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Purifying and labeling RNA

Measuring of the amount of RNA corresponding to specific
genes requires a number of steps, each of which introduces
noise

First, the RNA from a sample must be purified (a process
taking several days of laboratory work)

Next, the RNA must be labeled with a fluorescent dye so that
we can quantify its concentration with a scanner
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Probes

A common approach to identifying the RNA from specific genes is
through the use of oligonucleotide probes
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A Microarray

The microarray above contains 716× 716 = 512656 probes (22
probes per gene)
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Statistical issues

The prominent statistical issues are:

Is there an experimental bias favoring some types of probes?

Does a measurement of “100” on one microarray mean the
same thing as a measurement of “100” on a different
microarray?

What are we going to do with the 22 measurements per gene?
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Statistical issues (cont’d)

An ideal analysis would integrate measurement error into the
eventual analysis. However, this is generally not done for two
practical reasons:

Can no longer run conventional statistical analyses

A vector of probe-level intensities from a single microarray
occupies 4 MB of system memory
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Preprocessing

Therefore, microarray data is usually preprocessed before it is
analyzed

There are dozens (thousands if you consider mixing and
matching) of approaches to preprocessing, but they generally
include the following steps:

Background adjustment
Normalization
Summarization

I will focus on a parallel implementation of Wu and Irizarry’s
(JASA, 2004) GCRMA approach to microarray preprocessing
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Background Adjustment

Quality control microarray experiments using known
concentrations of RNA have demonstrated that certain probes
consistently give more signal than others even with the same
sample (or no sample)

The GCRMA approach relies on a stochastic model motivated
by hybridization theory and fit to experiments of known
standards to estimate probe affinities

The probe affinities are then used as parameters in a model
for observed intensity

As background adjustment, an empirical Bayes estimate of the
signal replaces the observed intensity
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Background Adjustment: Parallelization Concerns

Ideally, each processor could perform background adjustment
on its own microarray(s)

However, to fit the background adjustment model, certain
parameters assumed to be constant over microarrays (e.g.
variances) need to be estimated

Nevertheless, there is more than enough data to estimate
these parameters “locally”
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The Need for Normalization
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Normalization

The most common approach to normalization is quantile
normalization

The algorithm is as follows, given a matrix X:

Sort each column of X
Find the mean of each row
Assign to each element of X the mean value of its
within-column rank

Easy to parallelize using parRapply and parCapply,
although it potentially suffers from excess communication
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Summarization

At this point, we have, for each gene, a p× n matrix of
adjusted intensities that we wish to summarize into an
n-dimensional vector of expression levels

This suggests a two-factor ANOVA model, where our outcome
of interest would be the estimated column means

Out of concern for potential outliers, the more robust median
polish approach is used instead of an ANOVA model

In principle, there is no problem parallelizing this operation,
although I found the overhead costs of setting up the
parallelization to trump the gains
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Implementation: Data

27 microarrays

512656 probes per microarray

∼ 22 probes per gene

17361 genes
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Implementation: Top-level Code

parProcess <- function(data.directory)

{

filenames <- list.files(data.directory,full.names=T)

cl.split <- clusterSplit(cl,filenames)

p <- length(filenames)

sorted.list <- parLapply(cl,cl.split,parRAS,out.name="ind")

sorted <- matrix(unlist(sorted.list),ncol=p)

means <- parRapply(cl,sorted,mean)

norm.list <- clusterCall(cl,parUnsort,means=means,ind.name="ind")

norm <- matrix(unlist(norm.list),ncol=p)

val <- calcRMA(norm)

val

}
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Results

> system.time(E.std <- process(data.directory))

238.297 10.222 248.655

> system.time(E.fast <- process(data.directory,fast=T))

91.922 9.867 101.811

> system.time(E.par3 <- parProcess(data.directory))

13.309 2.474 137.526

> system.time(E.par9 <- parProcess(data.directory))

10.948 2.692 54.103

> system.time(E.par27 <- parProcess(data.directory))

16.084 2.947 36.522
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Results (cont’d)

> mean(abs(E.par9-E.std)/E.std)

[1] 0.03134509

> mean(abs(E.fast-E.std)/E.std)

[1] 0.2389692
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Analysis: Overview

It is difficult to make broad generalizations about microarray
analysis and whether operations can be made parallel

But in general....

Expression as outcome: usually clear
Expression as predictors: less clear
Unsupervised learning: seems hard
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My Analysis

The microbiologists I worked with were interested in detecting
changes in expression over a variety of experimental conditions

An ANOVA model is generally appropriate

In this case, then, our problem is to fit 17361 linear models
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Fitting thousands of linear models

A direct approach:

> system.time(fit <- apply(E.par9,1,do.lm,Design=Design))

user system elapsed

110.458 0.848 111.330

A direct parallel approach

> system.time(fit <- parRapply(cl,E.par9,do.lm,Design=Design))

user system elapsed

68.540 3.362 89.719
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Fitting thousands of linear models (cont’d)

However, this approach is enormously redundant (we invert
the same matrix 17361 times)

A function that fits the linear models efficiently would be
useful

Luckily, one already exists: lm
> system.time(fit <- lm(t(E.par9) ~ 0+Design))

user system elapsed

0.513 0.223 0.736

I thank the Statistical Computing & Graphics newsletter for
this helpful tip
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Conclusion

Parallel computing using snow is fairly easy...

...in principle.

However, functions that perform complex tasks require a good
deal of work (and thought) to rewrite and optimize in a
parallel manner
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