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Abstract
Should multi-unit auctions be used to sell multiple identical and indivisible units? In

this paper we show that with sufficiently many bidders, the multi-unit format is more

efficient than the bundle format in a broad range of situations. However, the revenue-

performance depends on the fraction of demand that is met asymptotically. We also

examine the absolute performance of the multi-unit auctions by providing bounds on

the rate at which the multi-unit auction converges to competitive price.
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1. Introduction
During much of the last three decades auction theory has received a great deal of

attention from economists. This is not only because an increasing number of economic

transactions are becoming dependent on some form of auction or the other, but also

because auctions provide insights into the process of price formation. Much of the past

research concentrated on the study of single-object auctions.2 In reality, however, a

large number of situations involve either multiple goods that are sold separately or in

lots, or (bundles of) goods that can be split into multiple parts. Some recent work

has correctly pointed out that conclusions drawn about single-object auctions do not

generally extend to their multi-object counterparts. This makes it necessary to develop

a separate theory of multi-object auctions. But should we have a multi-object auction

at the first place?

Conceivably, there are several reasons (some even regulatory) due to which multi-

object auctions may need to be held. In this paper, we consider two standard bases

on which auction markets are evaluated, viz., efficiency and revenue, and identify those

situations where there are performance based reasons to conduct a multi-object auction.

A natural way to evaluate a multi-object auction is to compare its performance with

that of the alternative — single-object auction for the bundle(s). Therefore, we focus on

this comparison.

The problem of evaluating the performance of a multi-object auction relative to

its bundled counterpart arises in two different contexts. First, an object (or a bun-

dle of objects) may be split into multiple dissimilar objects, (e.g., an apple and an

orange). Second, the bundle may be split into multiple identical objects/units, (e.g.,

two apples).3 Each scenario gives rise to a different theoretical framework that must

2Throughout this paper we call auctions “single-object” or “multi-object” depending on whether a
bidder has a value for only one of the objects or more than one object. Thus, an auction may offer
multiple units of an object on sale, but if each bidder has value for only a single unit we refer to such
an auction as a single-object auction just to avoid confusion with our multi-unit auction where each
bidder wants more than a unit. If the units are bundles of smaller units and a bidder wants only one
bundle, we refer to the auction as a single-object auction for bundles or a bundle auction.

3There are situations where a bundle of objects can be split into multiple units of dissimilar objects
(e.g., two apples and three oranges). The relevant conclusions for such scenarios follow from the results
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be studied separately. Palfrey (1983) considered the first framework where the seller

sells multiple dissimilar objects for which the bidders have independent private values.

Clearly, under a second-price rule without reserves (or other rules that allocate the

object to the bidder with the highest value) selling the objects separately is alloca-

tively efficient while bundling is not. Palfrey (1983) and Chakraborty (1999) showed

that whether bundling the objects before the auction generates a higher or lower ex-

pected revenue than selling the objects separately, depends, respectively, on whether

the number of bidders is “small” or “large.” Thus, objects should be sold separately

for efficiency reasons regardless of the size of the auction, and for revenue reasons when

there are sufficiently many bidders.

We consider the second scenario where the objects are essentially identical units.

The results for dissimilar objects are not useful for drawing any conclusion in the

multi-unit framework. In fact, the multi-unit framework gives rise to a much more

complex problem because the equilibrium bidding strategies for multi-unit auctions

cannot be described in a useful manner in most situations. For instance, Engelbrecht-

Wiggans and Kahn (1998) showed that multi-unit uniform-price auctions give rise to

demand reduction in which bidders tend to shade greater and greater amounts on their

equilibrium bids for the successive units (relative to their values). The amount by which

bidders shade their bids cannot be expressed in a closed form except in some special

cases, thus making a somewhat general analysis difficult. Moreover, differential bidding

on successive units in multi-unit auctions gives rise to inefficiency. Thus, unlike the

case of Palfrey (1983), even efficiency is a non-trivial issue in this case.

There is a second reason for evaluating the performance of multi-unit auctions which

goes beyond auction theory. Economists have long been interested in the efficiency

properties of decentralizable market outcomes. Edgeworth (1981) showed that under

complete information the competitive outcome is always Pareto optimal. Similarly, the

long-run equilibrium of the full information neoclassical perfectly competitive market

is also efficient. Unfortunately, real life markets do not satisfy the strong informational

obtained from the basic cases.
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and other requirements of such markets that force agents to become price-takers, thus

efficiency is more an exception than a rule in practical contexts. Still, models of price

formation have been used to show that as the market becomes large the incentives for

being strategic tend to go away thereby taking the market towards the efficient com-

petitive market outcome. Gul and Postlewaite (1992), and Rustichini, Satterthwaite,

and Williams (1994), for instance, have used double-auction models to show that as the

market size increases without bounds the agents tend to become price-takes and the

market-clearing price converges to the competitive price in the limit. In a contribution

that is more relevant to this paper, Swinkels (2001) showed that multi-unit auctions

for independent private values, when conducted without reserves, are efficient in the

limit when the number of bidders goes to infinity. In that limiting case, again, bidders

virtually exhibit a price-taking behavior and (in the absence of exogenous shocks) the

auction price converges to the corresponding competitive price. This limit price has

been described by Chakraborty and Engelbrecht-Wiggans (2004).

While convergence to competitive price in the limit is good news from efficiency point

of view, short of the limiting case, the efficiency results and equilibrium price-taking

behavior fail completely. Specifically, for all finite number of bidders, the uniform-price

multi-unit auction is inefficient (in that all potential gains are not realized) because

bidders act strategically, and not as price takers. Thus, while Swinkels’ study is moti-

vated by auctions with large number of bidders (that are always finite in real life), his

results do not give any idea about how close large but finite markets actually come to

the competitive outcome.

Swinkels (2001) recognized this need, and suggested identification of the rate of

convergence of multi-unit auctions to efficiency through simple numerical examples

as a way to fill this gap. In the absence of a closed form description of equilibrium

strategies in multi-unit (uniform-price) auctions this serves as a second-best alternative

for measuring the efficiency-performance of large multi-unit auctions relative to the

competitive market. In this paper we take a different approach. Rather than calculating

the actual rates numerically we identify lower and/or upper bounds, depending on what
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the situation allows, on the rates at which the prices in these auctions converge to the

competitive price. This allows us to take a general approach towards measuring the

maximum and, whenever possible, the minimum extent to which finite markets can

come close to being competitive.

This is certainly not the first attempt to evaluate the multi-unit auction relative

to the single-object auction for the bundle. Wilson (1979) considered some tractable

examples of pure common value auctions without reserves for a perfectly divisible ob-

ject.4 He demonstrated that when bidders are allowed to submit continuous bid-price

schedules for the different shares of the object under the uniform-price rule the problem

of demand reduction may give rise to low revenues in the share auction relative to a

single-object auction for the whole object. Moreover, he showed that demand reduction

can increase in severity (in the sense that each bidder demands a smaller fraction of the

item for a positive price) as the number of bidders increases. This prevents the seller

from receiving any advantage from increased competition.

In a large number of situations, however, objects cannot be divided infinitely for

physical or other practical reasons. In those situations there is a limit beyond which

demands cannot reduce in equilibrium. For instance, in a uniform-price auction (with

the highest-losing bid setting the price) for two identical but indivisible units a bidder

can bid zero on the second unit. At the same time, bidding his true value on the

first unit is a weakly dominant strategy under the uniform-price rule (see Engelbrecht-

Wiggans and Kahn, 1998). Thus, in equilibrium, the demand cannot reduce below a

unit while remaining positive. In short, the problem of evaluating the performance of a

multi-unit auction for indivisible units relative to the bundle auction remains unsolved.

In this paper, we show that whenever there are sufficiently many bidders in the

auction a multi-unit auction generally performs better than the bundle auction if a small

fraction of demand is met asymptotically. A multi-unit auction offers a greater scope

for efficiency and, thus, higher revenue by allowing more allocative flexibility. However,

in small auctions demand reduction leaves both possibilities unfulfilled. When there

4Obviously, efficiency was not an issue in the pure common value model.
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are a large number of bidders the likelihood of any bidder receiving more than one unit,

and the price being set by a bidder’s second or lower bid can be expected to become

very small. In a broad range of situations the problem of demand reduction tends to

become sufficiently irrelevant when there are many bidders, making it perform better

than the bundle auction. In the following sections we give insights into when the above

intuition does and does not hold.

2. The Auction Model
Consider a sequence of auctions {An}n≥1. In auction An the seller wants to sell 2Mn

identical (indivisible) units of an object in a single auction possibly under a reserve.5

There are n risk-neutral bidders with independent private values for the objects. To

avoid some trivial cases we assume 1 ≤ Mn < n. Bidder i has diminishing marginal

values V1i for the first unit and V2i for the second, and value V1i + V2i for the bundle.6

The values (V1i, V2i)-s are random vectors each having a joint distribution F (v1, v2) with

a density f(v1, v2) on a support S = [(v1, v2) : 0 ≤ v2 ≤ v1 ≤ 1] that are independent
across bidders.7,8 The marginal distributions are denoted by F1 and F2, and the density

functions denoted by f1 and f2. We denote the distribution of V1+V2 by FV1+V2(·), and
the corresponding density function by fV1+V2(·) on the support [0, 2]. By upper end of
the support for a distribution on [a, b] we mean b, the lower end of the support is a in

that case.

Each bidder privately observes his values and then participates in the auction under

a given rule. The auction is held under a sealed-bid uniform-price rule with the price set

equal to the maximum of the highest-losing bid and reserve Rn. The remaining details

5Restriction to an even number of units is purely for expositional ease. This has no bearing on the
actual results.

6Most results and conclusions in the paper extend straightforwardly, in their appropriate forms, to
the more general case where each bidder has demand for m (≤Mn) bundles, i.e., 2m units.

7It is not difficult to see in our set-up that when bidders have increasing marginal values, instead,
there is an equilibrium where bidders submit the same bid on both units in the multi-unit auction,
thus effectively reducing it to a bundle auction.

8The existence of the density function everywhere is simply for the ease of exposition. A careful
look at the proofs will show that all results continue to hold under weaker conditions and for a more
general support.
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of the rule depend on whether the auction is carried out under a multi-unit format or

a bundle format.

In the multi-unit auction each bidder submits two sealed bids b1 and b2, the seller

awards the units to the 2Mn highest bids in the auction provided that these bids are

no less than the reserve RM
n . Thus, a bidder receives one or two units depending on

whether one or both his bids are no less than RM
n , and are among the 2Mn highest bids

in the auction. The price paid for every unit won is equal to the maximum of the third

highest bid and RM
n . We assume, without loss of generality, that b1 ≥ b2.

In a bundle auction the seller sells Mn bundles each consisting of 2 units, and a

bidder submits a single sealed bid for the bundle. The object, i.e., the bundle, is

awarded to the Mn highest bidders, provided their bids are no less than the reserve

RB
n , for a price equal to the maximum of the second-highest bid in the auction and RB

n .

This single-object rule, for obvious reasons, is known as the second-price auction (with

reserve). Note that the uniform-price rule is a Vickrey auction (see Vickrey, 1961) for

the bundle, but not for the multi-unit auction.9

We assume that the reserves are non-negative and exogenously given. The number

of bidders, the auction format including the reserve price, and the value distributions

are all common knowledge before the auction begins.

Equilibrium Strategies

In each auction we consider (symmetric Bayes-Nash) equilibria in weakly undominated

strategies. A strategy in the bundle auction is a function b : S → [0, 1] with the

interpretation that all bids smaller than RB
n are ignored by the seller. The bundle

auction has an equilibrium in weakly dominant strategies of truthful bidding (i.e.,

bidding the true value of the bundle), thus in equilibrium b(v1, v2) = v1 + v2.

A strategy in the multi-unit auction is a pair of functions (b1, b2) : S → S. Thus

b1(v1, v2) is the bid for the first unit and b2(v1, v2) is the bid for the second unit with

b1(v1, v2) ≥ b2(v1, v2). Unlike the bundle auction, sincere bidding is a weakly domi-

9Note that the price in the bundle auction refers to the price for the entire bundle, and not the per
unit price which is in fact the case in the multi-unit auction.
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nant strategy in the multi-unit auction only for the first unit, so that in equilibrium

b1(v1, v2) = v1. The equilibrium bidding strategy for the second unit cannot be de-

scribed as a closed form mathematical expression except in special cases. If Mn = 1 a

modification of the argument in Engelbrecht-Wiggans and Kahn (1998) can be applied

to multi-unit auctions with reserves to show that when the marginal distribution F1

satisfies the hazard rate condition

f1(x)

1− F1(x)
≤ 1

1− x
, ∀x ∈ [RM

n , 1) (1)

there is an equilibrium that involves bidding min[v2, RM
n ] on the second unit.

10 In

that case the equilibrium bidding strategy is given by b1(v1, v2) = v1, b2(v1, v2) =

min{v2, RM
n }. Among distributions that satisfy (1) is the uniform distribution on S.

When the distribution does not satisfy the hazard rate condition (1) the equilibrium

has the property that b2(v1, v2) < v2 for v2 > RM
n .

11

In order that a strategy such as the one described above with “complete demand

reduction” to be an equilibrium strategy for the general Mn a generalized version of

condition (1),
f1(x)

1− F1(x)
≤ 1

(1− x)(Mn − 1) ∀x ∈ (RM
n , 1) (2)

must be satisfied. Clearly, when Mn increases without bounds over {An}n≥1 it is im-
possible to satisfy this condition for large enough auctions. In fact, the efficiency result

of Swinkels (2001), adapted to our set-up, implies that if limn→∞ Mn

n
= α ∈ (0, 1) then

there exists v∗2 such that for all v2 ≥ v∗2, limn→∞ b2(v1, v2) = v2, although b2(v1, v2) < v2

∀n and ∀v2 > RM
n .

Observe that since the complete equilibrium bidding strategy in the bundle auction

is available, it is possible to write the expected revenue explicitly. Denoting the r-

th highest of the random variables X1, ..,Xn by Xr:n, the expected revenue in the

equilibrium of the bundle auction is given by E[max{(V1 + V2)2:n, R
B
n }I{(V1+V2)1:n≥RB

n }]

10We maintain the convention that any bid below the reserve is ignored by the seller in the multi-unit
auction, too.
11For a detailed study on the equilibrium of the multi-unit uniform-price auction see Engelbrecht-

Wiggans and Kahn (1998).
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where IA denotes the indicator variable on the set A. The expected surplus generated in

the auction also has a similar expression. A general formula for the multi-unit auction

is not available. However, the expected revenue when (2) is satisfied can be written

similarly.

(A1) Regularity condition

In some cases we need to assume that there is a k ≥ 1 such that (i) F1(·) and FV1+V2(·)
are k-times continuously differentiable in some left neighborhoods of 1 and 2, respec-

tively, (ii) f
(l)
1 (1) = 0 for l = 0, 1, .., k − 2,12 and f

(k−1)
1 (1) 6= 0, and (iii) f

(l)
V1+V2

(2) = 0

for l = 0, 1, ..., k − 1, where f
(0)
1 ≡ f1 and f

(0)
V1+V2

≡ fV1+V2 .

Remark 1. It is straightforward to check that the condition is automatically satisfied if

f1(1) 6= 0 (this case corresponds to k = 1) and f1 and fV1+V2 are continuous in some

left neighborhoods of the upper ends of their supports. In that case, fV1+V2(2) = 0 and

f
(1)
V1+V2

(2) = 0. In fact, the condition fV1+V2(2) = 0 always holds.

Sometimes due to a need for tractability of analysis in multi-unit auctions it is

assumed that the values for the successive units are the higher and lower order statistics

for two independent draws from a distribution with density h(·) (see, for instance,
Katzman, 1999). It is routine to check that the regularity condition is satisfied in

that special framework regardless of the particular distribution h(·) as long as h(·) is
continuous in a left neighborhood of 1.

Remark 2. If (i) fV1(·) and fV1+V2(·) are k-times differentiable in a left neighborhood of

1 and 2, respectively, and f
(k)
V1
(1) = 0, l = 0, ..., k − 1, and (ii) fV2|V1(y|x) is uniformly

bounded in y for x > 1 − δ∗ for some δ∗ > 0, then f
(l)
V1+V2

(2) = 0, l = 0, ..., k and the

regularity condition (A1) is satisfied whenever there is a k > 1 satisfying f
(k−1)
1 (1) 6= 0.

This sufficient condition for the regularity condition (A1) to hold has the intuitive de-

scription that the values V1 and V2 do not become increasingly and highly correlated

conditional on V1 tending to its highest possible value of 1. (Geometrically, this increas-

ing correlation means that as V1 approaches 1 the probability mass does not become

12For k = 1 the f (l)1 (1) = 0 part of the condition is ignored.
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too concentrated, and increasingly so, near the diagonal where V1 = V2.) Thus a very

large class of joint distributions can be expected to satisfy the sufficient condition.

In order to derive a few of our results we make alternative assumptions about the

upper and lower ends of the support. These assumptions are summarized below:

(A2)

There is a k̂ ≥ 1 such that (i) F1(·) + F1(·) and FV1+V2(·) are both at least k̂-times

continuously differentiable in some left neighborhoods of 1 and 2, respectively, (ii)

f
(l)
1 (1) + f

(l)
2 (1) = 0 for l = 0, 1, .., k̂− 2,13 and f

(k̂−1)
1 (1) 6= 0, and (iii) f

(l)
V1+V2

(2) = 0 for

l = 0, 1, ..., k̂ − 1, where f
(0)
1 + f

(0)
2 ≡ f1 + f2 and f

(0)
V1+V2

≡ fV1+V2 .

(A3)

There is a ǩ ≥ 1 such that (i) F1(·) + F2(·) and FV1+V2(·) are both at least ǩ-times

continuously differentiable in some right neighborhoods of 0, (ii) f
(l)
1 (0) + f

(l)
2 (0) = 0

for l = 0, 1, .., ǩ − 2,14 and f
(ǩ−1)
1 (0) 6= 0, and (iii) f

(l)
V1+V2

(0) = 0 for l = 0, 1, ..., ǩ − 1,
where f

(0)
1 + f

(0)
2 ≡ f1 + f2 and f

(0)
V1+V2

≡ fV1+V2 .

(A4) Assumption on Reserves

As we point out later, if the reserves are not sufficiently well-behaved results can be

obtained in virtually any direction. Therefore, we assume that either lim supRM
n < 1

or for every subsequence {RM
nl
} of reserves limRM

nl
= 1 the rate of convergence is

o
³
n−

1
k

´
, i.e., n

1
k

¡
1−RM

n

¢ −→ 0, where k = min
n
l : f

(l−1)
1 (1) 6= 0

o
and that (2 −

RB
nl
) = o

³
n−

1
m

´
for every subsequence with limRB

nl
= 2 , i.e., n

1
k

¡
1−RM

n

¢
whenever

m = min
n
l : f

(l−1)
1 (1) 6= 0

o
exists.

3. Efficiency and Revenue
While the equilibrium property of bidding strategies (i.e., differential bidding on suc-

cessive units) in a multi-unit auction gives rise to allocative inefficiency in all finite

13For k̂ = 1 the f (l)1 (1) + f
(l)
2 (1) = 0 part of the condition is ignored.

14For ǩ = 1 the f (l)1 (0) + f
(l)
2 (0) = 0 part of the condition is ignored.
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auctions, the equilibrium in a bundle auction is also allocatively inefficient even if there

is a zero reserve.15 Thus, whether the multi-unit auction is more or less efficient than

the bundle auction becomes a highly non-trivial question.

There are several ways in which inefficiency is measured in economics. We take one

of the simplest measures of efficiency. Accordingly, we consider the difference between

the maximum (feasible) expected social surplus E[φn] (with all agents weighted equally)

that could be generated among all possible allocations, and E[αn], the actual social sur-

plus that a particular auction format is expected to generate. Convergence to efficiency

in this context means that the above expected difference E[φn] − E[αn] converges to

zero.16 While E[φn] is the same in both the bundle and multi-unit auctions, the actual

surplus expected to be generated E[αn] generally differs across the two formats.

The expected actual surplus E[αn] generated under the multi-unit auction cannot

be expressed as a closed form mathematical expression or any other useful manner for

our purpose. This makes it necessary to look for alternative approaches to evaluate the

performance of multi-unit auctions. In order to evaluate the performance of the multi-

unit auction against the bundle auction we shall make use of relevant bounds for and

limit arguments on E[αn] depending on what the situation demands. This approach

turns out to be sufficient to evaluate the relative performance of the multi-unit auction.

However, in order to evaluate the absolute efficiency performance of the multi-unit

auctions one would need to calculate the rate at which E[φn] − E[αn] goes to zero in

the limit. Since useful bounds on the rates at which the equilibrium strategies in the

multi-unit auctions cannot be obtained, it is not possible to find appropriate bounds

on the rate at which E[φn]−E[αn] converges to zero, i.e., multi-unit auction converges

to efficiency, much less the actual rates. Similar problem arises while evaluating the

revenue performance of the multi-unit auction in the absolute sense.

This makes it necessary to look for alternative approach to get a sense of the ab-

15Compare this with the traditional view that all “standard rules” (without reserves) for single-object
auctions give rise to allocative efficiency. The approach we take here is that whenever an object is
divisible (for instance, it is a bundle of objects) with diminishing marginal values, even the single-object
auction (for the whole) is allocatively inefficient.
16See Swinkels (1999) for a discussion of alternative measures of efficiency in this context.
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solute performance of large multi-unit auctions, and insights into what elements deter-

mine that performance. The competitive market provides a standard for that purpose

which is relevant in this case since the outcome in the multi-unit auction ultimately

converges to the competitive market outcome. Therefore, a good measure of the ab-

solute performance of the multi-unit auction is obtained by considering the rate at

which convergence to the competitive market outcome happens. Even this is not pos-

sible to calculate in the absence of a description of the equilibrium bidding strategy.

Recall that for all finite auctions b1(v1, v2) = v1 and b2(v1, v2) < v2, and that the price

in the multi-unit auction is set by the (2Mn + 1)-th highest bid. Hence, a natural

upper bound for the rate at which the price converges is given by the rate at which the

(2Mn+1)-th highest value in the auction converges. Note that the convergence of price

is related to the convergence to efficiency only in that efficiency is a property of the

market in the limit when the price in the auction converges to the competitive market

price. Thus, while the rate of convergence of the price does not directly reflect the rate

at which E[φn]−E[αn] converges to zero, it certainly gives a sense of the rate at which

the multi-unit auction converges to the efficient competitive market in the limit. While

the calculation of this bound remains mathematically non-trivial and not obtainable

directly from known mathematical results, it is still a tractable quantity.

An upper bound for the rate at which the price converges is also of interest from the

revenue performance perspective since the expected revenue in the multi-unit auction

cannot be calculated. Therefore, in what we do in the next three sections we present

precise conditions under which the efficiency and revenue performance of the multi-unit

auctions is better or worse relative to the bundle auction, and describe an upper bound

for the rate at which the prices in the multi-unit auctions converge to the competitive

price under different circumstances.

4. Auctions With A Vanishing Fraction Of Demand Met Asymptotically
We start with the case where a vanishing fraction of the demand is met asymptotically.

i.e., limn
Mn

n
= 0. This can happen both withMn being bounded or with limn Mn =∞.

Let us consider the case of bounded supply first. To keep things simple let us fix, without
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loss of generality, Mn = 1, so that there are exactly two units on sale in all auctions.

4.1 Finite Supply
When exactly two units are on sale, both the multi-unit and the bundle auctions con-

verge to the same limit revenue of 2. Therefore, comparison of the rates of convergence

under the two formats is the appropriate way to proceed for evaluating the relative

performance of the multi-unit auction. Our objective in this case is to show that multi-

unit auctions perform better relative to the bundle auctions for all large n. So we need

a lower bound for the rate of convergence in the multi-unit auction and show that this

rate is still faster than the rate at which the bundle auctions converge in efficiency

and to its limit revenue. In this case, the bidding strategy with “complete demand

reduction” allows the construction of such a bound. As discussed earlier whenever (1)

is satisfied the rate of convergence is actually attained by the multi-unit auctions. In

the following Proposition we provide these rates of converge.

Proposition 1. Suppose that assumptions (A1) and (A4) are satisfied and that

the number of units supplied is bounded above. The multi-unit auction converges

to efficiency and to the limit revenue of 2 at a minimum rate of O(n−
1
k ) where k =

min
n
l : f

(l−1)
1 (1) 6= 0

o
. The bundle auction converges to efficiency and to its limit rev-

enue of 2 at a rate of O(n−
1
m ) for somem ≥ k+1 wheneverm = min

n
l : f

(l−1)
V1+V2

(2) 6= 0
o

exists.

Proof. See Appendix.

The minimum rates at which a multi-unit auction converges to efficiency and to

its limit revenue are faster than the same for the bundle auction. Hence it should not

be surprising that a multi-unit auction becomes more efficient and generates a higher

expected revenue than the bundle auction before actually reaching the identical limit

as the following result suggests.

Proposition 2. Suppose that assumptions (A1) and (A4) are satisfied and that the

number of units supplied is bounded above. The multi-unit auction is more efficient
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and generates a strictly higher expected revenue than the bundle-auction for all large

number of bidders.

Proof. See Appendix.

Remark 3. Consider the role of assumption (A4). Clearly, if in any auction there is

a subsequence of reserves that increases to the upper end of the support with n at a

sufficiently high speed, the auction can be inefficient even in the limit.17 In fact, the

reserves can be set to attain a continuous range of predetermined levels of inefficiency

and expected revenue in the limit. Thus, if appropriate conditions are not imposed, the

reserves can be chosen to violate both of the above results. Such a choice of reserves

cannot be made if there is no subsequence of reserves that increases to the upper

end of the support at a “sufficiently high” speed. Assumption (A4) simply gives an

upper bound on the rate that is sufficient for the above results to hold. The bound

can be made tighter for convergence to efficiency and of revenue to the upper end of

the support. However, that will make the comparison between bundle and multi-unit

auctions depend on the relationship between these rates. Thus, (A4) simply ensures

that the reserves take a passive role so that our results hold otherwise unconditionally.

Remark 4. It is not difficult to construct an example of finite auctions with order-

statistic valuations, and show that in a small market the relative revenue ranking of

multi-unit and bundle auction can vary between a situation where no reserve is set

and one where the reserves are set at the optimal levels. In large auctions, too, for

every n there is a set of reserves such that the multi-unit auction generates a lower

expected revenue than the bundle auction, regardless of how large n is. However,

there is a difference between the example and this fact in that the nontrivial reserves

considered in the example with order-statistic valuations are the optimal reserves for the

auctions. When bidder values are the higher and lower order statistic from a distribution

17This is most easily verified in the context of a single-object auction for private values that are
independently distributed as uniform [0,1]. A reserve equal to 1− 1

n2
when there are n bidders makes

the expected surplus from the auction go to 0. Clearly, such a reserve is not optimal in the single-object
auction. However, we have not made any assumption that the reserve prices have to be optimal, yet.
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that satisfies (1), Chakraborty and Engelbrecht-Wiggans (2004) show that the optimal

reserves are strictly dependent on the number of bidders and bounded away from the

upper end of the support. In short, the optimal reserve in that case satisfies (A4).

Hence for all large n the multi-unit auction generates a higher expected revenue and

efficiency both when the reserves are set optimally18 and equal to zero, unlike the case

of two bidders from the example. There is, however, no result available to guarantee

that the optimal reserves in the multi-unit auction will satisfy (A4 ) even outside the

above special structure.

Remark 5. Let us examine another boundary of our results that arises out of assumption

(A1 ) being violated. From Remark 2 one would guess that one way to violate the

regularity condition is to consider values that become highly correlated towards the

upper end of the support which would imply that the behavior of f1(·) does not differ
very much from the behavior of fX+Y (·) in the limit. Since it is not easy to construct
such a joint distribution in a tractable manner while allowing it to satisfy condition (1),

we consider the extreme case where both values are equal with probability 1, and has a

distribution H(·) on {(v, v) : v ∈ [0, 1]}. In that case, the equilibrium in the multi-unit
auction involves bidding zero on the second unit if condition (1) is satisfied.

Standard arguments show that regardless of the number of bidders the multi-unit

auction in this case generates a lower revenue than a bundle-auction. The intuition is

simple. If the marginal value for the second unit is likely to be as large as that for

the first unit (and increasingly so for the top few bidders who matter as the number

of bidders increases), demand reduction (from the high bidders) can be very costly

to the seller; so costly that even a large competitive effect with many bidders cannot

compensate the loss.

4.2 Example: Sequential Auctions
A single-shot sale as a multi-unit auction is not the only way that multiple units of an

object could be sold. A large number of auctions in practice, including auctions on the

18In the special case of order statistic valuations.
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internet and those for government contracts, sell identical units in a sequential manner

rather than a multi-unit format as discussed above. Let us examine what might happen

in such auctions, again, relative to the single-object auction for the bundle. In order

to keep things manageable, let us suppose that in this alternative format two auctions

are held one after the other. In the first auction, sealed bids are obtained, one from

each bidder, under the second-price auction rule. Once the auction is carried out and

the object awarded, the price in the auction is announced and then the next sealed-bid

second-price auction is held. The reserve is set equal to zero.

In spite of the apparently simple structure, this is an analytically difficult situation

to explore. However, Katzman (1999) was able to obtain closed form bidding strategies

for such auctions under the assumption that the values to a bidder are the higher and

lower order statistics from two independent draws from a distribution with density h(·).
He derived the equilibrium bidding strategies

b1(v1) =
(2n− 3) R v1

0
xH(x)2n−4h(x)dx

H(v1)2n−3

b2(v2) = v2

for the sequential auctions. Given the monotonicity of the bidding strategies it is easy

to see that the auction is efficient regardless of the number of bidders. In other words,

the sequential auction is more efficient than the bundle auction regardless of the number

of bidders. Thus comparison of expected revenue with the bundle auction is all that

remains to be done in this case.

The expected revenue from the sequential auction format is given by E[b1((V1)2:n)]+

E[b2(X3:2n)] where X1, ..,X2n are i.i.d. H(·). We have
E [b1((V1)2:n)]

= 2(n− 1)(2n− 3)n
Z 1

0

tH(t)2n−4
µ
2

3
−H(t) +

1

3
H(t)3

¶
h(t)dt

and

E[b2(X3:2n)]

=

Z 1

0

t
2n(2n− 1)(2n− 2)

2
H(t)2n−3(1−H(t))2h(t)dt
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Thus the expected revenue from the sequential auction is given by

2(n− 1)(2n− 3)n
Z 1

0

tH(t)2n−4
µ
2

3
−H(t) +

1

3
H(t)3

¶
h(t)dt

+

Z 1

0

t2n(2n− 1)(n− 1)H(t)2n−3(1−H(t))2h(t)dt

= g1(n)EX3:2n−1 + g2(n)EX3:2n

It is easy to check that g1(n) + g2(n) = 2 which implies that the revenue from the

sequential auction converges to 2, as well.

Recall that the expected revenue from the bundle auction is given by

(n− 1)n
Z 2

0

sFX+Y (s)
n−2(1− FX+Y (s))fX+Y (s)ds = E[(X + Y )2:n].

Using our Lemmas, there is a n∗ such that for all n > n∗ the difference

4n

3(2n− 1)EX3:2n−1 +
2(4n− 3)
3(2n− 1)EX3:2n −E[(X + Y )2:n] > 0

for all n > n∗. Thus, for all large number of bidders, the sequential format dominates

the bundle auction both in terms of efficiency and revenue.

4.3. Infinite Supply
A vanishing fraction of the demand could be met asymptotically even if the supply of

units increases without bounds over {An}n≥1, i.e., limMn/n = 0 while limMn = ∞.
The price converges to the top of the support of value distribution in this case, as well.

In the next Proposition we show that under appropriate assumptions the performance

of large multi-unit auctions relative to their bundled counterpart continue to remain

unchanged in this case, as well.

Proposition 3. Suppose that assumptions (A1) and (A2) are satisfied, and that a

vanishing fraction of the demand is met asymptotically. Then for all large n the multi-

unit auction generates a higher efficiency and expected revenue than the bundle auction.

Proof. See Appendix.
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Since strategies with complete demand reduction are not equilibrium strategies for

large auctions, a calculation of the rate of convergence in the multi-unit auction based

on such a strategy is a lower bound that need not be attained. Nonetheless, this gives

some idea of the rate of convergence and is sufficient for the purpose of showing the

superiority of the efficiency and revenue performance of the multi-unit auction relative

to the bundle auction.

Corollary 1. Suppose assumptions (A1) and (A2) are satisfied, and that a vanishing

fraction of the demand is met asymptotically. The multi-unit auction converges to

efficiency and the limit revenue at a rate no less than O

µ³
n
Mn

´− 1
k

¶
. The bundle

auction converges to efficiency and the limit revenue at a rate O

µ³
n

Mn

´− 1
m

¶
for some

m ≥ k + 1 whenever m ≡ min
n
l : f

(l−1)
V1+V2

(2) 6= 0
o
exists and the counterpart for (A2)

is satisfied for the bundle auction.

Proof. Follows from Lemma 5 in the Appendix. ¥

While we have calculated the minimum rates at which the auctions converge to

their limit outcomes, the technique is useless when a positive fraction of demand is

met asymptotically. Therefore, as discussed before, to have an idea of how close large

multi-unit auctions come to its competitive market counterparts, we calculate an upper

bound for the rate at which the price in the auction converges to the competitive market

price that is associated with the efficient outcome. We end this section by providing

this upper bound for both the cases of finite and infinite supply (with vanishing fraction

of the demand satisfied asymptotically).

Proposition 4. Suppose that assumptions ... are satisfied and that a vanishing fraction

of the demand is met asymptotically. The price in the multi-unit auction converges to

its limit price of 1 at a rate not exceeding O
³
n−

1

k̂

´
when the supply is bounded above,

O

µ³
n
Mn

´ 1
k̂

¶
when Mn →∞, where k̂ ≡ min

n
l : 1

2
f
(l−1)
1 (2) + 1

2
f
(l−1)
2 (2) 6= 0

o
.19

19Compare this with the rate at which the price converges to its limit in the bundle auction which
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Proof. Follows from Lemma 10. ¥

Remark 6. The multi-unit auction under the Vickrey auction rule generates a higher

expected revenue than under the uniform-price rule with complete demand reduction.

Therefore, the revenue performance of multi-unit auction is better than the bundle

auction under the Vickrey rule, as well, for all large n when a vanishing fraction of

the the demand is met asymptotically. Moreover, it is easy to see that the multi-unit

Vickrey auction is more efficient than the bundle auction regardless of the size of the

auction and supply.

5. Large Supply With α ∈ (0, 1)
For the rest of the paper assume that the reserves in the auctions are set equal to

zero.20 In that case when a fraction α ∈ (0, 1) of the demand is met asymptotically
the price in the bundle auction converges to F−1

V1+V2
(1−α) - the probability limit of the

order statistic (V1 + V2)Mn+1:n. Now consider the “multi-unit” auction. It follows from

Swinkels (2001) that the prices in the sequence of multi-unit auctions converge to a

limit, and from Chakraborty and Engelbrecht-Wiggans (2004) this limit price is known

to be
¡
1
2
FV1 +

1
2
FV2

¢−1
(1− α). When α ∈ (0, 1) the limits cannot be guaranteed to be

equal. As a result a direct comparison is possible as the following results states.

Proposition 5. Suppose a fraction α ∈ (0, 1) of the demand is met asymptotically.
(i) Suppose also that the set E = {x : F1(x) + F2(x) = 2FV1+V2(2x)} is finite

(countable). Then the multi-unit auction is more efficient relative to the bundle auction

for all large number of bidders and for all but a finite (countable) number of α’s.

(ii) Suppose also that either the set E defined in (i) is finite, or that (A2) and (A3)

are satisfied. The multi-unit auction generates a larger expected revenue for all large

number of bidders if α is small enough (i.e., sufficiently close to 0). However, if α is

large enough (i.e., sufficiently close to 1) then bundle auction generates a strictly larger

revenue.

has been already calculated above.
20Clearly, appropriate condition like (A4) can be imposed to maintain the passive role of reserves in

all the cases, but that will not give any additional insight.
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Proof. See Appendix.

In short, while the relative efficiency of large multi-unit auctions holds unambigu-

ously, whether the relative revenue-performance of large multi-unit auctions is better

or worse than bundle auction depends on the fraction of demand that is met asymp-

totically. This switch in performance takes place monotonically when the following

regularity condition holds.

(A5) Another Regularity Condition

There is a unique x∗ ∈ (0, 1) such that
1

2
FV1(x) +

1

2
FV2(x) > FV1+V2

2
(x) if x ∈ (0, x∗)

< FV1+V2
2
(x) if x ∈ (x∗, 1).

Corollary 2. Suppose a fraction α ∈ (0, 1) of the demand is met asymptotically.

The multi-unit auction generates a higher or lower revenue than the bundle auction

for all large number of bidders depending on whether the fraction of demand met

asymptotically is smaller or larger than α∗ if and only if condition (A5) holds.21

Proof. Follows straightforwardly from Proposition 5. ¥

Remark 7. The regularity condition (A5) implies that the convolution of random vari-

ables V1 and V2 reduces the probability mass towards its “center.” In other words, the

mixture distribution 1
2
FV1 +

1
2
FV2 is larger than F V1+V2

2
in the sense of a dispersion-

based ranking. In fact, the proof of Proposition 4 involved showing that in general
1
2
FV1 +

1
2
FV2 Â F V1+V2

2
in the sense of convex ordering. What (A5) demands is an or-

dering in a stronger sense that involves the single-crossing property. Nonetheless, (A5)

is satisfied by several distributions. Suppose that V1 and V2 are the higher and lower

order statistics of two independent draws X and Y from a distribution H(·). Then (A5)
is satisfied whenever X and Y satisfy the regularity condition of Chakraborty (1999)

21In this case when α = α∗ the revenue performace of multi-unit auction relative to the bundle
auction is ambiguous even in large auctions.
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(which is itself known to be satisfied by several classes of distributions). Incidentally,

(A5) also means that FV1+V2
2
has a greater kurtosis than 1

2
FV1+

1
2
FV2 (see van Zwet,1967)

Apparently, Corollary 3 is quite intuitive, when a large fraction of demand is met as-

ymptotically, the auction is not “sufficiently competitive.” As a result bundling of units

becomes necessary to stimulate the price. This pattern is to some extent similar to that

in the auctions for multiple dissimilar objects (Palfrey, 1983, and Chakraborty, 1999).

In that case, separate auctions generate a higher revenue than bundle auction if and only

if the number of bidders is larger than a certain threshold number of bidders. However,

(A5) need not always hold. In other words, the switch in the revenue-performance of

multi-unit auction relative to the bundle auction need not always be monotonic as the

fraction of the demand met asymptotically increases (and, thus, the auction becomes

less “competitive”). This is clearly illustrated by the following example:

Example

Let X ∼ U [0, 1] and Y ∼ U [0.4, 0.6], with the distribution functions being denoted

by GX and GY . Suppose that V1 and V2 are the higher and lower order statistics for

independent draws from GX and GY . Then we have 1
2
FV1(x) +

1
2
FV2(x) =

1
2
GX(x) +

1
2
GY (x) and FV1+V2

2
(x) = GX+Y

2
(x) where GX+Y

2
(·) is the distribution of X+Y

2
. It follows

that there are x1, x2, x3 with 0 < x1 < x2 < x3 < 1 such that

1

2
FV1(x) +

1

2
FV2(x)− FV1+V2

2
(x) > 0 for x ∈ (0, x1) and x ∈ (x2, x3)

< 0 for x ∈ (x1, x2) and x ∈ (x3, 1).
Thus, (A3) is violated by F . This has the implication that if α ∈ (0, α1) or α ∈ (α2, α3)
then multi-unit auction generates a higher expected revenue than bundle auction for all

large number of bidders. However, if α ∈ (α1, α2) or α ∈ (α3, 1) then the bundle auction
generates a strictly higher expected revenue than the multi-unit auction for all large

number of bidders. In short, as the fraction of demand met asymptotically increases, it

is no more the case that the revenue-performance of large multi-unit auctions changes

in the monotonic manner that simple intuition on the competitive effect would make it

appear.
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It is also interesting to note that a direct application of the Theorem 1 of Wat-

son and Gordon (1986) implies that the convolution of GX and GY have the spread-

reducing effect in the sense of the regularity condition of Chakraborty (1999). In short,

monotonicity of the competitive effect as the fraction of demand met asymptotically

decreases continues to hold with these same distributions in the context of the dissim-

ilar object (as discussed above), further highlighting the difference between multi-unit

set-up and the auctions with dissimilar objects.

Remark 8. Following Swinkels (2001) it follows that the uniform-price (with price set

equal to the highest losing, or lowest winning bid), discriminatory-price, and Vickrey

rules for multi-unit auctions are revenue equivalent in the limit (i.e., the limiting prices

are equal). This implies that Proposition 5 and Corollary 2, and all the related discus-

sions above hold when the auctions are carried out under the Vickrey and first-price

rules.

Next we consider the rate at which the auctions converge to the corresponding

competitive equilibrium prices.

Proposition 6. The prices in the multi-unit auction converge to the competitive price

in the limit at a rate not exceeding O
³
n−

1
2

´
when

√
n
¡
Mn

n
− α

¢ −→ c ∈ R, and

O
³

n
Mn−nα

´
when

√
n
¡
Mn

n
− α

¢ −→ ±∞. The convergence of prices in the bundle
auctions take place exactly at these rates.

Proof. The first part follows from Lemma 7 while the second part follows from Lemma

6. ¥

Remark 9. Chakraborty and Engelbrecht-Wiggans (2004) demonstrate that when a

positive fraction of the demand is met, i.e., α ∈ (0, 1), the optimal reserve in a multi-
unit auction can exceed the limit price in the absence of reserves. In other words, when

reserves are set optimally, the optimal reserves may determine the expected revenues

for large auctions, rather than the limit price. In that case, the comparison of revenues

essentially involves a comparison of the optimal reserves.
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6. Vanishing Fraction Of Demand Not Met Asymptotically
Finally, we consider the case where α = 1, i.e., a vanishing fraction of demand is left

unfilled asymptotically. The results in this case are almost mirror images of those

corresponding to the case of α = 0. However, there are several differences in the actual

results, making it necessary to give a detailed description. Of course, by now it is

almost expected that in this case under appropriate assumptions that correspond to

(A1) bundle auction should perform better in revenue than the multi-unit auction for

all large number of bidders. This is proved by showing that the rate of convergence

under the bundle auction is slower than that in the multi-unit auction even if the bidders

bid truthfully under the multi-unit auction. The calculation of the rate of convergence

in that case involves, as in the previous section, the joint distribution F (·, ·). In this
case, we have the following Proposition:

Proposition 7. Suppose assumption (A3) is satisfied. The prices in the multi-unit

auction converge to 0 at a rate no slower than O
³
n−

1
ǩ

´
when n−Mn is bounded above,

and O

µ³
n

Mn

´− 1
k

¶
when n−Mn →∞. The price in the bundle auction converges to 0 at

a rate O
³
n−

1
m̌

´
when n−Mn is bounded above, and O

µ³
n

Mn

´− 1
m̌

¶
when n−Mn →∞,

whenever m̌ ≡ min{l : f (l−1)V1+V2
(0) 6= 0} exists.

Proof. The first statement follows from Corollary 5 and Corollary 6 in the Appendix.

The second statement follows from Corollary 3 and Corollary 4 in the Appendix. ¥

Proposition 8. Suppose that assumption (A3) is satisfied and that a vanishing fraction

of the demand is left asymptotically unfulfilled. The multi-unit auction generates a

smaller revenue than the bundle auction for all large number of bidders. However, the

multi-unit auction generates a higher efficiency than the bundle auction for all large

number of bidders.

Proof. The first part follows upon combining (A3) and Proposition 7.
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To prove the second part observe that on a per unit basis both multi-unit and

bundle auction generate the same limit surplus. Since the price goes to zero, therefore,

the surplus increases as n −→∞. Finally, using Theorem 6 we have that the multi-unit
auction converges faster, so that the result follows. ¥

Remark 10. Proposition 8 is proved essentially by showing that an upper bound on

the expected revenue from the multi-unit auction is smaller than the revenue from the

bundle auction for all large n. This upper bound revenue is also larger than the revenue

generated by the multi-unit auction under the Vickrey rule. Hence, Proposition 8 holds

when the auctions are conducted under the Vickrey rule, as well.

7. Concluding Discussion
We have evaluated the performance of the multi-unit auction relative to the alternative

of bundle auction, as well as, in the absolute sense by competitive market standards.

In a broad class of situations a multi-unit auction dominates the bundle auction both

in terms of efficiency whenever there are sufficiently many bidders. However, whether

the multi-unit auction performs better or worse than the bundle auction in terms of

expected revenue depends on whether a small or large fraction of the demand is met

asymptotically. The switch in the revenue performance of multi-unit auctions as this

fraction increases happens monotonically only in a special class of situations. In general,

however, this switch need not always take place monotonically. The results continue to

hold under the Vickrey auction rules and in part under the discriminatory price rule,

as well.

As an interesting corollary these results give sufficient conditions for social objectives

to become perfectly aligned with that of a monopolist in the context of multi-unit auc-

tions under asymmetric information without pushing the market size to the limit. The

necessary conditions simply involve additional constraints on the nature of the relation-

ship between the reserves in the multi-unit and bundle auctions, and the distribution

of values.

On the technical side, we have developed some useful results to analyze the asymp-
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totics of an interesting class of problems. Ordering and ranking of actions can be an

important element of market models even outside our framework (e.g., the bilateral

bargaining models). The typical analysis of such models make heavy use of results on

order statistics. When each agent’s action happens to be multivariate with a joint distri-

bution before being pooled and ranked, there are no statistical results that can be used

to analyze such order statistics. In course of proving our results on multi-unit auctions

we have developed results on the behavior of such order statistics that is likely to make

an asymptotic analysis of these other models possible. For instance, consider the multi-

unit version of the double-bid auction model of Rustichini, Satterthwaite and Williams

(1994). Suppose that there are MB
n buyers and MS

n sellers and α = limn→∞MS
n /MB

n .

Each buyer has diminishing (or increasing) marginal values for mB units and each seller

hasmS units to sell with diminishing (or increasing) opportunity costs for the successive

units. Let FB
r and F S

r be the marginal distribution corresponding to the r-th unit for

the buyer and the seller, respectively. Whenever such a double-bid market converges

to efficiency in the limit, similar techniques can be applied to show that the demand

(respectively, supply) in the limit competitive market on a per buyer (respectively, per

seller) basis is given by n−PmB

r=1 F
B
r (p) (respectively,

PmS

r=1 F
S
r (p)). The limit competi-

tive price as characterized by n−PmB

r=1 F
B
r (p) = α

PmS

r=1 F
S
r (p) that equates the demand

and the supply in the limit competitive market can then be used to analyze the large

double-bid market in question. In fact, a number of numerical examples indicate that

as α increases from 0 to∞ the ranking of the price in such large markets under bundle

and multi-unit formats behave in a similar manner as do the prices in Corollary 2 when

α increases from 0 to 1.

Any attempt to identify the rate of convergence more closely than we have done

here has to involve dealing with the order statistics for bids that are drawn from multi-

variate distributions. Therefore, it is very likely that the results that we have presented

in Lemmas 7 through 10 and Corollaries 5 and 6 will need to be used in some form to

calculate the exact rates of convergence of the auction price. However, the extent to

which the difficulty of describing the equilibrium strategies can actually be overcome
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for that purpose is not clear.

It would also be interesting to apply the techniques to specifically analyze the double

bid auction market where each buyer and/or seller wants to buy/sell multiple units of

an object. Using the steps outlined in our Lemmas to describe the rate of convergence

and applying them to identify the general form of the competitive price in the limit

market (as in Chakraborty and Engelbrecht-Wiggans, 2004b) are part of our future

research agenda.

8. Appendix
Here we define some notations that will be used below in the statement of the result

and their proofs. We shall denote weak convergence of distributions/random variables

by d−→ and convergence in probability of random variables by P−→. Although in some
cases almost sure convergence may hold true, we use weaker results so that similar proof

would go though in cases where only, for example, convergence in probability holds true.

All limits are taken, unless specified otherwise, as n approaches infinity. By X
d
= Y we

mean that the random variables X and Y have the same distribution.

For a set A, we shall denote by IA(ω), the indicator function of A, i.e.,

IA(ω) = 1 if ω ∈ A

= 0 if ω ∈ Ac;

Gamma(α, β) will be used, depending on the context, to denote both a gamma variate

and a gamma distribution with mean αβ and variance αβ2. Similarly, N(µ, σ2) will

correspond to the normal distribution with mean µ and variance σ2, and U(0, 1) to

the uniform distribution on (0, 1). The standard normal distribution function will be

denoted by Φ(·). The norm k·k will denote the total variation norm on the space of

probability measures.

In the following Uj:n will stand for the j-th highest order statistic from a random

sample of size n from the uniform distribution on (0, 1). Hence U1:n and Un:n will
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stand for the maximum and the minimum, respectively. All results that we use for

order statistics from U(0, 1) can be found in Reiss (1989). We summarize these in the

following two lemmas - the first deals with weak convergence results and the second

with the asymptotic behavior of moments.

Lemma 1. (i) For any positive integer j,

n(1− Uj:n)
d−→ Gamma(j, 1).

(ii) For any sequence of positive integers {jn}n≥1 satisfying
jn
n
−→ 0 and jn −→∞,

we have µ
n

jn

¶
(1− Uj:n)

P−→ 1.

(iii) For any sequence of positive integers {jn}n≥1 satisfying

jn −→∞ and (n− jn) −→∞,

we have Ã
n

jn
n

¡
1− jn

n

¢! 1
2 µµ

1− jn
n

¶
− Ujn:n

¶
d−→ N(0, 1)

Proof. (i) The proof follows simply as a weaker version of Lemma 5.1.5 of Reiss (1989).

(ii) To prove this part we use the fact thatµ
n√
jn

¶µ
Ujn:n − 1 +

jn
n

¶
d−→ N(0, 1),

which can be deduced from theorem 5.1.7 of Reiss (1989). Hence, using Slutsky’s

theorem we haveµ
n

jn

¶
(1− Ujn:n) =

1√
jn

·µ
n√
jn

¶µ
1− jn

n
− Ujn:n

¶¸
+ 1

d−→ 1.

(This result follows much more easily from the second part of the following Lemma.)
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(iii) This is a standard asymptotic normality property of central sequences. See, for

instance, Reiss (1989). ¥

Lemma 2. (i) For any positive integer j,

nζE[(1− Uj:n)
ζ ] −→ Γ(j + ζ)

Γ(j)
, ∀ζ ≥ 0.

(ii) For any sequence of positive integers {jn}n≥1 satisfying
jn
n
−→ 0 and jn −→∞,

we have µ
n

jn

¶ζ

E[(1− Ujn:n)
ζ) −→ 1,∀ζ ≥ 0.

(iii) For every positive integer k and j ∈ {1, 2, ..., n},

E[|Uj:n − µ|k] ≤ 2k!5kσkn−
k
2 ,

and

µ = 1− jn
n + 1

and σ2 = µ(1− µ).

Proof. Parts (i) and (ii) follow from expressing the concerned moments in terms of the

beta function and then using the Stirling’s approximation for the gamma function.

Part (iii) is the Lemma 3.1.3 of Reiss (1989). ¥

We will need to use the Stein-Chen method for Poisson approximation and hence

require the use of the following results which can be found in Lindvall (1992).

Lemma 3. Let {Zi}i≤n be a finite sequence of Bernoulli variables with expectations

{pi}i≤n, respectively. Let S ≡ Pn

i=1 Zi and λ ≡ E[S]. Moreover, let {Ri}i≤n and

{Ti}i≤n be such that

Ri
d
= S and 1 + Ti

d
= P [S ∈ ·|Zi = 1).
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Then,

kP [S ∈ ·)− Poisson()k ≤ 2(1 ∧ λ−1)
nP

i=1

piE[|Ri − Ti|].

¥

In the following two lemmas, G(·) will denote a univariate distribution function with
density g(·) and support [0, a]. Moreover, we assume that G(·) is k-times differentiable

in a left neighborhood of a with g(l)(a) = 0 for l = 0, 1, .., k − 2 and g(k−1)(a) 6= 0. For
such a G(·), let

C(G, k) ≡
µ

k!(−1)k−1
g(k−1)(a)

¶ 1
k

.

Vj:n, for a non-negative j between 0 and n, will denote the j-th highest order statistic

from a random sample of size n from G(·).

Lemma 4. For a sequence of numbers {rn}n≥1 in (0, 1) satisfying

lim
n→∞

nζ(1− rn) > 0, for some ζ < 1,

we have

n
1
kE
£
(a− Vj:n)I{Vj:n>G−1(rn)}

¤ −→ C(G, k)
Γ
¡
j + 1

k

¢
Γ(j)

.

Proof. Using the transformation G−1(·), we see that

(a− Vj:n)I{Vj:n>G−1(rn)}
d
=
¡
G−1(1)−G−1(Uj:n)I{Uj:n>rn}

¢
,

which converts the problem to one in order statistics from U(0, 1). Now due to the fact

that ¯̄̄
n
1
kE
£
G−1(1)−G−1(Uj:n)

¤− n
1
kE
£
(G−1(1)−G−1(Uj:n))I{Uj:n>rn}

¤¯̄̄
= n

1
kE
£
G−1(Uj:n)I{Uj:n≤rn}

¤
≤ an

1
kP [Uj:n ≤ rn]
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and that

n
1
kP [Uj:n ≤ rn] = n

1
kP [n(1− Uj:n) ≥ n(1− rn))

≤ n
1
kE [(n(1− Uj:n)]

(n(1− rn))β
(Markov’s Inequality, β >

1

k(1− ζ)
)

≤
Ã

n(
1
k
−β(1−ζ))

(nζ(1− rn))β

!
E
h
(n(1− Uj:n))

β
i

−→ 0 (Using Lemma 2)

it suffices to show that

n
1
kE
£
G−1(1)−G−1(Uj:n)

¤ −→ C(G, k)
Γ
¡
j + 1

k

¢
Γ(j)

.

Towards showing the weak convergence of n
1
k (G−1(1)−G−1(Uj:n)) and finding its weak

limit, note that writing

Xn ≡ G−1(1)−G−1(Uj:n)

(1− Uj:n)
1
k

and Yn ≡ (n(1− Uj:n))
1
k .

we have

n
1
k

¡
G−1(1)−G−1(Uj:n)

¢
= Xn · Yn

where by Lemma 1(i), Yn
d−→ Y with Y k d

=Gamma(j, 1) and Xn
P−→ C(G, k). The

latter holds as Uj:n
P−→ 1 and Xn = ψ(Uj:n) where ψ(·), defined by

ψ(x) ≡
Ã

G−1(1)−G−1(x)

(1− x)
1
k

!
,∀x ∈ [0, 1]

is a continuous function with the limit C(G, k) at 1. The limit is derived using the

Young’s form of the Taylor’s theorem and our assumptions on the behavior of G(·) at
a. Hence, using Slutsky’s theorem, we have

n
1
k

¡
G−1(1)−G−1(Uj:n)

¢ d−→ C(G, k) · Y.

Now all that remains is to show the L1 convergence which we prove by showing that

the sequence is bounded in the L2 sense. Now {n 1
k (G−1(1) − G−1(Uj:n))}n≥1 will be
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L2-bounded if so is {Yn}n≥1 as ψ(·) is non-negative and bounded (due to continuity
on a compact interval). But {Yn}n≥1 is L2-bounded by Lemma 2(i). The proof then

becomes complete upon observing that E[Y ] =
Γ(j+ 1

k)
Γ(j)

. ¥

Lemma 5. For any sequence of positive integers {jn}n≥1 satisfying
jn
n
−→ 0 and jn −→∞,

and a sequence of numbers {rn}n≥1 in (0, 1) satisfying

lim
n−→∞

µ
n

jn

¶ζ

(1− rn) > 0, for some ζ < 1,

we have µ
n

jn

¶ 1
k

E
¡
(a− Vjn:n)I{Vjn:n>G−1(rn)}

¢ −→ C(G, k).

Proof. The proof follows along similar lines as Lemma 3 - the changes being using

part of (ii) Lemma 1 and Lemma 2 instead of the part (i) used above and the rate of

convergence now in terms of j−1n n instead of n. ¥

In the following corollaries, instead of the earlier assumptions on the behavior of

G(·) at the upper end of its support, we will assume that it is k-times differentiable in

a right neighborhood of 0 with g(l)(0) = 0 for l = 0, 1, ..., k − 2 and g(k−1)(0) 6= 0. For
such a G(·), define

C∗(G, k) ≡
µ

k!(−1)k−1
g(k−1)(0)

¶ 1
k

.

Corollary 3. For a positive integer j, we have

n
1
kE[Vn+1−j:n] −→ C∗(G, k)

Γ
¡
j + 1

k

¢
Γ (j)

.

Proof. If F (·) is defined by,

F (x) = 1−G(a− x), ∀x ∈ [0, a]
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then

G−1(y) = a− F−1(y) = F−1(1)− F−1(1− y), ∀y ∈ [0, 1],

F satisfies all the conditions of Lemma 4, and C∗(G, k) = C(F, k). Moreover, as

Uj:n
d
= 1− Un+1−j:n, we have

Vn+1−j:n
d
= G−1(Un+1−j:n) = F−1(1)−F−1(1−Un+1−j:n)

d
= F−1(1)−F−1(Uj:n)

d
= a−V ∗

j:n,

where V ∗
j:n is the j-th highest order statistic from a random sample of size n from F (·).

Hence the result follows from Lemma 4. ¥

Corollary 4. For any sequence of positive integers {jn}n≥1 satisfying
jn
n
−→ 0 and jn −→∞,

we have µ
n

n− jn

¶ 1
k

E[V ∗
n−jn:n] −→ C∗(G, k).

Proof. By an argument similar to that of Corollary 3, the result follows from Lemma

5. ¥

Lemma 6. Let G be a distribution function with density g and Vj:n, for a nonnegative

integer j between 0 and n be the j-th highest order statistic from a random sample of

size n from G. Let τ ∈ (0, 1) be such that g(G−1(τ )) > 0. Then the following hold:

(i) For {jn}n≥1 satisfying,
√

n

µ
jn
n
− (1− τ)

¶
−→ c ∈ R,

we have
√

nE[G−1(τ )− Vjn:n] −→
c

g(G−1(τ ))
.

(ii) For {jn}n≥1 satisfying,
√

n

µ
jn
n
− (1− τ)

¶
−→ ±∞ and

jn
n
−→ 1− α,
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we have µ
n

jn − n(1− τ )

¶
E[G−1(τ)− Vjn:n] −→

1

g(G−1(τ))
.

Proof. (i) We start by observing that
√

n(τ − Ujn:n)
d−→ N(c, τ(1− τ)) since

√
n(τ − Ujn:n) =

√
n

µµ
1− jn

n+ 1

¶
− Ujn:n

¶
+
√

n

µ
jn

n + 1
− (1− τ)

¶
,

and

√
n

µµ
1− jn

n+ 1

¶
− Ujn:n

¶
d−→ N(0, τ(1− τ)) and

√
n

µ
jn

n+ 1
− (1− τ)

¶
−→ c,

where the weak convergence of the first term follows from Lemma 1(iii). Now by the

device of transformation, use of Young’s form of the Taylor’s theorem at G−1(τ) and

the above result, similar to the proof of Lemma 4, we have

√
nE[G−1(τ )− Vjn:n]

d−→ N

µ
c

g(G−1(τ))
,

τ(1− τ)

(g(G−1(τ)))2

¶
.

For the convergence of the first moment we observe that sequence {√n(τ − Ujn:n)}n≥1
is L2-bounded, using Minkowski’s inequality we have¯̄̄̄
¯̄
Ã
E

"
n

µµ
1− jn

n

¶
− Ujn:n

¶2#! 1
2

− ¡E £n (τ − Ujn:n)
2¤¢ 12 ¯̄̄̄¯̄ ≤ n

µ
jn
n
− (1− τ)

¶2
−→ c2 <∞

and the sequence
©√

n
¡¡
1− jn

n

¢− Ujn:n

¢ª
n≥1 is L2-bounded by Lemma 2 (iii).

(ii) By arguments similar to the first part above, it can be shown thatµ
n

jn − n(1− τ )

¶
(τ − Ujn:n)

d−→ 1,

and hence µ
n

jn − n(1− τ )

¶
(G−1(τ)− Vjn:n)

d−→ 1

g(G−1(τ))
.

Use of Minkowski’s inequality coupled with an application of Lemma 2(iii) proves, as

above, the convergence of the first moment. ¥
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Let F denote a distribution with support as [0, a]2,22 for some positive a and F1

and F2 be its marginals. For {Xi = (X1
i , X

2
i )}1≤j≤n a random sample of size n from

F , we define Wj:2n be the j-th highest value among the 2n values {Xk
i }1≤i≤n,k=1,2, for

j = 1, 2, ..., 2n. The following two lemmas and a corollary study the asymptotics of

Wjn:2n under different assumptions on the behavior of {jn}n≥1.
As the sequence Wjn:2n is invariant with respect to permutations of the coordinates

of Xi, we could equivalently work with {Yi = (Y 1
i , Y 2

i ) = (X
η1i
i , X

η2i
i )}i≥1 is an i.i.d.

sequence of random uniform permutations of (1, 2). Note that Yi is symmetric in its

coordinates, i.e., the joint distribution function is permutation invariant, which in par-

ticular implies that the marginals are identically equal to G = 1
2
F1+

1
2
F2. By g we shall

denote the first derivative of G.

Let σ2τ , for τ ∈ (0, 1), denote the variance of 1
2
I{Y 1

i >G−1(τ)} +
1
2
I{Y 2

i >G−1(τ)}. It can

be shown that

σ2τ = τ (1− τ )− 1
2
E[I{Y 1

i ≤G−1(τ)≤Y 2
j }],

which reduces to 1
2
τ(1− τ) in the case of independent coordinates.

We will also find use for the order statistics from a random sample of each of

the coordinates - hence we denote by W 1
jn:n and W 2

jn:n the j-th highest 1-st and 2-

nd coordinate of {Yi}1≤i≤n, respectively. Note that W 1
jn:n and W 2

jn:n are identically

distributed though not necessarily independent.

Lemma 7. Let τ ∈ (0, 1) be such that g(G−1(τ)) > 0. Then the following hold:

(i) For {jn}n≥1 satisfying,
√

n

µ
jn
n
− (1− τ)

¶
−→ c ∈ R,

we have
√

nE[G−1(τ)−W2jn:2n) −→
c

g(G−1(τ))
.

22In our case, we will be using support S. The results are presented in this case to recognize their
usefulness beyond our auction framework.
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(ii) For {jn}n≥1 satisfying,
√

n

µ
jn
n
− (1− τ )

¶
−→ ±∞ and

jn
n
−→ 1− τ ,

we have µ
n

jn − n(1− τ)

¶
E[G−1(τ )−W2jn:2n) −→

1

g(G−1(τ ))
.

Proof. (i) First, we show that

√
n(G−1(τ )−W2jn:2n)

d−→ N

Ã
c

g(G−1(τ))
,

·
στ

g(G−1(τ))

¸2!
.

Towards this end we employ another standard device of expressing the event

{√n(G−1(τ)−W2jn:2n) ≤ x}

by ½
1

n

nP
i=1

1

2

2P
k=1

h
I{Y k

i ≥G−1(τ)− x√
n
}
i
≥ jn

n

¾
and working with the latter event to establish the desired weak convergence. Rewriting

the latter as

1

2
√

n

nP
i=1

2P
k=1

h
I{Y k

i ≥G−1(τ)} − (1− τ)
i

| {z }
d−→N(0,σ2α)

+
1

2
√

n

nP
i=1

2P
k=1

·
In

Y k
i ∈

h
G−1(τ)− x√

n
,G−1(τ)

´o¸| {z }
P−→xg(G−1(τ))

≥ √
n

µ
jn
n
− (1− τ)

¶
| {z }

−→c

,

where the first weak convergence follows using the central limit theorem on the zero

mean, i.i.d. random variables 1
2

P2
k=1

h
I{Y k

i ≥G−1(τ)} − (1− τ)
i
with variance σ2τ . The

convergence of the second term follows by combining the convergence of its expectation,

given by

G(G−1(τ ))−G

µ
G−1(τ)− x√

n

¶
,
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to xg(G−1(τ )) and that its variance, given by

1

4

·
G
¡
G−1 (τ )

¢
G

µ
G−1 (τ )− x√

n

¶¸·
1−G

¡
G−1 (τ )

¢
+G

µ
G−1 (τ )− x√

n

¶¸
= O

³
n−

1
2

´
.

Having established the required convergences, by Slutsky’s theorem and Pólya’s theorem

the probability of the inequality being satisfied converges to

1− Φ
µ

c− xg(G−1(τ))
στ

¶
= Φ

Ã
x− c

g(G−1(τ))
στ

g(G−1(τ))

!
,

which establishes the asymptotic behavior of W2jn:2n. Now, for the convergence of the

first moment observe that¯̄
W2jn:2n −G−1(τ)

¯̄ ≤ max ¡¯̄W 1
jn:n −G−1(τ )

¯̄
,
¯̄
W 2

jn:n −G−1(τ)
¯̄¢

,

which in turn implies that

nE
h¡

W2jn:2n −G−1(τ)
¢2i ≤ 2nE £¡W 1

jn:n −G−1(τ)
¢¤

.

Moreover, since nE
h¡

W 1
jn:n −G−1(τ)

¢2i
is bounded, as was nE

h
(Vjn:n −G−1(τ))2

i
in

Lemma 6, the convergence of the first moment is established.

(ii) By arguments similar to part (ii) of Lemma 6 and part (i) above, the convergence

of the first moment can be established. ¥

In the following we study the behavior ofWjn:2n when
jn
n
−→ 0 which will depend on

the behavior of the previously defined G at the upper end of the support, i.e., at a. We

assume that G(·) is k-times differentiable in a left neighborhood of a with g(l)(a) = 0

for l = 0, 1, ..., k − 2 and g(k−1)(a) 6= 0. We define C(G, k) by,

C(G, k) =

·
(−1)k−1k!
g(k−1)(a)

¸ 1
k

First, we study the case when jn = j, for some positive integer j, for which we will

need, for which we will need, for any x ≥ 0, the asymptotic behavior of

Sn ≡
nP

i=1

2P
m=1

I½
Y m
i ≥a−xn

− 1
k

¾ = 2nP
i=1

Zn
i ,
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where, for convenience, we define the sequence {Zn
i }1≤i≤2n to be

Zn
2(i−1)+m = I½

Y m
i
≥a−xn

− 1
k

¾, i = 1, 2, .., n and m = 1, 2.

Observe that the summands are identically distributed Bernoulli variables with proba-

bility of taking the value 1, say pn, satisfying

npn = n
³
1−G

³
a− xn−

1
k

´´
−→

·
x

C(G, k)

¸k
.

The fact that pn = O(n−1) immediately points in the direction of a Poisson limiting

distribution for Sn; but since the summands are independent, we need some condition

based on a measure of dependence which will make the limiting distribution Poisson,

the same that holds under independence. Note that the dependence in Zi’s is only

between Zn
2i−1 and Zn

2i.

Our choice for the measure of dependence is εn, defined as,

εn = F
³
a− xn−

1
k , a− xn−

1
k

´
−
h
G
³
a− xn−

1
k

´i2
, ∀n ≥ 1.

It is a measure of dependence as it is the deviation of the probability mass function

from that under independence as,

P [Zn
1 = i, Zn

2 − j)] = (pn)
i+j(1− pn)

2−(i+j) + (−1)i+jεn, ∀i, j = 0, 1 and ∀n ≥ 1.

More specifically, the total variation distance between the distribution of (Zn
1 , Z

n
2 ) and

that of two independent Bernoulli variables with parameter pn is equal to 4εn. Also,

note that Cov(Zn
1 , Z

n
2 ) = εn and the correlation coefficient between Zn

1 and Zn
2 , denoted

by ρZn
1 ,Z

n
2
, satisfies

ρZn
1 ,Z

n
2
= ρZn

2i−1,Z
n
2i
=

εn
pn(1− pn)

, ∀n ≥ 1.

Interestingly, even though εn can be negative, we have

0 ≤ lim
n→∞

inf nεn ≤ lim
n→∞

supnεn ≤
·

x

C(G, k)

¸k
.
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The following lemma proves the Poisson convergence under the condition that limn→∞ nεn =

0, which can be seen to be equivalent to both lim
n→∞

supnεn and, more importantly,

limn→∞ ρZn
1 ,Z

n
2
= 0. An interesting sufficient condition is εn ≤ 0, ∀ n ≥ 0, i.e., negative

dependence.

Even though there are a couple of other ways of proving the following Poisson

convergence we choose the Stein-Chen method as it gives a better appreciation of the

condition, limn→∞ nεn = 0.

Lemma 8. If

lim
n→∞

nεn = 0,

then

Sn
d−→ Poisson

Ã
2

·
x

C(G, k)

¸k!
.

Proof. First, using the Stein-Chen method for Poisson approximation, we will show

that

kP [Sn ∈ ·)− Poisson(2npn)k ≤ 4
µ
1 ∧ 1

2npn

¶
npn

µ
pn +

|εn|
pn

¶
.

As
©¡

Zn
2i−1, Z

n
2i

¢ª
i≤n

are i.i.d. random vectors which are symmetric in their coordinates,

it is sufficient to show that we can achieve a coupling of R1 and T1 of Lemma 3 in our

case such that

E [|R1 − T1|] =
µ
pn +

|εn|
pn

¶
.

One such coupling is the following:

R1 ≡
2nP
i=1

Zn
i and T1 ≡ Z∗

2 +
2nP
i=3

Zn
i where Z∗

2
d
= P [Zn

2 ∈ ·|Zn
1 = 1]

where the coupling of (Zn
1 , Z

n
2 , Z

∗
2) is defined by the joint distribution of (Z1, Z2) and

P [Zn
1 = 1;Z

n
2 = 0;Z

∗
2 = 0] = pn(1− pn)− εn and P [Zn

1 = 1;Z
n
2 = 1;Z

∗
2 = 1] = p2n+ εn

P [Zn
1 = 0;Z

n
2 = 0;Z

∗
2 = 1] =

εn
pn
∨ 0 and P [Zn

1 = 0;Z
n
2 = 1;Z

∗
2 = 0] =

µ
− εn

pn

¶
∨ 0
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Now, since for discrete distributions we have equivalence of weak convergence and con-

vergence in total variation, we have°°°°°Poisson(2npn)− Poisson
Ã
2

·
x

C(G, k)

¸k!°°°°° −→ 0, as npn−→

·
x

C(G, k)

¸k
.

Combining the above, we have the convergence to Poisson of Sn. ¥

Lemma 9.

n
1
kE (a−Wj:2n) −→ 2−

1
kC(G, k)

Γ
¡
j + 1

k

¢
Γ (j)

.

Proof. First, we show that

n
1
k (a−Wj:2n)

d−→
·
Gamma

µ
j,
1

2
C(G, k)k

¶¸ 1
k

.

Using the equivalence, n
n
1
k (a−Wj:2n) ≤ x

o
=

½
2nP
i=1

Zn
i ≥ j

¾
and Lemma 8, we have

P
h
n
1
k (a−Wj:2n) ≤ x

i
= P

·
2nP
i=1

Zn
i ≥ j

¸
−→ 1− exp

(
−2
·

x

C(G, k)

¸k) j−1P
i=0

1

i!

Ã
2

·
x

C(G, k)

¸k!i

,

which is a restatement of the weak convergence above. The proof of the convergence of

the first moment follows along the same lines as in Lemma 7. ¥

Now we deal with the case when, jn
n
−→ 0 and jn −→ ∞. Here we will need, for

any x ≥ 0, the asymptotic behavior of

S∗n ≡
nP

i=1

2P
m=1

I½
Y m
i ≥a−( jnn )

1
k x

¾,
Observe that the summands are identically distributed Bernoulli variables with proba-

bility of taking the value 1, say p∗n, satisfyingµ
n

jn

¶
p∗n =

µ
n

jn

¶Ã
1−G

Ã
a−

µ
jn
n

¶ 1
k

x

!!
−→

·
x

C(G, k)

¸k
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Also, the first two central moments of S∗n are

E[S∗n] = np∗n and V ar(S∗n) = 2n(p
∗
n(1− p∗n) + ε∗n),

where ε∗n is defined as,

ε∗n = F

Ã
a−

µ
jn
n

¶ 1
k

x, a−
µ

jn
n

¶ 1
k

x

!
−
"
G

Ã
a−

µ
jn
n

¶ 1
k

x

!#2
∀n ≥ 1.

Similar to εn, ε∗n satisfies

0 ≤ lim
n→∞

inf

µ
n

jn

¶
ε∗n ≤

·
x

C(G, k)

¸k
.

The above, in particular imply that

E

·
S∗n
jn

¸
=

µ
2n

jn

¶
p∗n −→ 2

·
x

C(G, k)

¸k
and

lim
n→∞

supV ar

µ
S∗n
jn

¶
= lim

n→∞
sup

2

jn

·µ
n

jn

¶
p∗n(1− p∗n) +

µ
n

jn

¶
ε∗n

¸
= 0,

which together with Tchebycheff’s inequality imply

S∗n
jn

P−→ 2

·
x

C(G, k)

¸k
.

The above lead to the following lemma.

Lemma 10. For any sequence of positive integers {jn}n≥1 satisfying
jn
n
−→ 0 and jn −→∞,

we have µ
n

jn

¶ 1
k

E [a−Wjn:2n] −→ 2−
1
kC(G, k).

Proof. First, we show thatµ
n

jn

¶ 1
k

(a−Wjn:2n)
P−→ 2−

1
kC(G, k).
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Using the equivalence,(µ
n

jn

¶ 1
k

(a−Wjn:2n) ≤ x

)
= {S∗n ≥ jn} ,

and the discussion above, we have

lim
n→∞

P
h
n
1
k (a−Wjn:2n) ≤ x

i
= 0 if x < 2−

1
kC(G, k)

= 1 if x > 2−
1
kC(G, k)

which is a restatement of the convergence in probability above. The proof of the con-

vergence of the first moment follows along the same lines as in Lemma 7. ¥

In the following corollaries, instead of the earlier assumptions on the behavior of

G(·) at the upper end of its support, we will assume that it is k-times continuously

differentiable in a right neighborhood of 0 with g(l)(0) = 0 for l = 0, 1, ..., k − 2 and
g(k−1)(0) 6= 0. For such a G(·), Let us define

C∗(G, k) ≡
µ

k!(−1)k−1
g(k−1)(0)

¶
.

Corollary 5. For a positive integer j, we have

n
1
kE [W2n+1−jn:2n] −→ 2−

1
kC∗(G, k)

Γ
¡
j + 1

k

¢
Γ (j)

.

Proof. The proof is similar to Corollary 3, using Lemma 9 instead of Lemma 4. ¥

Corollary 6. For any sequence of positive integers {jn}n≥1 satisfying
jn
n
−→ 0 and jn −→∞,

we have µ
n

2n− jn

¶ 1
k

E [V2n+1−jn:n] −→ 2−
1
kC∗(G, k).

Proof. By an argument similar to that of Corollary 3, using Lemma 10 instead of

Lemma 9. ¥
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Proof of Proposition 1. In this case, the maximum social surplus23 can be no larger

than 2(V1)1:n whereas the realized social surplus in a multi-unit auction can be no less

than (V1)1:nI{(V1)1:n≥RM
n }+(V1)2:nI{(V1)2:n≥RM

n }. Therefore, upon taking a transformation

and adding terms that cancel out, the maximum expected loss in social surplus is no

less than

E[2(V1)1:n]− E[(V1)1:nI{(V1)1:n≥RM
n } + (V1)2:nI{(V1)2:n≥RM

n }]

= E[1− (V1)1:nI{(V1)1:n≥RM
n }] +E[1− (V1)2:nI{(V1)2:n≥RM

n }]− 2E[1− (V1)1:n]
= E[F−1

1 (1)− F−1
1 (U1:n)I{U1:n≥F1(RM

n )}] + E[F−1
1 (1)− F−1

1 (U2:n)I{U2:n≥F1(RM
n )}]

− 2E[F−1
1 (1)− F−1

1 (U1:n)]

Since RM
n satisfies (A2), therefore, F1(RM

n ) ≤ 1− 1
nα for some α < 1. By Lemma 4 we

have that each of the expectations in the last expression is O(n−
1
k ) so that the expected

loss in social surplus vanishes at least at the rate of O(n−
1
k ), as well, by Slutsky’s

Theorem.

Similarly, the maximum possible expected loss in social surplus in a bundle auction

can be no more than

E[2(V1)1:n]− E[(V1 + V2)1:nI{(V1+V2)1:n≥RB
n }]

= E[F−1
V1+V2

(2)− F−1
V1+V2

(U1:n)I{U1:n≥FV1+V2
(RB

n )}]− 2E[F−1
1 (1)− F−1

1 (U1:n)].

RB
n satisfies (A2) implies that FV1+V2(R

B
n ) ≤ 1 − 1

nα for some α < 1. Again, using

Lemma 4 we have that E[F−1
1 (1) − F−1

1 (U1:n)] is O(n−
1
k ). Also, using the regularity

condition and Lemma 3 we have that E[F−1
V1+V2

(2) − F−1
V1+V2

(U1:n)I{U1:n≥FV1+V2
(RB

n ))}] is

O(n−
1
m ) where m = min{l : f (l)X+Y (1) 6= 0}. Assumption (A2) implies that m ≥ k + 1.

Therefore, the expected loss in social efficiency is at most O(n−
1
m ) for some m ≥ k+1.

The expected revenue from the multi-unit auction is no less than 2E[(V1)3:nI{(V1)3:n≥RM
n }]

whereas that from the bundle auction is is no less than E[(V1 + V2)2:nI{(V1+V2)2:n≥RB
n }].

23This is exactly the case when the support of the value distribution is given by {(v, v) : v ∈ [0, 1]}.
In that case, whenever the distribution of the first value F1(·), which in this case is also the distribution
for the second value, satisfies the hazard condition (1) this efficiency-wise worst case scenario happens.
If, however, one must stick to the support S then this is only a limiting scenario for distributions.
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Applying Lemma 4 it follows that

2− 2E[(V1)3:nI{(V1)3:n≥RM
n }]

= 2(1− E[(V1)3:nI{(V1)3:n≥RM
n }])

is O(n−
1
k ) so that the expected revenue under the multi-unit auction converges to

2 at a rate that is at least as fast as O(n−
1
k ). On the other hand, E[2 − (V1 +

V2)2:nI{(V1+V2)2:n≥Rb}] is O(n
− 1

m ) which means that the expected revenue from the bundle

auction converges to 2 at a minimum rate of O(n−
1
m ) where m > k. ¥

Proof of Proposition 2. The expected social surplus in the multi-unit auction is

no less than E[(V1)1:nI{(V1)1:n≥RM
n } + (V1)2:nI{(V1)2:n≥RM

n }]. In a bundle auction an upper

bound on the expected social surplus is given by E[(V1 + V2)1:n]. Then the expected

difference in surplus is no less than the difference of these two expressions. Therefore,

E[(V1)1:nI{(V1)1:n≥RM
n } + (V1)2:nI{(V1)2:n≥RM

n }]− E[(V1 + V2)1:n]

= E[2− (V1 + V2)1:n]− E[1− (V1)1:nI{(V1)1:n≥RM
n }] +E[1− (V1)2:nI{(V1)2:n≥RM

n }]

Since RM
n satisfies (A2), F1(R

M
n ) ≤ 1 − 1

nα for some α < 1. By (a1) and Lemma 4

the second and the third expectation terms are O
³
n−

1
k

´
whereas the first expectation

term is no faster than O
³
n−

1
k+1

´
. Hence, the expression n

1
k (E[(V1)1:n1:nI{(V1)1:n≥RM

n } +

(V1)2:nI{(V1)2:n≥RM
n }]− E[(V1 + V2)1:n]) −→∞ by Slutsky’s Theorem.

The expected revenue from the multi-unit auction minus the expected revenue from

the bundle auction is larger than

2E[(V1)3:nI{(V1)3:n≥RM
n }]−E[(V1 + V2)1:n]

= E[2− (V1 + V2)1:n]− 2E[1− (V1)3:nI{(V1)3:n≥RM
n }]

Using similar steps as above we have that

n
1
k

¡
2E[(V1)3:nI{(V1)3:n≥RM

n }]−E[(V1 + V2)1:n]
¢

goes to ∞ as n −→∞. The result then follows. ¥
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Proof of Proposition 3. The proof runs exactly along the lines of Proposition 1 and

Proposition 2, except that Lemma 5 is applied instead of Lemma 4. ¥

The following lemma demonstrates that the average of the marginal distributions of

two random variables is greater in the sense of Lorenz ordering (denoted ≥Lorenz) than
the distribution of their average.

Lemma 11. Let (X, Y ) ∼ F , where F (·, ·) is a distribution function on S ⊆ R2. Let

FX+Y
2
be the distribution function of the average of X and Y , FX the marginal distri-

bution of X, and FY the marginal distribution of Y . Defining FM as the distribution

function of the symmetric mixture of X and Y , i.e.,

FM ≡ FX + FY

2
,

we have
1R
t

F−1
M (u)du ≥

1R
t

F−1
X+Y
2

(u)du, ∀t ∈ [0, 1] (3)

i.e., FM ≥Lorenz FX+Y
2
.

Proof. Let I be a Bernoulli variable with mean of 1
2
and independent of (X, Y ). Then

Z ≡ IX + (1− I)Y
d
=

FX + FY

2
and E[Z|X + Y ] =

X + Y

2
.

Hence by Theorem 3.4 of Arnold (1987) we have Z ≥Lorenz X+Y
2
, which, in particular,

implies
tR
0

F−1
M (u)du ≤

tR
0

F−1
X+Y
2

(u)du, ∀t ∈ [0, 1]. (4)

Combining the above with

1R
0

F−1
M (u)du = E [Z] = E

·
X + Y

2

¸
=

1R
0

F−1
X+Y
2

(u)du

completes the proof. ¥

Proof of Proposition 5. (i) Observe that in the limit bidders bid truthfully whenever

the marginal value for a unit is larger than the price. Hence in the limit the social
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surplus generated per bidder is given byZ 1

( 1
2
FV1

+ 1
2
FV2

)−1(1−α)

x(f1(x) + f2(x))dx = 2

Z 1

1−α

(
1

2
FV1 +

1

2
FV2)

−1(t)dt

in the multi-unit auction, and by

2R
F−1
V1+V2

(1−α)

xfV1+V2(x)dx =
1R
1−α

F−1
V1+V2

2

(t)dt

in the bundle auction. Upon applying Lemma 11 and the fact thatE is finite (countable)

we have
1R

1−α

Ã
2

µ
1

2
FV1 +

1

2
FV2

¶−1
(t)− F−1

V1+V2
(t)

!
dt > 0

for all but finitely (countably) many α ∈ (0, 1). This proves that in the limit the per
bidder surplus generated by the multi-unit auction is strictly larger than that from the

bundle auction for all but finitely (countably) many α ∈ (0, 1). Hence the same holds
for all sufficiently large (but finite) number of bidders.

(ii) Combining (A2) with (3), and (A3) with (4) (so that 1
2
FV1 +

1
2
FV2 6= F V1+V2

2
in

some right neighborhood of 0 and in some left neighborhood of 1) we have that there

exist x∗ and x∗ (x∗ ≤ x∗) such that

1

2
FV1(x) +

1

2
FV2(x) > FV1+V2

2
(x) ∀x ∈ (0, x∗)

1

2
FV1(x) +

1

2
FV2(x) < FV1+V2

2
(x) for all x ∈ (x∗, 1).

These conditions along with the continuity and monotonicity of the distribution func-

tions guarantee the existence of t∗ and t∗ such thatµ
1

2
FV1 +

1

2
FV2

¶−1
(t) < F−1

V1+V2
2

(t), ∀t ∈ (0, t∗)µ
1

2
FV1 +

1

2
FV2

¶−1
(t) > F−1

V1+V2
2

(t), ∀t ∈ (t∗, 1)

and the result follows. ¥

45



9. References
Arnold, B.C., 1987, “Majorization and the Lorenz Order,” in Lecture Notes in Statistics,

vol. 43, Springer-Verlag, New York.

Chakraborty, I., 1999, “Bundling decisions for selling multiple objects,” Economic The-

ory, 13, 723-733.

Chakraborty, I., and R. Engelbrecht-Wiggans, 2004a, “Optimal Reserves in Private

Value Auctions for Multiple Units.”

Chakraborty, I., and R. Engelbrecht-Wiggans, 2004b, “Asymptotic Uniform-Price in

Multi-Unit Uniform-Price Auction,” to appear in Economic Theory.

Engelbrecht-Wiggans, R., and C.M. Kahn, 1998, “Multi-Unit Auctions with Uniform

Prices,” Economic Theory, 12, 227-258.

Gul, F., and A. Postlewaite, 1992, “Asymptotic Efficiency in Large Exchange Economies

With Asymmetric Information,” Econometrica, 60, 1273-1292.

Katzman, B., 1999, “A Two-Stage Sequential Auction with Multi-Unit Demands,”

Journal of Economic Theory, 86, 77-99.

Lindvall, T, 1992, Coupling Method, John Wiley & Sons, Inc., New York.

Palfrey, T., 1983, “Bundling decision by a multiproduct monopolist with incomplete

information,” Econometrica, 51, 463-483.

Reiss, R-D, 1989, Approximate Distributions of Order Statistics, Springer-Verlag, New

York.

Rustichini, A., M.A. Satterthwaite, and S. Williams, 1994, “Convergence to Efficiency

in a Simple Market with Incomplete Information,” Econometrica, 62(5), 1041-1063.

Swinkels, J., 2001, “Efficiency of Large Private Value Auctions,” Econometrica, 69(1),

37-68.

46



Van Zwet, W.R., (1964), “Convex Transformations of Random Variables,” Mathematics

Centre Tract 7, Mathematisch Centrum, Amsterdam.

Vickrey, W., 1961, “Counterspeculation, Auctions, and Competitive Sealed Tenders,”

Journal of Finance, Vol. 16, 8-37.

Wilson, R., 1979, “Auctions of Shares,” Quarterly Journal of Economics, 94, 675-689.

47


