with F (·) denoting the Bernoulli distribu-
tion, α equals 50%, and Ψ(·) as defined in (5). For this Young function it follows that

η(θ̃) = E ((X − θ1)+) + E ((X − θ1 − θ2)+)− (1− α)θ2. (21)

Figure 2 plots A (the shaded region) using the above and somewhat tedious calculations. From Figure 2 it
follows that

παΨ(F ) =

{
1, F (0) ≤ 1/2;
1− ε

1−ε , F (0) = 1/2 + ε > 1/2;
and that Λ =


[

1
1+2ε , 2

]
, F (0) = 1/2− ε < 1/2;

[1, 2], F (0) = 1/2;
1

1−ε , F (0) = 1/2 + ε > 1/2;

.

12



Moreover, from (21) it follows that

Mα
Ψ(F ) =


{(1, 0)}, F (0) = 1/2− ε < 1/2;
{θ̃| 0 ≤ θ1 ≤ 1; θ2 = 1− θ1}, F (0) = 1/2;{(

0, 1− ε
1−ε

)}
, F (0) = 1/2 + ε > 1/2;

.

Since F (·) and Fn(·) are both Bernoulli distributions, we note that we had essentially derived in (8) an
expression for παΨ(F ) directly from the definition of the Haezendonck risk measure.

Even though Assumption C is violated here, due to παΨ(F ) being equal to ess sup(F ), the representation
of η(·) in (21) allows one to nevertheless easily establish a version of Lemma 1 so that the proof of Theorem
2 goes through. It is straightforward to check that the process Z(·) of Theorem 2 satisfies,

Cov(Z(θ), Z(θ′)) = F (0)(1− F (0))(2− 2θ1 − θ2)(2− 2θ′1 − θ′2), ∀θ̃, θ̃′ ∈ R+ × R+

In particular, this implies that

min
θ̃∈Mα

Ψ(F )
max
λ∈Λ

λZ
(
θ̃
)

d=
√
F (0)(1− F (0)) min

θ̃∈Mα
Ψ(F )

max
λ∈Λ

λ(2− 2θ1 − θ2)Z (22)

d=


0, F (0) < 1/2;
−
[

1
2

]
(Z)+, F (0) = 1/2;√

F (0)(1−F (0))

(3/2−F (0))2 Z, F (0) > 1/2;

. (23)

where Z is a standard normal random variable, which agrees with (9) of the introduction, where it was
derived using first principles.

We now present a corollary for the case of F (·) without mass points and a Young function which is
differentiable on (0,∞); in such situations it significantly simplifies application of Theorem 2.

Corollary 1. For Ψ(·) differentiable on (0,∞), α ∈ (0, 1), F (·) a continuous function, and both Ψ(·) and
F (·) satisfying Assumption C we have

√
n (παΨ(Fn)− παΨ(F )) d−→

[
E
(

Ψ′
(
X − θ∗1
θ∗2

))]−1

min
θ̃∈Mα

Ψ(F )
Z
(
θ̃
)
, (24)

where θ̃∗ is any member ofMα
Ψ(F ), and Z(·) is as given in Theorem 2.

Proof. Clearly the objective function of the convex programming problem (P∞) is differentiable; differ-
entiability of the constraint η(·) follows from differentiability of Ψ(·) and (15). As the Slater condition is
satisfied for (P∞) (as observed in the proof of Theorem 2) we have the Karusch-Kuhn-Tucker conditions
given by

η(θ̃) = 0,
(

1
1

)
= λ

 E
(

Ψ′
(
X−θ1
θ2

))
E
(

Ψ′
(
X−θ1
θ2

) [
X−θ1
θ2

]) (25)

are both necessary and sufficient conditions for optimality. The rest follows from observing that the set of
Lagrange multipliers is invariant of the choice of optimal solution fromMα

Ψ(F ).
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The following example demonstrates that a non-normal limit can arise even in situations covered by
Corollary 1 where Λ is a singleton. This of course happens whenMα

Ψ(F ) is not a singleton.

Example 4
In this example we continue to use the same definition of Ψ(·) and α as in Example 1 resulting in the 50%-
level T-VaR as our choice of Haezendonck risk measure. The sampling distribution F (·) is the equal mixture
of U(0, 1) and U(2, 3) as in Example 1, and is plotted in Figure 1. Observe that the median qα(F ) = 1,
and that the T-VaR at the 50%-level is 2.5. In fact the asymptotic distribution of the empirical T-VaR at the
50%-level for this choice of F (·) was derived in Ahn and Shyamalkumar (2011a) (using first principles) to
be that of

Z1√
6

+ 3I(Z2<0)

(
Z2

2

)
, (26)

where Z1, Z2 are i.i.d. standard normal random variables. Moreover, in Ahn and Shyamalkumar (2011a) it
is shown that the heuristics of influence function fails in this example. In the following we will derive the
limiting distribution of the empirical T-VaR estimator using Corollary 1.

We begin by observing that easy calculations yield

Hα
Ψ(X − θ1) =



3− 2θ1, θ1 < 0;
θ2
1
2 − 2θ1 + 3, 0 ≤ θ1 ≤ 1;
5
2 − θ1, 1 < θ1 ≤ 2;
(3−θ1)2

2 , 2 < θ1 ≤ 3;
0, otherwise;

,

which in turn implies that
Mα

Ψ(F ) = {(θ1, 5/2− θ1) : 1 ≤ θ1 ≤ 2}.

It is also easily checked that the Lagrange multiplier λ equals 2, and that the process Z(·) of Corollary 1
satisfies,

Cov(Z(θ), Z(θ′)) =
(5/2− θ1)(5/2− θ′1)

4
+

1
24
, ∀θ̃, θ̃′ ∈Mα

Ψ(F ).

An equivalent representation of Z(·) onMα
Ψ(F ) is the following:

Z(θ) =
(5/2− θ1)

2
Z1 +

1
2
√

6
Z2, ∀θ ∈Mα

Ψ(F ).

Using this representation it is easy to see that

λ min
θ̃∈Mα

Ψ(F )
Z
(
θ̃
)

d=

{
3
2Z1 + 1√

6
Z2, Z1 ≤ 0;

1
2Z1 + 1√

6
Z2, otherwise;

The goal of the final example of this section is to compare the performance of παΨ(Fn), when F (·) is
restricted to a parametric family of distributions, with the maximum likelihood estimator (MLE) to develop
some sense of the tradeoff made when using a non-parametric estimator. Also, unlike in the previous ex-
amples bothMα

Ψ and Λ are singletons. This implies a normal weak limit, thus facilitating a comparison in
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terms of the asymptotic standard deviations.

Example 5
Let F (·) be the exponential distribution with hazard rate µ, Ψ(·) be as defined in (4), and α ∈ (0, 1). For
these choices it can be shown that Hα

Ψ(·) is given by

Hα
Ψ(X − θ1) =

[
β

µ

](
1 +

exp{−µθ1}
(exp{β} − 1)(1− α)

)
, θ1 ≥ 0.

Since Hα
Ψ(·) has a nice closed form we can directly minimize Hα

Ψ(X − θ1) + θ1. This minimization yields
the following expression for the optimal θ̃∗:

θ̃∗ =
(

1
µ

log
(

β

(exp{β} − 1)(1− α)

)
,
β + 1
µ

)
.

It is noteworthy that θ∗2 does not depend on α, and moreover its expression above implies that δl of Assump-
tion C is less than θ∗2. As

E

([
Ψ
(
X

δl

)]2
)
<∞ ⇐⇒ 2β

δl
< µ

we have that Assumption C is satisfied only in the case that β < 1. In this case, applying Corollary 1 we
have √

n (παΨ(Fn)− παΨ(F )) d−→ N
(
0, σ2

)
.

where σ is given by

σ2 :=

(
2β

1−β − (exp{β} − 1)(1− α)
)

(exp{β} − 1)(1− α)µ2
.

Figure 3 plots the ratio of the asymptotic standard deviation of the parametric estimator to that of the non-
parametric estimator. While it is expected that this ratio would be non-increasing as a function of α (as the
non-parametric estimator essentially uses (1 − α) part of the sample), it is noteworthy that the ratio in this
example was significantly away from zero even for α = 95%.

We end this section by providing a more general version of a weak convergence result for the empirical
Orlicz premium than that provided in Bellini and Gianin (2008b). The idea is similar to that used above, and
involves viewing Hα

Ψ(F ) as the solution to the convex programming problem (PH∞) given by,

minimize θ, θ ∈ (0,∞)

subject to θ

[
E
(

Ψ
(
X

θ

))
− (1− α)

]
≤ 0.

(PH∞)

The above implies that Hα
Ψ(Fn) is the optimal value of the convex programming problem given by

minimize θ, θ ∈ (0,∞)
subject to En (γ (θ, Y )) ≤ 0.

where
γ(θ, x) := θ

(
Ψ
(x
θ

)
− (1− α)

)
, θ ∈ (0,∞).

15



αα

σσ p
σσ n

p

ββ=0.25
ββ=0.5
ββ=0.75

0.25 0.50 0.75 0.90 0.95 1.00

0.
00

0.
25

0.
50

0.
75

1.
00

Figure 3: Ratio of Asymptotic Standard Deviations of Parametric and Non-Parametric Estimators

Now we state the result without proof as the proof is similar to that of Theorem 2.

Theorem 3. Let X be a random variable in XΨ with Pr (X > 0) > 0, α ∈ [0, 1), and let δ∗ > 0 be such
that δ∗ < Hα

Ψ(F ). Then for F (·) satisfying

E

([
Ψ
(
X

δ∗

)]2
)
<∞,

we have √
n (Hα

Ψ(Fn)−Hα
Ψ(F )) d−→ max

λ∈Λ′
λV, (27)

where Λ′ is the set of Lagrange multipliers for the convex programming problem (PH∞), and V is a mean
zero Gaussian random variable with variance given by Var (γ (Hα

Ψ(F ), X)). Moreover, under the further
assumption that Ψ(·) is differentiable on (0,∞) we have

√
n (Hα

Ψ(Fn)−Hα
Ψ(F )) d−→

[
E
(

Ψ
(

X

Hα
Ψ(F )

)[
X

Hα
Ψ(F )

])]−1

V.

4. Simulation Study

In this section we report on a simulation study conducted to lend insight into the effect of the sampling
distribution F (·), Young function Ψ(·), and the level α on the sample sizes required for the above derived
asymptotic limits to take hold. All of the programs were written to be run on the R software environment
for statistical computing and graphics (see Team (2008)). The programs were run parallel on 40 processors
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over 10 nodes of a 22 node Beowulf cluster using the snow R package (Tierney et al. (2008, 2009)). The
algorithm we used to compute the empirical Haezendonck risk measure παΨ(Fn) is presented in Ahn and
Shyamalkumar (2011b) - this algorithm tested to be many folds faster than using the R optimization package
alabama (Varadhan and Grothendieck (2011)), and significantly faster than using convexmin on Matlab
(see Ahn and Shyamalkumar (2011b) for detailed comparisons).

We use a Gaussian kernel density estimator, via the function density on R, to estimate the densities
of the empirical Haezendonck risk measures. The bandwidth used equals 0.9 times the minimum of the
standard deviation and the interquartile range divided by 1.34 times the sample size to the negative one-fifth
power (i.e. Silverman’s ‘rule of thumb’, see Silverman (1986)) unless the quartiles coincide, in which case
a positive value is used.

4.1. Effect of the Sampling Distribution and the Level

In this sub-section we will work with Ψ(·) defined given by

Ψ(x) =

{
0, x < 0;
x2+x

2 , otherwise;
,

and distributions Gi(·), i = 1, 2, 3 defined by

G1(x) =


0, x < 0;
x, 0 ≤ x ≤ 1;
1, otherwise;

, G2(x) =

{
0, x < 0;
1− (1 + σx)−β, x ≥ 0;

,

and

G3(x) =

{
0, x < 0;

Φ
(

log(x)−µ
σ

)
, x ≥ 0;

,

where µ ∈ R, σ > 0, β > 4, and Φ(·) is the standard normal distribution function. Note that G1(·), G2(·),
and G3(·) are distribution functions corresponding to the uniform distribution on (0, 1), the two-parameter
Pareto family and the lognormal distribution, respectively.

For each of the stated three distributions we will show below that there is a unique optimal θ̃∗. For
i = 1, 2, 3, we define Yi and λi by

Yi :=
1
θ∗2

max (Zi − θ∗1, 0) , and λi :=
[
E
(
Y 2
i +

Yi
2

)]−1

=
[
E
(
Yi +

I(Yi > 0)
2

)]−1

,

where Zi ∼ Gi. Also, we define σi by

σ2
i :=

[
λi
2

]2

Var
(
Y 2
i + Yi

)
, i = 1, 2, 3.

Now using Corollary 1 we have that the asymptotic limit of the empirical Haezendonck risk measure under
Gi(·) is given by N

(
παΨ(Gi), σ2

i

)
, for i = 1, 2, 3. In the following we will derive the unique optimal θ̃∗

for each of the three distributions. The uniqueness part in all of the cases follows from θ∗1 belonging to the
interior of the supports of the distributions.
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For G1(·), it can then be shown that for θ̃ ∈ (0, 1)× (0,∞) we have

E
(

Ψ′
(
Z1 − θ1

θ2

))
=

(1− θ1)(1− θ1 + θ2)
2θ2

,

and

E
(

Ψ′
(
Z1 − θ1

θ2

)[
Z1 − θ1

θ2

])
=

(1− θ1)3

3θ2
2

+
(1− θ1)2

4θ2
.

Now using the Karusch-Kuhn-Tucker conditions in (25) we have that any optimal θ̃∗ satisfies

1− θ∗1
θ∗2

=
12√

105− 3
.

Also, from (25) we have

E
(

Ψ
(
Z1 − θ∗1
θ∗2

))
=

(1− θ∗1)3

6(θ∗2)2
+

(1− θ∗1)2

4θ∗2
= 1− α.

Using the above two equations we get the following closed form expression for θ̃∗ as a function of α,

θ̃∗ =

(
1− (

√
105− 3)2(1− α)
3(
√

105 + 5)
,
(
√

105− 3)3(1− α)
36(
√

105 + 5)

)
.

In the case of G2(·) the procedure to find the unique optimal θ̃∗ is very similar to that for G1(·); hence
we directly provide an expression for it. The unique optimal θ̃∗ is given by

θ̃∗ =
(
qpα(F2),

3(1− pα)(1 + σqpα(F2))
σ(β − 1) (4(1− α)− (1− pα))

)
,

where pα is given by

1− 32(β − 1)(1− α)

8(β − 1) + 3(β − 2)
(

1 +
√

1 + 16
(
β−1
β−2

)) .
In the case of G3(·), unlike the earlier two distributions, the optimal θ̃∗ does not have a closed form

expression. Nevertheless, the Karusch-Kuhn-Tucker conditions in (25) imply that the optimal θ∗1 satisfies E
(

(Z3 − θ∗1)2
+

)
9 [E ((Z3 − θ∗1)+)]2

 [4(1− α)− Pr (Z3 > θ∗1)]2 −
(

1
3

)
[2(1− α) + Pr (Z3 > θ∗1)] = 0, (28)

where

Pr (Z3 > θ∗1) = Φ
(

log(θ∗1)− µ
σ

)
,

and

E
(
(Z3 − θ∗1)m+

)
=

m∑
i=0

(
m

i

)
exp

{
µi+

(σi)2

2

}
Φ
(
σi−

[
log(θ∗1)− µ

σ

])
(−θ∗1)m−i.
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α = 95% α = 99%
Sampling

Distribution
θ∗1 Pr (X > θ∗1) παΨ(F ) σ θ∗1 Pr (X > θ∗1) παΨ(F ) σ

Uniform 0.9426 5.741% 0.9773 0.1157 0.9885 1.148% 0.9955 0.05256
Pareto 27.03 7.477% 54.63 197.4 50.73 1.495% 86.82 579.0

Lognormal 4.102 7.905% 9.978 53.64 8.641 1.552% 17.20 158.7

Table 1: Estimation of the Haezendonck Risk Measure with Ψ(x) = x2+x
2 I(x > 0): Varying Sampling

Distributions

Now θ∗1 can be solved for using (28) and numerical algorithms like the Newton-Raphson method (on R we
used the function uniroot), and then θ∗2 can be found by using the expression

θ∗2 =
3E ((Z3 − θ∗1)+)

4(1− α)− Pr (Z3 > θ∗1)
,

which is derived from (25) as well.
In the following, the parameters σ and β of the Pareto distribution G2(·) are chosen to be 0.02 and 6, re-

spectively; the parameters µ and σ of the lognormal distributionG3(·) are chosen to be 0 and 1, respectively.
Table 1 contains the values of the optimal θ∗1, Haezendonck risk measure and asymptotic standard error for
the empirical Haezendonck risk measure for each of the above sampling distributions and for both the 95%
and 99% levels. The table clearly exhibits the effect of heaviness of tails on all of the reported values.

We simulated 100, 000 sets of random samples for each combination of sampling distribution, level, and
sample size. Figure 4 contains the plot of the estimated densities of the standardized (using παΨ(F ) and the
asymptotic standard deviation) empirical Haezendonck risk measure. As expected, Figure 4 confirms that a
higher α value requires a larger sample size for the asymptotic limit to take hold. In a sense n∗Pr (X > θ∗1)
is the effective sample size as it is essentially only the observations beyond θ∗1 that determine παΨ(Fn). From
this point of view, Figure 4 suggests that in the case of the uniform distribution normality takes hold rather
quickly, while in the Pareto and lognormal cases a moderate sample size is required for normality to take
hold. On the other hand it is noteworthy that in Figure 4 normality seems to take hold in a similar fashion
for both the Pareto and the lognormal distributions, whereas the former distribution has a much heavier tail
than the latter.

4.2. Effect of Young Function

In this subsection our sampling distribution is the exponential distribution with unit mean, and we work
with three Young functions Ψi(·), i = 1, 2, 3, defined by

Ψ1(x) =

{
0, x < 0;
(exp{x/2}−1)
exp{1/2}−1 , x ≥ 0;

, Ψ2(x) =

{
0, x < 0;
x2+x

2 , x ≥ 0;
, and Ψ3(x) =

{
0, x < 0;
x, x ≥ 0;

.

Note that Ψ1(·) is more convex than Ψ2(·), and both of these are more convex than Ψ3(·).
Similar to the development in the previous sub-section we first identify the unique optimal θ̃∗. This has

been done for Ψ1(·) in Example 5; as Ψ3(·) corresponds to the case of T-VaR, θ∗1 is the α-level quantile
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α = 95% α = 99%
Young

Function
θ∗1 Pr (X > θ∗1) παΨ(F ) σ θ∗1 Pr (X > θ∗1) παΨ(F ) σ

(exp{x/2}−1)I(x>0)
exp{1/2}−1 2.735 6.487% 4.235 7.788 4.345 1.297% 5.845 17.530

(x2+x)I(x>0)
2

2.681 6.847% 4.243 7.337 4.291 1.369% 5.852 16.527

xI(x > 0) 2.996 5% 3.996 6.245 4.605 1% 5.605 14.107

Table 2: Estimation of Haezendonck Risk Measure for Exponential Distribution: Different Young Functions

given by − log(1 − α) and θ∗2 is 1 by the memoryless property. It is worth mention that in the case of the
T-VaR the asymptotic distribution is given in Manistre and Hancock (2005) and Brazauskas et al. (2008).
For Ψ2(·), the procedure to find the optimal θ̃∗ is similar to that of the previous subsection, and is given by

θ̃∗ =

(
− log

[
(1− α)

(√
153− 11

)]
,

√
153− 11

5−
√

17

)
.

Table 2 contains the values of the optimal θ∗1, the Haezendonck risk measure and the asymptotic standard
error for the empirical Haezendonck risk measure for each of the above Young functions and for both the
95% and 99% levels. It is noteworthy that only the asymptotic standard error that shows a direct relationship
with the convexity of the Young function; in other words, the the more convex the Young function the larger
the asymptotic standard error.

As earlier, we simulated 100, 000 sets of random samples for each sample size. Figure 5 contains the plot
of the estimated densities of the standardized (using παΨ(F ) and the asymptotic standard deviation) empirical
Haezendonck risk measure at the 95%-level. Figure 5 suggests that a more convex Young function requires
a larger sample size for the asymptotic limit to take hold.

5. Discussions and Future Work

In this article we have establish a weak convergence result for the empirical Haezendonck risk measure
which allows for any Young function, and essentially all distributions with suitable upper tail. In a sense,
comparing it with the case of the ordinary central limit theorem, the conditions for this result are near
ideal. Also, we establish strong consistency for this estimator, as well as for the optimal solution for the
minimization problem defining this estimator.

The importance of the weak convergence result in applications is accentuated by the fact that even in non-
pathological situations the empirical Haezendonck risk measure can have a non-normal limiting distribution.
Also, even in the case where the limiting distribution is normal, as reported in Bellini and Gianin (2008b),
simply testing for normality using for example the Jarque-Bera statistic can be misleading. For example,
such testing resulted in rejecting normality, with a p-value less than 1%, for both Example 5 (with β = 1)
and the uniform example discussed in section 5, where as normality does indeed hold true in the latter case.
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As observed in Bellini and Gianin (2008b), computing the empirical Haezendonck risk measures can be
a challenging computational task. This results in the estimate being, as in other similar problems, subject to
both sampling error as well as computational error. Hence it is worth mention that in Ahn and Shyamalkumar
(2011b) we provide a computational algorithm for the empirical Haezendonck risk measure such that the
approximation to the empirical Haezendonck risk measure computed using this algorithm is guaranteed to
have the same asymptotic behavior as the empirical Haezendonck risk measure.

As mentioned above, in the case that there is a unique x∗ satisfying παΨ(F, x∗) = παΨ(F ), this optimal
solution can be viewed as an analog of the quantile. Due to this viewpoint it is of interest to derive a weak
convergence result for the sample analog of x∗. The approach taken in this paper, we believe, is a promising
way towards establishing such a result.

The weak convergence result is useful in practice as it paves a way for construction of confidence inter-
vals. For interval estimation of the Haezendonck risk measure one would further need a consistent estimator
of the asymptotic standard error. While an obvious candidate exists in the case of a differentiable Ψ(·) and
a continuous F (·), investigation of the performance of the interval estimator resulting from its use would be
beneficial.
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A. Appendix

Lemma 1. For θ̃, θ̃′ ∈ S(F ), and 0 < ε < 1 we have∣∣∣ψ(θ̃, x)− ψ(θ̃′, x)
∣∣∣ ≤ [4δu

εδl

]
max

[
ε∂+Ψ(1),Ψ

(
−xl

ε(1− ε)δl

)
,Ψ
(

x

δl(1− ε)2

)]∥∥∥θ̃ − θ̃′∥∥∥ (29)

Proof. Without loss of generality let y1 ≤ y2, where

y1 :=
x− θ′1
θ′2

, and y2 :=
x− θ1

θ2
.

Note that the bound above is trivially satisfied for y2 ≤ 0; hence for the rest of this proof we will assume
without loss of generality that y2 > 0. As

|y1 − y2| ≤

(√
2 max(1, y2)

δl

)∥∥∥θ̃ − θ̃′∥∥∥ ,
we have by convexity of Ψ(·) that

|Ψ(y2)−Ψ(y1)| ≤ (y2 − y1)∂+Ψ(y2)

≤

(√
2 max(∂+Ψ(1), y2∂+Ψ(y2))

δl

)∥∥∥θ̃ − θ̃′∥∥∥
≤

[√
2

εδl

]
max

[
ε∂+Ψ(1),Ψ

(
y2

1− ε

)]∥∥∥θ̃ − θ̃′∥∥∥
Also, some algebra yields

Ψ
(

y2

1− ε

)
≤ Ψ

(
max(x/(1− ε),−xl/ε)

δl(1− ε)

)
≤ max

[
Ψ
(

x

δl(1− ε)2

)
,Ψ
(

−xl
ε(1− ε)δl

)]
,

using which we have

|Ψ(y2)−Ψ(y1)| ≤

[√
2

εδl

]
max

[
ε∂+Ψ(1),Ψ

(
−xl

ε(1− ε)δl

)
,Ψ
(

x

δl(1− ε)2

)]∥∥∥θ̃ − θ̃′∥∥∥
Now using the fact that ∂+Ψ(1) ≥ 1, and that∣∣∣ψ(θ̃, x)− ψ(θ̃′, x)

∣∣∣ ≤ [1− α+ Ψ(y2)] |θ2 − θ′2|+ δu |Ψ(y2)−Ψ(y1)|

we have (29).

23



−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Uniform : α=0.95

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Uniform : α=0.99

−4 −2 0 2 4

0.
0

0.
2

0.
4

Pareto : α=0.95

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

Pareto : α=0.99

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

Lognormal : α=0.95

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

Lognormal : α=0.99

Std. Normal
n=500
n=2,500
n=50,000

Std. Normal
n=200
n=500
n=1,000

Std. Normal
n=500
n=2,500
n=50,000

Figure 4: Estimated Densities of Empirical Haezendonck Risk Measures - Varying Levels and Sampling
Distributions

24



−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Φ(x)=
e0.5x−1

e0.5−1

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Φ(x)=
x + x2

2

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Φ(x)=x

Std. Normal n=300 n=600 n=1,200

Figure 5: Estimated Densities of Empirical Haezendonck Risk Measures - Varying Young Function
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