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Abstract

Markov chain Monte Carlo (MCMC) algorithms have greatly facilitated the popularity of Bayesian variable

selection and model averaging in problems with high-dimensional covariates where enumeration of the

model space is infeasible. A variety of such algorithms have been proposed in the literature for sampling

models from the posterior distribution in Bayesian variable selection. Ghosh and Clyde proposed a method

to exploit the properties of orthogonal design matrices. Their data augmentation algorithm scales up the

computation tremendously compared to traditional Gibbs samplers, and leads to the availability of Rao–

Blackwellized estimates of quantities of interest for the original non-orthogonal problem. The algorithm

has excellent performance when the correlations among the columns of the design matrix are small, but

empirical results suggest that moderate to strong multicollinearity leads to slow mixing. This motivates

the need to develop a class of novel sandwich algorithms for Bayesian variable selection that improves

upon the algorithm of Ghosh and Clyde. It is proved that the Haar algorithm with the largest group that

acts on the space of models is the optimum algorithm, within the parameter expansion data augmentation

(PXDA) class of sandwich algorithms. The result provides theoretical insight but using the largest group is

computationally prohibitive so two new computationally viable sandwich algorithms are developed, which

are inspired by the Haar algorithm, but do not necessarily belong to the class of PXDA algorithms. It is

illustrated via simulation studies and real data analysis that several of the sandwich algorithms can offer

substantial gains in the presence of multicollinearity.
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1. Introduction

Linear regression remains one of the most popular methods for modeling the relationship between a

Gaussian response variable and a set of covariates. In recent years this model has received renewed inter-

est for high-dimensional applications where variable selection is commonly employed to identify important

covariates. The implementation of Bayesian variable selection in linear regression for general design matri-

ces may prove to be challenging, but the posterior computation can be scaled up tremendously with design

matrices having orthogonal columns and certain prior structures. Clyde et al. [2] orthogonalized the design

matrix in linear regression and developed algorithms that led to better predictive performance, but these can-

not be used for variable selection for the original covariates. Ghosh and Clyde [10] proposed a framework

that utilized the computational advantages of orthogonal designs but also allowed both model averaging and

model selection in terms of the original non-orthogonal covariates. We begin with a brief description of their

algorithm and then propose new methods based on sandwich algorithms that use Markov chains with faster

convergence rates.

Let Wo = [w0, . . . , wp] denote the no × (p + 1) observed design matrix where w0 is a column of ones

corresponding to the intercept, and let Zo = (Z1, . . . , Zno)
T be the vector of observed response variables.

Except for the first column corresponding to the intercept, all other columns of Wo are standardized to

have mean zero and norm no
1/2. Under the variable selection framework, models can be denoted by γ =

(γ1, . . . , γp)
T , where γj is binary with γj = 1 when the covariate wj is included in the model and γj = 0

when wj is absent from the model. It is assumed that βj = 0 when γj = 0, where βj is the jth regression

coefficient and let pγ =
∑p

j=1 γj . Then the linear model for the observed data under model γ is given by

Zo | βγ , φ, γ ∼ N(Woγβγ , Ino/φ), (1)

where Woγ is the no × (pγ + 1) design matrix, βγ is the (pγ + 1) dimensional vector of non-zero model

specific regression coefficients, and φ is the reciprocal of the error variance. The intercept is included in all
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models and independent prior distributions are assigned as follows:

p(β0) ∝ 1,

p(φ) ∝ 1/φ,

βj | φ, γj ∼ N(0, (φλj)
−1γj) for j = 1, . . . , p , and

p(γ) =

p∏

j=1

π
γj
j (1− πj)

1−γj , (2)

where λj and πj are fixed hyperparameters.

For a small number of covariates, p ≤ 25, the posterior probability of any model p(γ | Zo) is available

in closed form (see Ghosh and Clyde [10] equations (16) and (17) for the exact form). When p is greater

than 25, p(γ | Zo) is still available up to a normalizing constant, so a standard Gibbs sampler may be

constructed that converges to the posterior distribution p(γ | Zo). This Gibbs sampler cycles through the p

full conditional distributions p(γj | γ(j), Zo), where γ(j) is γ with the jth component removed [9]. For a

comprehensive review of Bayesian variable selection see Dellaportas et al. [5], Clyde and George [3] and

the references therein.

In the data augmentation approach Wo is augmented by a design matrix Wa of dimension na × (p+1),

to make the complete design matrix Wc orthogonal. Next Zo is augmented with a vector of na missing

response variables, Za, and the vector of nc = no + na response variables is Zc = (Zo
T , Za

T )
T

. The

complete data model is given as

Zc | βγ , φ, γ,∼ N(Wcγβγ , Inc/φ). (3)

Ghosh and Clyde [10] used a two block Gibbs sampler with invariant distribution p(φ,Za, γ | Zo). They

sample (φ,Za) ∼ p(φ,Za | γ, Zo) in one block and γ ∼ p(γ | φ,Za, Zo) in the other block. The first block

involves draws from gamma and multivariate normal distributions and the second block involves draws from

p independent Bernoulli distributions, all of which are straightforward to sample from. We shall refer to this

as the orthogonal data augmentation (ODA) algorithm. More details on the implementation of the ODA

algorithm are given in the online supplement for this paper.
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Quantities of interest under the original posterior distribution with the non-orthogonal design matrix may

be obtained by integrating out the missing data. In practice, this is achieved by averaging over the MCMC

iterations. The form of the algorithm naturally leads to the development of Rao–Blackwellized estimates.

For example, the estimates of inclusion probabilities are obtained as:

p̂(γj = 1 | Zo) = K−1
K∑

k=1

ρj(Zc
(k), φ(k), λj , πj), (4)

where K is the number of iterations after an initial burn-in, and ρj(Zc, φ, λj , πj) is the marginal posterior

inclusion probability given the missing data, which is available in closed form because of posterior indepen-

dence. Ghosh and Clyde [10] demonstrated a tremendous computational advantage of their algorithm over

the traditional Gibbs sampler.

The ODA algorithm is indeed a data augmentation (DA) algorithm [26], for which we provide a general

definition in Section 2.2. It is well-known that DA algorithms can suffer from slow convergence. In the

context of linear regression, such a situation may arise when the design matrix exhibits multicollinearity.

This may hamper the computational advantage of the ODA algorithm. There is an extensive literature on

using the sandwich method [19, 20, 14] to improve the convergence rate of DA algorithms. However,

such methods have not been successfully utilized for Bayesian variable selection. This paper introduces

novel sandwich algorithms for Bayesian variable selection that employ sandwich moves on the γ space.

In Section 2 we review the theory for general sandwich algorithms and show that they dominate the DA

algorithm according to two different criteria – the operator norm and the efficiency ordering. In Section 3

we propose a variety of practical sandwich algorithms that improve upon the ODA algorithm. In Sections 4,

5, and 6, we use simulation studies and genuine data analyses to illustrate via empirical studies that sandwich

moves can produce substantial gains in the presence of moderate to high multicollinearity. We conclude with

some general recommendations in Section 7.
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2. Improving DA algorithms

2.1. Ordering reversible Markov chains

In this paper, we restrict our discussion to Markov chains that are reversible. We first introduce the

notation. Suppose an MCMC algorithm updates Xn to Xn+1 using a Markov transition kernel (Mtk) P on

the state space X with invariant distribution πX . Let L2(πX) := {f : X → R s.t.
∫

X
f2(x)πX(dx) < ∞}.

Consider the Hilbert space L2
0(πX) := {f ∈ L2(πX) s.t.

∫
X
f(x)πX(dx) = 0}, equipped with inner

product (f, g) :=
∫

X
f(x)g(x)πX(dx), and hence norm ‖f‖ = (

∫
X
f2(x)πX(dx))

1

2 . Then P defines an

operator on L2
0(πX) such that Pf(x) =

∫
X
f(x′)P (x, dx′) for any f ∈ L2

0(πX). This induces the norm

of P by ‖P‖ := sup‖f‖=1 ‖Pf‖. Note that P is defined to be an operator on L2
0(πX), not on L2(πX),

because in the latter case the norm of any Mtk P is 1, hence such an operator norm would not be useful for

characterizing the convergence rate of a Markov chain.

In practice, we desire Markov chains with good “mixing” properties. There are two different senses of

mixing. On one hand, we prefer Markov chains such that the distribution of Xn approaches the target πX

quickly as n increases. Specifically, a Markov chain is said to be geometrically ergodic, if there exists ρ < 1

such that, for any probability measure ν such that
∫ (

dν
dπX

)2
dπX < ∞ from which the initial state of the

Markov chain is drawn, there exists some Cν < ∞ that

‖νPn(·)− πX(·)‖TV ≤ Cνρ
n for all n ∈ N . (5)

Here, for a signed measure µ, ‖µ(·)‖TV := supA⊂X |µ(A)| stands for its total variation norm, and Pn is the

n-step transition kernel. For a reversible Mtk P , Roberts and Rosenthal [24] showed that the corresponding

Markov chain is geometrically ergodic if and only if its operator norm ‖P‖ is strictly less than 1, and ‖P‖

serves as the smallest possible ρ that satisfies (5) [25, Prop.2]. On the other hand, we would like Monte

Carlo estimators of the form fn = 1
n

∑n
i=1 f(Xi) to have small, finite asymptotic variance, denoted by

Var(P, f).

The aforementioned mixing properties imply two different ways to order a pair of Mtks, P and Q, that

are both reversible with respect to πX . For an overview, see, for e.g., Mira [21]. First, provided that P is

converging with rate ‖P‖ < 1, we say that P is better than Q in the operator norm ordering if ‖P‖ ≤ ‖Q‖.
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Further, if ‖P‖ < 1, then Var(P, f) < ∞ is guaranteed for any f ∈ L2(πX). We say that P is better than

Q in the efficiency ordering if Var(P, f) < ∞ and Var(P, f) ≤ Var(Q, f) for all f ∈ L2(πX). This is

denoted by P ≥E Q. In the following subsection, we focus on Markov chains that correspond to a popular

MCMC method called the DA algorithm, and describe ways to improve upon it subject to the operator norm

ordering and the efficiency ordering.

2.2. DA algorithms and a general way to improve them

To study an intractable distribution πX(x) on X, it is sometimes natural from the context of the problem

to consider a probability distribution in an augmented space X × Y, denoted by πX,Y (x, y). Then a DA

algorithm consists of the following two steps in each iteration:

1. given x, draw y ∼ πY |X(y|x);

2. given y, draw x′ ∼ πX|Y (x
′|y).

Note that the Markov chain {(Xi, Yi); i = 1, 2, . . .} generated by a DA algorithm is not reversible, but the

X-chain {Xi; i = 1, 2, . . .} and the Y -chain {Yi; i = 1, 2, . . .} are reversible Markov chains with respect

to πX and πY respectively. In the context of the ODA algorithm we shall assign X = (φ,Za), Y = γ,

and the exact form of πX|Y (x|y) and πY |X(y|x) that are needed for sampling are provided in the online

supplement. The Rao–Blackwellized estimators of the form (4) depend on the X-chain only, so it is of

practical significance to develop theoretical results for this chain, the Mtk of which is

P (x, x′) =

∫

Y

πY |X(y|x)πX|Y (x
′|y)µ(dy) . (6)

Here, µ denotes the base measure on Y, such as the counting measure when Y is discrete. The DA algorithm

is easy to run when πX|Y and πY |X are standard distributions, but like its relative, the EM algorithm, it

sometimes suffers from slow convergence.

Below is a general way to improve DA algorithms. For any transition S(y, y′) on Y that is reversible

with respect to πY , do the following in each iteration:

1. given x, draw y ∼ πY |X(y|x);

2. given y, draw y′ ∼ S(y, y′);
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3. given y′, draw x′ ∼ πX|Y (x
′|y′).

The Mtk that corresponds to the above transition from x to x′is given by

PS(x, x
′) =

∫

Y

∫

Y

πY |X(y|x)S(y, y′)πX|Y (x
′|y′)µ(dy)µ(dy′) . (7)

Using the terminology in Yu and Meng [27] and Khare and Hobert [16], we call the corresponding algorithm

the sandwich algorithm with sandwich move S. It was shown in Hobert and Marchev [14] that any sandwich

algorithm is valid in the sense that the reversibility of S with respect to πY implies the reversibility of PS

with respect to πX .

What are some guidelines to find good sandwich algorithms? In order to compare different sandwich

algorithms, and to understand their relationship to the original DA algorithm, we first summarize results

from Proposition 9 and Theorem 10 of Hobert and Rosenthal [13], and equation 8 of Hobert and Román

[15] as the following.

Proposition 1. Suppose S and S′ are two Mtks that are reversible with respect to πY . If S ≥E S′, then

PS ≥E PS′ ≥E P and ‖PS‖ ≤ ‖P‖ and ‖PS′‖ ≤ ‖P‖. Further, if PS is itself a DA algorithm, then

‖PS‖ ≤ ‖PS′‖.

The great advantage of the sandwich idea is that, a reducible Mtk S is not useful by itself to investigate

πY (·), but it can boost the performance of the DA algorithm when these two are combined as in (7) to study

πX(·). Further, among those sandwich algorithms with similar computing cost, Proposition 1 allows us to

see which ones are more efficient through an easy-to-do comparison of the sandwich moves themselves.

We will investigate concrete examples of sandwich algorithms in the Bayesian variable selection context in

section 3.

2.3. Improving DA algorithms using Haar algorithms

Perhaps the most well-known subclass of sandwich algorithms in the existing literature is the class of

parameter-expansion data augmentation (PXDA) algorithms introduced by Liu and Wu [19]. If there exists

a group structure G that acts on Y, then any probability distribution r supported on G would correspond to

a PXDA algorithm, and we denote its X-chain operator by P r
G. It turns out that, with a fixed group G, the
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entire class of PXDA algorithm {P r
G}r is dominated by an algorithm called the Haar PXDA, or simply the

Haar algorithm, on G. Specifically, let PG denote the operator of the X-chain of the Haar algorithm, then

Hobert and Marchev [14] has shown that ‖P‖ ≥ ‖P r
G‖ ≥ ‖PG‖ and P ≤E P r

G ≤E PG for any r supported

on G. Further, the Haar costs no more than the PXDA per iteration, so we will restrict our attention to Haar

algorithms only. A description of PXDA and its relationship to the Haar algorithm can be found in Section 3

of the online supplement.

For reasons given in the beginning of Section 3, we are interested in the case where Y and G are discrete.

Let νG denote the left Haar measure on G. Then the Haar algorithm can be written as a special sandwich

algorithm where the middle step transition S(y, y′) in (7) is given by HG(y, y
′) =

∑
{g:g·y=y′} πY (g ·

y)νG(g), where · denotes the group action of G on Y . In other words, the step consists of drawing g ∼

f(g) ∝ πY (g · y)νG(g), and setting y′ = g · y. We call the transition from y to y′ according to HG a Haar

move.

There are potentially many different choices of G that act on the state space Y. How do the corresponding

Haar algorithms compare with each other? The following proposition states that “larger” Gs yield Markov

chains with better mixing properties. This new result provides some guidance about the maximum amount

of improvement possible with Haar algorithms, based on which we can search for alternative sandwich

algorithms that are more cost efficient. The proof of the proposition is in the Appendix.

Proposition 2. Suppose G and G′ are two groups that act on Y. If G′ is a subgroup of G, then the Haar

algorithm associated with G is better than that with G′, and both are better than the original DA algorithm,

in the operator norm ordering and the efficiency ordering. In other words, ‖PG‖ ≤ ‖PG′‖ ≤ ‖P‖ and

PG ≥E PG′ ≥E P .

2.4. Sandwich improvements to the DA algorithm that are inspired by the Haar algorithm

Proposition 2 shows that the Haar algorithm with the largest group G that acts on Y, is optimum within

the class of PXDA algorithms. However, in practice Haar algorithms that correspond to very large Gs are

expensive to run. One practical solution is to resort to smaller groups, which we will discuss in detail in

Section 3. Another possibility is to design sandwich algorithms, with moves that approximate the Haar

move but are not as costly. Here, we introduce two new kinds of algorithms inspired by the Haar algorithm:

the random Haar algorithm and the Metropolis–Hastings (MH) approximation to the Haar algorithm.
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First, we propose a random Haar algorithm that combines k groups, G1, · · · , Gk, that are subgroups of

a mother group G. That is, Gi ⊆ G for all i, and each acts on Y and corresponds to a Haar move HGi
on

Y. Then for any vector of non-negative weights (p1, · · · , pk) such that
∑

i pi = 1, consider the mixing Mtk

H∗ =
∑

i piHGi
. This results in the following reversible Markov chain on X with Mtk P ∗ =

∑
i piPGi

.

That is, we randomly pick one of the k candidate groups per their importance to act on Y. As part 1 of the

following proposition suggests, in terms of performance per iteration, the random Haar algorithm is better

than the original DA algorithm, but is inferior to the Haar algorithm based on the mother group G. Part 2

of the proposition compares the convergence rate of P ∗ and that of the individual PGi
’s. It turns out that no

clear-cut comparisons like those in part 1 are available, which is understandable because P ∗ is in some sense

a weighted average of the PGi
’s. Nevertheless, we show that, in terms of operator norm, P ∗ is guaranteed a

convergence rate no worse than that of the least favorable PGi
. Proof of the proposition is in the Appendix.

Proposition 3. Suppose Gi ⊆ G for all i, and let G0 = ∩k
i=1Gi. Then

1. ‖PG‖ ≤ ‖P ∗‖ ≤ ‖PG0
‖ ≤ ‖P‖, and PG ≥E PG0

≥E P ∗ ≥E P , and

2. ‖P ∗‖ ≤ supi ‖PGi
‖ .

In practice, the random Haar algorithm is potentially useful after taking computing cost into account.

The main reason is that it allows the possibility of different groups to act upon Y in different iterations, while

keeping the cost per iteration restricted to that of one group.

The second method that we propose is an MH approximation to the Haar move based on a group G.

Specifically, suppose the current value is y, then instead of sampling y′ from HG(y, ·) directly, we use a

uniform proposal on its support O(y) = {g · y : g ∈ G}, and accept the proposal with an appropriate MH

acceptance probability. We call this a group MH sandwich algorithm based on G. The closer the target

marginal distribution of Y is to being uniform over the support, O(y), the better the MH approximation is

to the ideal Haar move.

3. Improving the ODA algorithm for Bayesian variable selection

3.1. Applicability of sandwich improvements to the ODA algorithm

The Bayesian variable selection model from Section 1 yields the posterior distribution p(φ,Za, γ | Zo).

The ODA algorithm is a DA algorithm that updates two blocks of variables, (φ,Za) and γ in each iteration.
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Note that all inference of interest can be derived from the posterior of γ, hence a direct application of the

sandwich technique would require an extra move on the augmented component (φ,Za). But this method

requires knowledge of the marginal posterior distribution of (φ,Za) except for a normalizing constant,

which involves a summation over 2p terms and is thus feasible for very small p only. Such a method was

implemented by Ghosh and Clyde [10] but it did not lead to improvement in mixing. To overcome this

problem, we propose making sandwich moves on γ instead of (φ,Za). This strategy is feasible for large p

because of the following reasons. First, it is possible to design a reversible sandwich move on γ with respect

to its marginal posterior distribution. In particular, the sandwich move itself is allowed to be generated from

a reducible Markov chain if we desire to focus the computing effort on the most highly correlated covariates.

Secondly, samples from (φ,Za) allow us to obtain Rao–Blackwellized estimators for posterior quantities of

the form E(h(γ) | Zo) due to the simple form of p(γ | φ,Za, Zo).

Using the same notation as in Section 2, let X = (φ,Za), Y = γ, and πX,Y (x, y) = p(φ,Za, γ | Zo).

Also, let P denote the Mtk (of the X-chain) of the ODA algorithm as in (6), and let PS denote the Mtk of the

sandwich algorithm that employs an extra sandwich move S upon the ODA algorithm as in (7). Here S could

correspond to the Haar, random Haar, or any other reversible Mtk for πY , which will be further discussed

in the following subsections. Since we need reliable estimates based on the MCMC samples, we first make

sure that central limit theorems hold for the estimators. Note that the Y -chain of the ODA algorithm lives on

a finite state space, so it is uniformly ergodic, hence geometrically ergodic. According to Diaconis et al. [6]

and Roberts and Rosenthal [23], for DA algorithms, the X-chain shares the same convergence rate as that

of the Y -chain. Therefore ‖P‖ < 1, and central limit theorems hold for the estimator based on the ODA

algorithm for all functions in L2(πX). Further, by Proposition 1 we know ‖PS‖ ≤ ‖P‖ < 1. Hence central

limit theorems also hold for estimators based on any sandwich algorithm that improve upon the ODA.

3.2. Haar improvement to the ODA algorithm

The state space Y consists of p-dimensional binary vectors. There are at least two natural ways to

move from one binary vector to another using group operations. We first consider a permutation group

based move. In the variable selection context, this type of move is very helpful in that it could change a

large number of the variables selected in a single step, which is otherwise difficult to achieve. For the set

B = {1, · · · , p}, the symmetric group, denoted by SymB , is the set of all p! permutations equipped with
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composition as the group operator. We give a few simple examples to illustrate the symbol usage, and refer

the readers to Dummit and Foote [7] or any other text on abstract algebra for more background knowledge.

Suppose g is a permutation of the set B = {1, · · · , 6} such that g(1) = 3, g(2) = 1, g(3) = 2, g(4) =

5, g(5) = 4 and g(6) = 6. Then we write g = (132)(45). If we have another permutation g′ = (56), then

gg′ = (132)(45)(56) = (132)(456), where permutations are read from right to left under composition. (The

right-to-left rule is conventional, see, for example, Dummit and Foote [7, sec 1.3].) Finally, if y = (011011),

then the group action is given by g · y = (132)(45) · (011011) = (110101). We simply write g · y as gy

from now on.

A second way to alter a binary vector is through flipping the value of a subset of its components.

Let FlipB = {0, 1}p denote the group of p-dimension binary vectors that is equipped with component-

wise modulo 2 addition as the group operator. For any g ∈ FlipB , g acts on y also by component-wise

modulo 2 addition. For example, for p = 6, the action of flipping the value of the first and the third

component of y while leaving all others fixed is g = (101000). Finally, if y = (011011), we have

gy = (101000)(011011) = (110011).

To carry out the Haar algorithm based on any discrete group G, note that the left Haar measure on G is

always given by νG(g) =
1
|G|IG(g), where IG(·) stands for the indicator function on G and |G| denotes the

cardinality of G. Further, let O(y) = {gy : g ∈ G} ⊆ Y denote the orbit of y. We show in Lemma 1 in the

online supplement that, for any y ∈ Y and any y′ ∈ O(y), the number of group elements g ∈ G that map y

to y′ is given by |G|/|O(y)|. Therefore, the middle step of the Haar algorithm in this context is equivalent to

drawing y′ from HG(y, y
′) ∝

∑
{g:gy=y′} πY (gy)IG(g) =

|G|
|O(y)|πY (y

′)IO(y)(y
′) ∝ πY (y

′)IO(y)(y
′). That

is, the sandwich step amounts to sampling from within the orbit of the current state proportional to the true

marginal πY . Altogether, the transition function of the Haar algorithm is provided by PS(x, x
′) in (7), where

πX|Y (x|y) and πX|Y (x|y) were defined in the ODA algorithm, S(y, y′) = HG(y, y
′), and µ is the counting

measure.

From Proposition 2 in Section 2.3, we know that the above Haar algorithms based on G = SymB and

FlipB both have an iteration-wise advantage over the original DA algorithm. Indeed, the extra move in the

Haar algorithm based on FlipB requires the evaluation of πY at all 2p points in Y, and results in a perfect

sampling scheme that is typically prohibitively expensive. The Haar algorithm based on SymB involves an
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extra middle step that requires p!/{|y|!(p − |y|)!} evaluations of πY , where |y| denotes the number of 1’s

in the current state y. The evaluations needed for the sandwich move may be done in parallel to reduce

computing time, provided that the number of simultaneous evaluations and the number of CPU cores are

well coordinated to balance the overhead cost of communication. Alternative to parallel computing, we

propose simple ways to specify groups of smaller sizes based on properties of the design matrix.

From our experiments, dimensions of Y that correspond to the highly correlated columns of the design

matrix are those that exhibit sticky behavior in the evolution of the Markov chain. They are the direct reason

why the DA algorithm has slow mixing rate. Hence, we could expect the biggest gain possible by targeting

our effort to alter these dimensions in a sandwich step. Let A denote the collection of indices of all the

highly correlated covariates. Then, one could run a Haar algorithm based on the group SymA, or that based

on the group FlipA. In case these Haar algorithms still require too many evaluations per move, it is usually

possible to further group indices of highly correlated columns into sets A1, · · · , Ak. (They are often, though

not necessarily disjoint.) Then we can form a group G′ that is generated by the symmetric groups on the

Ais, i.e., G′ =< SymA1
, · · · , SymAk

>, and run the corresponding Haar algorithm. The group G′ is a small

subgroup of SymA, but contains the most important permutations. Suppose the current value is y, and let

yAi
denote the subvector of y that corresponds to the set Ai. Then the Haar algorithm based on G′ requires

only Πi

{
|Ai|!

/
[|yAi

|!(|Ai| − |yAi
|)!]

}
evaluations, which is usually much more affordable compared to the

p!/{|y|!(p− |y|)!} evaluations needed for the algorithm based on SymA.

3.3. Haar inspired and other sandwich improvements to the ODA algorithm

Below we expand our tool box and consider variations and approximations of the Haar improvement

to ODA following the general strategies described in Section 2.4. A first variation is the random Haar

algorithm. We will apply it to the groups (G1, · · · , Gk) = (SymA1
, · · · , SymAk

). Its vector of weights

(p1, · · · , pk) can be either uniform or adjusted to reflect the severity of multicollinearity within the Ais.

A second method is to approximate the Haar algorithm based on a group G with the MH technique.

Specifically, given the current value y, one proposes to move to y′, that is a draw from the uniform distribu-

tion over O(y) = {gy : g ∈ G}, and accepts the proposal with an appropriate MH acceptance probability.

Such a move is always affordable regardless of the choice of G, as each new move will require only two

evaluations of πY (·), at y and y′, in order to calculate the MH acceptance probability.
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The MH approximation can be done for any one of the Haar algorithms mentioned earlier, i.e., those

based on G = SymB , SymA, G′, FlipB , or FlipA. Later, in the simulation and the real data problems, we

focus on G = SymA and FlipA. The reason why we do not do the same for G = SymB or FlipB is that

under these groups, the size of O(y) is often huge, and a uniform proposal over O(y) tends to get very low

acceptance rate. Further, we have not implemented an MH approximation for the G = G′ case because we

are able to afford the exact Haar algorithm based on this group.

Lastly, we consider a random swap move on Y, restricted to the set A. Specifically, this is an MH

move that proposes to swap a randomly chosen pair of 0 and 1 in A of the current y. In other words, one

proposes to randomly exchange a covariate in A included in the current model with another one in A that

is excluded from the current model, and accept the move with an appropriate probability to maintain the

correct invariant distribution πY . Note that such a proposal only allows transpositions in A, hence it is

more restrictive compared to the MH approximation to the Haar move on A. These exchange based moves

are popular in a Bayesian variable selection model that uses the original, non-orthogonal design matrix.

Our purpose for adding it is to investigate its performance in conjunction with ODA. In a few very simple

cases, it is possible to do theoretical comparisons of the proposed methods. These are presented in an online

supplement.

4. Simulations

4.1. High multicollinearity

Our first simulation design is inspired by the multicollinearity example in Section 5.2.2 of George and

McCulloch [9]. Here the three pairs of covariates (1, 2), (3, 4) and (5, 6) have correlations higher than 0.995.

Moreover almost all the 15 covariates are moderately correlated with each other with correlations around 0.8

in the original example. We preserve this structure for the first 15 covariates and add 85 more noise variables

generated as independent N(0, 1) variables to convert it to a higher dimensional example with p = 100. We

consider the sample size no = 180 and generate the response variable exactly as in George and McCulloch

[9]. The details are given in the supplement. Following the practice of Ghosh and Clyde [10], we set the

hyperparameters of the prior in (2) as λj = 1 and πj =
1
2 for j = 1, · · · , p, in all examples.

Based on the correlations in the observed design matrix Wo, we decide to perform the sandwich moves
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on the three pairs of severely correlated variables. We do not consider the traditional Gibbs sampler because

it was outperformed by the ODA algorithm by a large margin [10]. Instead, we implement a Metropolis–

Hastings algorithm with add/delete steps and random swap proposals which was shown to be more compet-

itive with the ODA algorithm by Ghosh and Clyde [10].

Let A = {1, 2, · · · , 6}, A1 = {1, 2}, A2 = {3, 4}, A3 = {5, 6}. We list below the algorithms used in

the simulation study:

1. ODA algorithm of Ghosh and Clyde [10],

2. Haar algorithm based on the permutation group < SymA1
, SymA2

, SymA3
>,

3. random Haar algorithm which chooses from one of the permutation groups SymAi
with probability

pi = 1/3, for i = 1, 2, 3,

4. group MH sandwich algorithm on the permutation group SymA,

5. group MH sandwich algorithm on the additive (modulo 2) group FlipA,

6. random swap sandwich algorithm restricted to A = {1, 2, · · · , 6},

7. Metropolis–Hastings algorithm with add/delete and random swap proposals [4].

To summarize, in the above list the first one is the ODA algorithm that we are trying to improve. Algo-

rithm 2 is the Haar algorithm restricted to a manageable subgroup, which involves a maximum of 8 marginal

likelihood evaluations per iteration, in the sandwich step. Algorithms 3-5 are sandwich algorithms that are

inspired by Haar moves on algebraic groups, that involve at most two marginal likelihood calculations.

Algorithm 6 belongs to the general class of sandwich algorithms, and has similar computing cost as 3-5.

All algorithms 2-6 involve these sandwich steps in addition to the sampling steps of ODA. Finally, Algo-

rithm 7 is a traditional Metropolis–Hastings algorithm that does not fall under the class of DA or sandwich

algorithms, and involves one marginal likelihood evaluation per iteration.

We initialize all algorithms at the full model, γ = (γ1, · · · , γp) = (1, · · · , 1), and run them for one mil-

lion iterations each to estimate the marginal inclusion probabilities, p(γj = 1 | Zo). Figure 1 shows pairwise

comparisons of these estimated inclusion probabilities for all the algorithms. The diagonal panels of Figure

1 show the estimated inclusion probabilities for each algorithm, plotted in the same order, j = 1, . . . , 100.

The plots show very close agreement in the estimates produced by the algorithms, which suggests that the

number of iterations was large enough for the chains to converge to their invariant distributions. For further
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validation of these results, we run all the algorithms again with a different initial value, specifically the vec-

tor γ that corresponds to the null model. The resulting estimates are almost indistinguishable from the ones

reported here. To compare the performance of the algorithms, we estimate their corresponding asymptotic

variances for estimating p(γj = 1 | Zo), using the mcmcse [8] package in R. For the ODA and the sandwich

algorithms Rao–Blackwellized estimates are used as in equation (4), whereas for the Metropolis–Hastings

algorithm the usual Monte Carlo estimates are used because no Rao–Blackwellized estimates are available.

ODA
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Figure 1: Estimates of marginal posterior inclusion probabilities, p(γj = 1 | Zo), for j = 1, . . . , 100, based on different algorithms,

for the highly correlated simulated data.

Table 1 shows the estimated relative efficiency of different algorithms with respect to the ODA algorithm.

This is calculated as the ratio of the asymptotic variance of ODA with respect to that of the other algorithms;
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γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10
Haar (permutation group) 3.28 14.80 8.61 7.57 17.66 2.41 0.99 0.98 0.99 0.99

random Haar (permutation group) 2.74 6.90 4.55 4.67 7.24 2.24 0.97 0.95 0.94 0.94

permutation group MH sandwich 4.98 8.01 6.32 6.29 8.54 4.23 0.97 0.97 0.92 0.94

additive group MH sandwich 4.85 7.14 5.56 5.51 7.37 4.81 0.98 0.97 0.90 0.95

random swap sandwich 4.38 7.27 5.94 6.24 6.69 3.93 0.97 0.97 0.98 0.97

Metropolis–Hastings 0.17 0.19 0.20 0.19 0.22 0.17 0.24 0.24 0.23 0.24

Table 1: Estimates of relative efficiency of different algorithms with respect to the ODA algorithm in estimating p(γj = 1 | Zo)
for j = 1, . . . , 10, for the highly correlated simulated data.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10
Haar (permutation group) 1.61 7.25 4.22 3.71 8.66 1.18 0.49 0.48 0.49 0.49

random Haar (permutation group) 1.84 4.63 3.05 3.13 4.86 1.50 0.65 0.64 0.63 0.63

permutation group MH sandwich 3.66 5.89 4.65 4.62 6.28 3.11 0.71 0.71 0.68 0.69

additive group MH sandwich 3.49 5.14 4.00 3.96 5.30 3.46 0.71 0.70 0.65 0.68

random swap sandwich 3.06 5.08 4.15 4.36 4.68 2.75 0.68 0.68 0.69 0.68

Metropolis–Hastings 0.61 0.68 0.71 0.68 0.79 0.61 0.86 0.86 0.82 0.86

Table 2: Running time adjusted estimates of relative efficiency of of different algorithms with respect to the ODA algorithm in

estimating p(γj = 1 | Zo) for j = 1, . . . , 10, for the highly correlated simulated data.

values larger than 1 indicate that the other algorithms lead to a reduction in variance. The first 10 components

are displayed due to limitations of space. The sandwich algorithms result in reduction in variance up to 18

times for Haar, and 8.5 times for the other sandwich algorithms. The last row indicates that the Metropolis–

Hastings algorithm is less efficient than ODA. Our empirical results suggest that the components of γ that

are not directly affected by the sandwich step show a similar asymptotic variance under both ODA and

sandwich algorithms. This is also the case for the components that are not displayed.

The results in Table 1 do not take into account running times of different algorithms. Because the

running times for algorithms 2-7 are approximately 2.04, 1.49, 1.36, 1.39, 1.43, and 0.28 times that of ODA

in this example, we divide the estimated efficiency in rows 1-6 of Table 1 by these time adjustment factors

and report the new values in Table 2. Table 2 shows that the sandwich algorithms are substantially more

efficient for the sandwiched components even after adjusting for time. For other components ODA is most

efficient when time is incorporated. Among the sandwich algorithms, the Haar algorithm shows some of the

largest gains, even after incorporating time. The group MH approximations to Haar yield the best general

performance, especially the one based on the permutation group.
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4.2. Moderate multicollinearity

We now use a simulation design with no = 100, p = 50, and negligible pairwise correlations among

most covariates and moderate correlations among just three pairs. The first two covariates are generated

from a bivariate normal distribution with means 0, standard deviations 1, and correlation coefficient 0.8.

Covariates 3 and 4 are generated in the same way, and covariates 5 and 6 are designed to have a somewhat

smaller correlation 0.5. This leads to sample correlation coefficients 0.839, 0.796, and 0.4965 among the

three pairs (1, 2), (3, 4), and (5, 6) respectively. The remaining 44 covariates are generated from indepen-

dent standard normal distributions, so the sample correlation coefficients for all pairs except the first three

are smaller than 0.314 in absolute value. The response variable is generated from a multivariate normal

distribution with mean Woβ and variance Ino/φ, where

β = (1.5, 0.5, 0.5,−0.5,−0.5, 0.4, 0.4,−0.4,−0.4,−0.4,−0.4,−0.4,−0.4, 0, . . . , 0)′, and φ = 1/2.52,

resulting in 12 signals (excluding the intercept) and 38 noise variables. The sign and magnitude of the re-

gression coefficients for positively correlated covariates were chosen to be the same. This reflects the belief

that these covariates have similar effect on the response variable. We use the same group structures for

performing the sandwich moves as in the previous simulation study in Section 4.1. Each algorithm was run

for one million iterations, with initial value specified to be the full model. Plots similar to those in Figure 1

(not displayed here due to space limitation) show very good agreement among estimates provided by all

the methods. Further, reruns of the algorithms based on different initial values lead to very similar results.

Hence we believe that all the algorithms have stabilized after one million iterations, and summarize our

results in Tables 3 and 4.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10
Haar (permutation group) 10.89 9.17 8.52 10.80 4.63 4.43 1.12 1.36 1.09 1.22

random Haar (permutation group) 3.24 3.22 3.25 3.50 2.24 2.05 1.03 1.24 1.04 1.15

permutation group MH sandwich 3.10 3.03 3.02 3.57 2.05 2.02 1.10 1.28 1.15 1.04

additive group MH sandwich 2.71 2.54 2.69 2.99 1.95 2.04 1.11 1.18 1.08 1.10

random swap sandwich 2.86 2.74 2.81 2.89 2.20 2.07 1.06 1.28 1.07 1.09

Metropolis–Hastings 0.12 0.10 0.08 0.11 0.07 0.08 0.07 0.07 0.06 0.03

Table 3: Estimates of relative efficiency of different algorithms with respect to the ODA algorithm in estimating p(γj = 1 | Zo)
for j = 1, . . . , 10, for the moderately correlated simulated data.

Table 3 shows the estimated relative efficiency of different algorithms with respect to the ODA algorithm.

The Haar algorithm is 11 times more efficient than ODA for some sandwiched components, while the other
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γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10
Haar (permutation group) 3.60 3.04 2.82 3.58 1.53 1.47 0.37 0.45 0.36 0.40

random Haar (permutation group) 1.90 1.89 1.90 2.04 1.31 1.20 0.60 0.72 0.61 0.67

additive group MH sandwich 1.69 1.59 1.68 1.87 1.22 1.28 0.69 0.74 0.68 0.69

permutation group MH sandwich 1.93 1.88 1.88 2.22 1.27 1.25 0.68 0.79 0.72 0.64

random swap sandwich 1.73 1.66 1.70 1.75 1.33 1.26 0.64 0.78 0.65 0.66

Metropolis–Hastings 0.26 0.23 0.18 0.26 0.17 0.18 0.16 0.16 0.13 0.06

Table 4: Running time adjusted estimates of relative efficiency of of different algorithms with respect to the ODA algorithm in

estimating p(γj = 1 | Zo) for j = 1, . . . , 10, for the moderately correlated simulated data.

algorithms can be up to 3.6 times as efficient as ODA. The last row indicates that the Metropolis–Hastings

algorithm is less efficient than ODA, about 1/10 as efficient as ODA for the first 6 components. The

components of γ that are not under a direct sandwich move have similar efficiency as ODA. Table 4 shows

the running time adjusted relative efficiencies with respect to ODA. Even after adjusting for running time,

the Haar algorithm is 3.6 times more efficient than ODA for some components and is more efficient than

ODA for all sandwiched components. As earlier, for components which are not under a sandwich move

ODA is most efficient when time is incorporated.

Among the sandwich algorithms the Haar algorithm appears to be the best irrespective of whether run-

ning time is taken into account or not. This example demonstrates that sandwich algorithms can be useful

even when there is moderate linear dependence among only few of the covariates. The gains in efficiency

are smaller compared to the previous high multicollinearity example. This is not surprising because in a low

or moderate multicollinearity problem the performance of ODA is already quite good to begin with, so there

is less scope of further improvement using sandwich moves.

One reviewer raised an important question: how to tune the different algorithms? In our algorithms

the main tuning parameter that needs to be specified is the collection of inclusion indicators, i.e. the subset

of {γ1, · · · , γp}, on which the sandwich moves are to be performed. For the group based algorithms an

associated group structure needs to be selected as well. On one hand, when designing Haar algorithms,

our theoretical results show that larger groups are better. Empirical results suggest that small correlations

among the covariates (less than 0.5) do not adversely affect the performance of the original ODA algorithm

substantially, so one possibility is to perform sandwich moves on inclusion indicators for all covariates that

have correlations bigger than some large threshold with one or more covariates. The choice of this threshold

is problem specific because a small threshold may lead to a large group for the sandwich step, associated

18



with an increase in computational cost. Our default choices have been choosing a threshold such that the

group size is not too large, say no larger than 16. This guarantees that the computational cost per iteration

would not be any larger than 16 times that of ODA. In fact, the cost may be much smaller for permutation

groups, because many different permutation operations on the vector of binary variables γ, result in the same

proposed model γ′, and marginal likelihoods need to be evaluated for distinct proposed models only. There

are no such savings in computational cost for additive groups, hence we generally prefer using permutation

groups over additive groups when building Haar algorithms. On the other hand, when designing Metropolis-

Hastings based sandwich algorithms, the computational cost does not increase with larger group sizes, as

we always need only two marginal likelihood evaluations at each iteration. However, in this case, it depends

on the nature of the posterior distribution whether selecting larger groups for the sandwich step will lead

to larger gains. In general, too large a group may lower the acceptance rate and reduce the amount of

improvement in mixing. Finally, we recommend a few short pilot runs for each algorithm with varying

thresholds following the principles listed above, in order to get a preliminary idea of a reasonable threshold

that will balance the group size and the gain per iteration.

5. Protein Data

We consider the protein activity data previously analyzed by Clyde et al. [4] as a difficult model selection

problem for high correlations among some of the covariates. Here the sample size, no = 96 and there are

p = 88 covariates in the full model with all main effects, two-way interaction terms, and quadratic terms for

continuous covariates.

We perform sandwich moves on the four pairs of covariates with pairwise correlations greater than

0.995 in absolute value. These are A1 = {1, 18}, A2 = {3, 20}, A3 = {4, 15}, A4 = {13, 17}. Also, let

A = {1, 18, 3, 20, 4, 15, 13, 17}. We run all seven algorithms for one million iterations as in the simulation

study and report the results in Tables 5 and 6.

The additive group MH sandwich algorithm emerges as a clear winner after adjusting for running time.

The permutation group MH sandwich appears to be a close runner up. These algorithms lead to relative

efficiency values that are 2-4 times that of ODA, for all components of γ that are under a sandwich move.

Even after taking into account time, Table 6 shows that these algorithms can double or triple the efficiency for
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γ1 γ18 γ3 γ20 γ4 γ15 γ13 γ17
Haar (permutation group) 1.50 1.43 2.45 2.29 1.03 1.02 1.33 1.49

random Haar (permutation group) 1.25 1.30 2.04 1.72 1.03 0.99 1.11 1.25

permutation group MH sandwich 2.43 2.42 3.93 3.35 2.66 2.68 2.50 2.64

additive group MH sandwich 2.77 2.87 3.88 3.42 3.51 3.49 2.63 2.89

random swap sandwich 2.15 2.25 3.27 2.92 2.34 2.27 2.05 2.23

Metropolis–Hastings 0.09 0.09 0.12 0.14 0.08 0.08 0.08 0.10

Table 5: Estimates of relative efficiency of different algorithms with respect to the ODA algorithm in estimating p(γj = 1 | Zo),
for the components of γ on which sandwich moves were employed, for the protein data.

γ1 γ18 γ3 γ20 γ4 γ15 γ13 γ17
Haar (permutation group) 0.98 0.93 1.59 1.49 0.67 0.66 0.87 0.97

random Haar (permutation group) 0.91 0.95 1.49 1.26 0.75 0.72 0.81 0.91

permutation group MH sandwich 1.73 1.73 2.81 2.39 1.90 1.91 1.79 1.89

additive group MH sandwich 2.01 2.08 2.81 2.48 2.54 2.53 1.91 2.10

random swap sandwich 1.49 1.56 2.27 2.02 1.62 1.57 1.42 1.55

Metropolis–Hastings 0.31 0.29 0.42 0.47 0.26 0.26 0.28 0.35

Table 6: Running time adjusted estimates of relative efficiency of different algorithms with respect to the ODA algorithm in

estimating p(γj = 1 | Zo), for the components of γ on which sandwich moves were employed, for the protein data.

many components with respect to ODA. For components of γ that are not under a direct sandwich move, the

asymptotic variances are similar for ODA and the sandwich algorithms, and so usually the ODA algorithm

is the most efficient after adjusting for time. The Metropolis–Hastings algorithm has larger asymptotic

variance than all other algorithms as earlier.

6. Biscuit Dough Data

We consider the biscuit dough dataset, which was previously analyzed by Brown et al. [1] and more

recently by [11]. The dataset was obtained from a near-infrared (NIR) spectroscopy experiment used to

analyze the composition of biscuit dough pieces, and it is available as part of the R package ppls [17].

For each biscuit, the NIR reflectance spectrum is a continuous curve measured at several uniformly spaced

wavelengths. The dataset contains measurements at 700 wavelengths which are considered as the covariates.

Following the idea of other authors [11] we first thinned the reflectance spectra to 100 evenly placed wave-

lengths between 1202nm to 2398nm to reduce the model space to a more computationally manageable size

of 2p = 2100. The measurements from consecutive wavelengths are very highly correlated so the thinning

does not result in much loss of information. The response variable is taken to be the percentage of water in
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each dough. We combined the training and test samples available in the R package resulting in a sample size

of no = 70.

This is a more difficult dataset compared to the protein dataset because the number of covariates is

larger than the sample size, and there is very high multicollinearity. The lowest pairwise correlation is

around 0.6 and each covariate has 0.995 or higher correlation with at least one other covariate in the dataset.

To focus on the most highly correlated covariates for the sandwich step we choose the ones which have

correlation 0.9999 or higher with one or more covariates. This leads to choosing the measurements at the

11 wavelengths: 22, 23, 37, 38, 39, 47, 48, 50, 51, 52, 53. The pairwise correlations among any two of these

11 covariates is 0.986 or higher so we perform sandwich moves on all of them together.

Let A = {22, 23, 37, 38, 39, 47, 48, 50, 51, 52, 53}, then the algorithms implemented in this case are:

1. ODA algorithm of Ghosh and Clyde [10],

2. group MH sandwich algorithm on the permutation group SymA,

3. group MH sandwich algorithm on the additive (modulo 2) group FlipA,

4. random swap sandwich algorithm restricted to A,

5. Metropolis–Hastings algorithm with add/delete and random swap proposals [4].

We do not implement the Haar algorithm because it would be too expensive to run on such a large group.

We run all the above algorithms for one million iterations and report our findings in Tables 7 and 8.

γ22 γ23 γ37 γ38 γ39 γ47 γ48 γ50 γ51 γ52 γ53
permutation group MH sandwich 8.0 7.5 8.2 8.1 8.3 7.3 7.3 7.1 7.2 7.3 7.5

additive group MH sandwich 27.4 24.1 26.5 28.6 26.3 23.5 24.5 25.1 22.7 22.9 27.0

random swap sandwich 6.0 5.2 5.5 5.6 5.5 5.0 5.0 5.2 4.8 5.1 5.2

Metropolis–Hastings 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 7: Estimates of relative efficiency of different algorithms with respect to the ODA algorithm in estimating p(γj = 1 | Zo),
for the components of γ on which sandwich moves were employed, for the biscuit dough data.

For this analysis, the additive group MH sandwich algorithm emerges as a clear winner before and after

adjusting for running time. For same iterations it is at least 22 times as efficient as ODA in all sandwiched

components and up to 29 times as efficient as ODA for some. The time adjusted efficiencies are at least 16

times that of ODA and as much as 20 for some components. The other sandwich algorithms all show decent

gains after adjusting for time but not as remarkable as this one. This example illustrates that the performance
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γ22 γ23 γ37 γ38 γ39 γ47 γ48 γ50 γ51 γ52 γ53
permutation group MH sandwich 5.3 5.0 5.5 5.4 5.5 4.9 4.9 4.7 4.8 4.9 5.0

additive group MH sandwich 19.7 17.3 19.1 20.6 18.9 16.9 17.6 18.1 16.3 16.5 19.4

random swap sandwich 4.3 3.7 3.9 3.9 3.9 3.5 3.5 3.7 3.4 3.6 3.7

Metropolis–Hastings 2.0 1.8 1.9 1.7 1.8 1.7 1.7 1.8 1.8 1.8 1.8

Table 8: Running time adjusted estimates of relative efficiency of different algorithms with respect to the ODA algorithm in

estimating p(γj = 1 | Zo), for the components of γ on which sandwich moves were employed, for the biscuit dough data.

of ODA may be affected the most when there is very high multicollinearity and in these situations sandwich

moves can bring a huge improvement over ODA. In this example all algorithms, including the Metropolis–

Hastings algorithm, appear to be better than ODA after taking into account time. For components of γ that

are not under a direct sandwich move, the efficiencies are similar for ODA and the sandwich algorithms,

before adjusting for time. So for these components usually the Metropolis–Hastings algorithm is the most

efficient after adjusting for time, it’s efficiency being about twice as ODA for all components.

7. Discussion

For Bayesian variable selection problems with moderate to high correlations among some of the co-

variates, we find that well designed sandwich algorithms can significantly improve the ODA algorithm in

estimating functions that exhibit large standard errors due to multicollinearity. Empirical results show that

the efficiency of estimators of marginal inclusion probabilities of covariates whose inclusion indicators are

under direct sandwich moves can be much higher than that of the ODA algorithm. However, for other co-

variates that are not under a direct sandwich move, the efficiency of the sandwich algorithms is same as

that of the ODA algorithm. This suggests that running the sandwich algorithms for same iterations as ODA

will result in better estimates overall. When time is a crucial factor we recommend running both ODA and

the sandwich algorithms in parallel and using the appropriate estimates based on their estimated relative

efficiency.

Our experience suggests that it is easy to code and automate group MH sandwich algorithms that are

inspired by the Haar algorithms, restricted to the set of most highly correlated covariates. They are also

not computationally demanding compared to the ODA algorithm, and have promising performances in all

the examples that we have tried. Besides, the Haar algorithm based on a smaller permutation subgroup

appears to be very competitive for the simulation study, even after adjusting for time. Furthermore, for Haar
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algorithms, each step has the potential of being implemented in parallel. In the Bayesian variable selection

framework, parallel computing has been efficiently used by Hans et al. [12] for rapidly exploring large

model spaces. It would be interesting to see in the future if parallel computing brings the Haar algorithm

more advantage compared to MH approximations.
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Appendix A: Proof of proposition 2

It is implicitly stated in Liu and Wu [19, Section.5] that the Haar algorithm based on a locally compact

group G′ is a special PXDA algorithm on G′ that corresponds to the left Haar measure r = νG′ . (An

alternative proof of the statement in the special case where G′ is a discrete group is provided in the online

supplement of this paper. Our proof only requires elementary knowledge of discrete groups.) Since νG′ is

supported in G′ ⊆ G, it is also a probability distribution on G. Hence, PG′ can be considered a PXDA

algorithm associated with group G. Then PG is better than PG′ in both orderings according to Hobert and

Marchev [14].

Appendix B: Proof of proposition 3

Proposition 3 Part (1). First, we study the efficiency ordering of Markov chains by introducing the covari-

ance ordering. Let P and Q be two Mtks, both invariant for πX . Write P ≤1 Q if (h, Ph) ≥ (h,Qh) for all

h ∈ L2
0(πX). It was shown in Mira and Geyer [22] that if both P and Q are reversible for πX , then P ≤1 Q

if and only if P ≤E Q.

Now back to the problem at hand. For each i = 1, . . . , k, since G0 ⊆ Gi ⊆ G, then PG0
≤E PGi

≤E

PG from Proposition 2. Recall that a Haar algorithm is always reversible with respect to its invariant distri-

bution. This implies that PG0
≤1 PGi

≤1 PG, i.e., for any h ∈ L2
0(π), (h, PGh) ≤ (h, PGi

h) ≤ (h, PG0
h).
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Note that (h, P ∗h) = (h,
∑

i piPGi
h) =

∑
i pi(h, PGi

h). Then, for any h ∈ L2
0(π),

(h, PGh) =
∑

i

pi(h, PGh) ≤ (h, P ∗h) ≤
∑

i

pi(h, PG0
h) = (h, PG0

h) . (8)

That is, PG0
≤1 P

∗ ≤1 PG. Since PG0
, P ∗, and PG are all reversible, it follows that PG0

≤E P ∗ ≤E PG.

Finally, the above efficiency ordering will imply the operator norm ordering ‖PG‖ ≤ ‖P ∗‖ ≤ ‖PG0
‖ if

we can show that both PG and P ∗ are positive operators [13, Theorem 10]. Note that PG is a Haar algorithm,

and hence can be represented as a DA algorithm [14, Theorem 4]. Further, any DA algorithm is positive

[18, Lemma 3.2], so PG is positive. Hence by equation (8), for any h ∈ L2
0(π), (h, P

∗h) ≥ (h, PGh) ≥ 0.

So P ∗ is also positive. After all, we have shown that ‖PG‖ ≤ ‖P ∗‖ ≤ ‖PG0
‖.

Proposition 3 Part (2). As shown above, P ∗ and the PGi
’s are all positive operators. And according to

Hobert and Rosenthal [13, Proposition 1(f)], for any positive operator Q, ‖Q‖ = suph∈L2

0,1(πX)(h,Qh),

where L2
0,1(πX) = {h ∈ L2

0(πX) : ‖h‖ = 1} . Now, for all h ∈ L2
0,1(πX), (h, P ∗h) =

∑
i pi(h, PGi

h) ≤

supi(h, PGi
h) . Hence

‖P ∗‖ = sup
h
(h, P ∗h) ≤ sup

h
sup
i
(h, PGi

h) = sup
i

sup
h
(h, PGi

h) = sup
i

‖PGi
‖ .

So, in terms of operator norm, P ∗ has a convergence rate no worse than that of the least favorable PGi
.

For completeness, we next discuss the efficiency ordering for P ∗ and the PGi
’s, and claim that there is

no simple way to order them. To see this, consider the special case where P ∗ = p1PG1
+ p2PG2

, where p1

and p2 are positive and add up to 1. Let H = {h : (h, PG1
h) < (h, PG2

h)} and H ′ = {h : (h, PG1
h) >

(h, PG2
h). Then as long as neither G1 nor G2 is a subgroup of the other group, it is easy to see that both H

and H ′ are non-empty. Then

(h, PG1
h) < (h, P ∗h) < (h, PG2

h) for h ∈ H

and

(h, PG2
h) < (h, P ∗h) < (h, PG1

h) for h ∈ H ′.
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That is, P ∗ and the individual operators do not dominate each other in covariance ordering, and hence are

incomparable in efficiency ordering.
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